
Building Android Applications
CS 398: Application Development

Features; View framework; Layouts.

Features

2

3

Although we had mobile devices in the 90s and early 2000s, the launch of the
iPhone in 2007 really launched the smartphone era.

Mobile Applications

iOS and Android have become the dominant mobile operating systems.

Features
Smartphones are optimized as portable devices, for ad hoc interaction.

1. Mobile applications use multi-touch as a primary input mechanism.

Keyboard input is secondary to touch. No assumption of physical buttons.

2. Run a single foreground application at a time.

3. Applications normally run full-screen, and cannot be resized or moved.

4. Restrictions on what applications can do

• Low-memory

• Typically are paused if not in the foreground

4

Interaction
Interactive graphical elements: window
contents are a combination of txt, images,
and interactive elements.

Mobile applications tend to have fewer
controls or on-screen widgets compared to
desktop.

Interaction is typically by gestures (touch
and swipe on regions of the screen). Direct
manipulation is emphasized.

Challenges? Screen size and difficulty
interacting with small elements by touch.

5

Gestures

6

Toolkits
In a desktop OS, we might have a widget or GUI toolkit to provide advanced
features for building applications (e.g. creating and managing application
windows, providing reusable widgets like buttons, lists, toolbars.

Android has two toolkits both provided by Google:

• Views and ViewGroups: the default imperative toolkit.

• JetPack Compose: a new innovative declarative toolkit.

7

Architecture

8

Android is an open-source, Linux
based operating system designed
to run across a variety of devices
and form-factors.

It’s an example of a layered
architecture, which increasing
levels of abstraction as we move
from the low-level hardware to
higher-level application APIs. Mid-
level components exist to provide
services to components further up
the stack.

9

API
The entire feature-set of the Android OS is available through APIs written in Java and/
or Kotlin4. These APIs form the building blocks you need to create Android apps by
providing critical services: :

• A rich and extensible View System you can use to build an app’s UI, including lists,

grids, text boxes, buttons, and even an embeddable web browser

• A Resource Manager, providing access to non-code resources such as localized

strings, graphics, and layout files

• A Notification Manager that enables all apps to display custom alerts in the status

bar

• An Activity Manager that manages the lifecycle of apps and provides a common

navigation back stack

• Content Providers that enable apps to access data from other apps, such as the

Contacts app, or to share their own data
10

Components
There are four different types of core components that can be created in Android. Each
represents a different style of application, with a different entry point and lifecycle.

These four component types exist in Android:

• An Activity is an Android class that represent a single screen. It handles drawing the

user interface (UI) and managing input events. An application may include multiple
activities, where one is the “entry point”.

• A Service is a general-purpose background service, representing some long-running
operation that the OS should perform, which does not require a user-interface. e.g. a
music playback service.

• Broadcast Receivers: A service that can launch itself in response to a system event,
without the need to stay running in the background like a regular service. e.g. an
application to pop up a reminder when the user arrives at a destination.

• Content Providers managed shared information that other services or applications can
access. e.g. a shared contact database.

11

Activities
Activities are the most common type of component, since they include user
interfaces and visible components. One activity will be the “main” activity that
represents the entry point when your application launches.

The system uses the information in the AndroidManifest.xml to determine
which activity to launch, and how to launch it.

12

<activity

 android:name=".MainActivity"

 android:label="@string/app_name"

 android:theme="@style/Theme.AndroidSandbox.NoActionBar">

 <intent-filter>

 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>

 </intent-filter>

</activity>

Main Activity
The MainActivity is a class that extends AppCompatActivity. This is a base
class that supports all modern Android features while providing backward
compatibility with older versions of Android. For compatibility with older version
of Android, you should always use AppCompatActivity as a base class.

Our base class contains a number of methods. The onCreate() method is the
first method that is called when the MainActivity is instantiated. Here’s a basic
onCreate() method:

13

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main) // this inflates the activity_main

 // ...

 }

Layouts
Activities typically have an associated layout file which describes their
appearance.

The activity and the layout are connected by a process known as layout
inflation. When the activity starts, the views that are defined in the XML layout
files are turned into (or “inflated” into) Kotlin view objects in memory. Once this
happens, the activity can draw these objects to the screen and also dynamically
modify them.

R.layout.activity_main in this example corresponds to the layout/
activity_main.xml file

14

15

<?xml version="1.0" encoding="utf-8"?>

<androidx.coordinatorlayout.widget.CoordinatorLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <com.google.android.material.appbar.AppBarLayout

 android:layout_height="wrap_content"

 android:layout_width="match_parent"

 android:theme="@style/Theme.AndroidSandbox.AppBarOverlay">

 <androidx.appcompat.widget.Toolbar

 android:id="@+id/toolbar"

 android:layout_width="match_parent"

 android:layout_height="?attr/actionBarSize"

 android:background="?attr/colorPrimary"

 app:popupTheme=

“@style/Theme.AndroidSandbox.PopupOverlay"/>

 </com.google.android.material.appbar.AppBarLayout>

 <include layout="@layout/content_main"/>

 <com.google.android.material.floatingactionbutton.FloatingActionButton

 android:id="@+id/fab"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_gravity="bottom|end"

 android:layout_margin="@dimen/fab_margin"

 app:srcCompat="@android:drawable/ic_dialog_email"/>

</androidx.coordinatorlayout.widget.CoordinatorLayout>

Activity Lifecycle
Applications consist of one or more running activities, each one corresponding to a screen.

Activities in the system are managed as activity stacks. When a new activity is started, it is
usually placed on the top of the current stack and becomes the running activity – the
previous activity always remains below it in the stack, and will not come to the foreground
again until the new activity exits.

An activity can be one of the following running states:

• The activity in the foreground, typically the one that user is able to interact with, is

running.

• An activity that has lost focus but can still be seen is visible. It will remain active.

• An activity that is completely hidden, or minimized is stopped. It retains its state (it’s

basically paused) BUT the OS may choose to terminate it to free up resources.

• The OS can choose to destroy an application to free up resources.

16

17

Activity Lifecycle
There are three key loops that these phases attempt to capture:

• The entire lifetime of an activity happens between the first call to

onCreate(Bundle) through to a single final call to onDestroy(). An activity will do
all setup of “global” state in onCreate(), and release all remaining resources in
onDestroy().

• The visible lifetime of an activity happens between a call to onStart() until a
corresponding call to onStop(). During this time the user can see the activity on-
screen, though it may not be in the foreground and interacting with the user.
Between these two methods you can maintain resources that are needed to show
the activity to the user.

• The foreground lifetime of an activity happens between a call to onResume()
until a corresponding call to onPause(). During this time the activity is in visible,
active and interacting with the user. An activity can frequently go between the
resumed and paused states – for example when the device goes to sleep.

18

Activity Lifecycle
These phases correspond to the following callback methods. You can override a
method in your Activity to add code that will get executed when the
application enters or exits a particular stage:

19

 public class Activity extends ApplicationContext {

 protected void onCreate(Bundle savedInstanceState);

 protected void onStart();

 protected void onRestart();

 protected void onResume();

 protected void onPause();

 protected void onStop();

 protected void onDestroy();

 }

Activity Stack
A task is a collection of activities that users interact with when performing a
certain job. The activities are arranged in a stack—the back stack)—in the order
in which each activity is opened. This new activity is added to the back stack. If
the user presses the Back button, that new activity is finished and popped off
the stack.

20

Intents
An intent is an asynchronous message, that represents an an operation to be
performed. This can include activating components, or activities. An intent is
created with an Intent object, which defines a message to activate either a
specific component (explicit intent) or a specific type of component (implicit
intent).

Similarly, intents can be used to activate an Activity. The
startActivity(Intent) method is used to start a new activity, which will be
placed at the top of the activity stack. It takes a single argument, an Intent,
which describes the activity to be executed.

21

Intents to Launch an Activity
Use startActivity() method to launch an activity with an intent.

22

Building Applications

23

Creating a Project
Android uses Gradle projects.
You can create an Android
project in IntelliJ IDEA or
Android Studio.

Most project templates will
create a simple project with one
activity.

The project structure will match
a typical gradle project, with
source and res forders.

24

Project Structures
The res folder contains resources for your project: sounds, images and other useful
files that aren’t source code.

The following subfolders are used:

• The drawable folder contains images that you wish to draw on-screen (directly,

or on a widget). It also contains default icons for your application.

• Under the layout folder, we have XML files represent a screen layout. These can

be loaded dynamically to instantiate a screen at runtime.

• The values folder contains XML files with constants: colours, themes, titles etc.

25

AndroidManifest.xml
The AndroidManifest.xml file is generated with your project; one is
reproduced below. This file contains settings that tell the application how to
present itself on Android e.g. icon, label, theme. The activity element tells is
which class to launch when the application launches. Other permissions and
settings can be added in here as-needed.

26

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="net.codebot">

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

Views and ViewGroups
Android provides a set of prebuilt widgets, called Views.

All elements in the user interface are built using a hierarchy of View and
ViewGroup objects. A View usually draws something the user can see and
interact with. A ViewGroup is a container that defines the layout structure.

27

Layout
The ViewGroup objects are usually called “layouts” can be one of many types
that provide a different layout structure, such as LinearLayout or
RelativeLayout.

You can declare a layout in two ways:

• Declare UI elements in XML. Android provides a straightforward XML

vocabulary that corresponds to the View classes and subclasses, such as
those for widgets and layouts. 
You can also use IntelliJ or Android Studio’s Layout Editor to build your XML
layout using a drag-and-drop interface. This will generate the XML file for
you.

• Instantiate layout elements at runtime. Your app can instantiate View and
ViewGroup objects (and manipulate their properties) programmatically.

28

Layout Classes
Each subclass of the ViewGroup class provides a unique way to display the
views you nest within it.

29

Linear Layout
A layout that organizes
its children into a single
horizontal or vertical row

Relative Layout
Enables us to specify the
location of child objects

relative to each other or to
the parent.

Grid View
Displays items in a
two-dimensional,

scrollable grid

Widgets
Widgets are contained in the android.view.widget package. Notable widgets include
TextView, EditText, RadioButton, CheckBox, Spinners and others.

Properties: Background color, text, font, alignment, size, padding, margin, etc

Event Listeners and Handlers: respond to various events such as: click, long-click, focus
change, etc.

Set focus: Set focus on a specific view requestFocus() or use XML tag <requestFocus />

Visibility: Hide or show views using setVisibility().

30

The widget can be included in the XML layout file, or instantiated directly in code.

You can also set properties in the XML file or in code.

Example: Text View
<TextView 
 android:id="@+id/txtHello" 
 android:layout_width="wrap_content" 
 android:layout_height="wrap_content" 
 android:text="Hello World!" />

31

var helloTextView = findViewById(R.id.txtHello) as TextView 
helloTextView.text = "CS349 W19"

Example: EditText
<EditText 
 android:id="@+id/name" 
 android:layout_width="wrap_content" 
 android:layout_height="wrap_content” 
 android:inputType="textPersonName"

 android:text=”@string/name” >

 <requestFocus/>

 <EditText/>

32

val nameView = findViewById(R.id.name) as EditText 
val name = nameView.getText()

33

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical" >

 <TextView android:id="@+id/text"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello, I am a TextView" />

 <Button android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello, I am a Button" />

</LinearLayout>

Layout Files

Loading a Layout File
When compiled, each layout file is compiled into a View resource that can be
dynamically loaded.

In your Activity’s onCreate() method, you should call setContentView() to
load your starting view. Layout can be changed at anytime by calling
setContentView() with the new view’s ID.

34

fun onCreate(savedInstanceState: Bundle) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.main_layout)

}

Events
Event handlers can be associated with widgets (views), much as they are with
other toolkits, but are modified to reflect touch interaction over mouse
interaction.

For example, we can attach a clickListener to a widget programatically.

35

val button = findViewById(R.id.btnAlarm) as Button

button.setOnClickListener(event -> {

 public void onClick(View v) {

 // Do something in response to button click

 }

})

Events
We can also define handlers as layout properties (i.e. in XML layout files).

36

<Button android:id="@+id/btnAlarm"

 android:onClick="sendMessage"/>

// handler function always has view parameter

fun sendMessage(view: View) {

 // Do something in response to button click

}

Example: Events
val button = findViewById(R.id.btnAlarm) as Button 
button.setOnClickListener(event -> { 
 public void onClick(View v) { 
 // Do something in response to button click 
 } 
})

•

37

<Button 
 android:id="@+id/btnAlarm" 
 …… 
 android:onClick="sendMessage"/>

/** Called in activity when the user touches the button */ 
fun sendMessage(view: View) { 
 // Do something in response to button click 
}

Option 1: Listeners

Option 2: Layout

Structure

38

MVC Pattern
We often choose to model applications using the MVC pattern, which is a
specific instance of the observer pattern.

39

MVC Pattern
MVC divides an application into three
distinct parts:

• Model: the core component of the

application that handles state.

• View: a representation of the

application state, often as a user-
interface (“presentation”)

• Controller: a component that
accepts input, interprets user
actions and converts to commands
for the model or view (“business
logic”).

40

class Main {

 val model = Model()

 val controller = Controller(model)

 val view = View(controller, model)

 model.addView(model)

}

41

interface IView {

 fun update()

}

class View(

val controller: Controller, val model: Model): IView
{

 override fun update() {

 // fetch data from model

 }

}

class Model {

 val views = listOf()

 fun addView(view: IView) {

 views.add(view)

 }

 fun update() {

 for (view : views) {

 view.update()

 }

 }

}

class Controller(val model: Model) {

 fun handle(event: Event) {

 // pass event data to model

 }

}

public / desktop / MVC

