
TDD & Unit Testing
CS 398: Application Development

Goals of testing; TDD; Unit Testing; JUnit & Kotlin



Why do we test?
The goal of testing is to ensure that the software that we produce meets our objectives when 
deployed into the environment in which it will be used, and when faced with real-world 
constraints.


Why do we test?


1. To gain confidence in the correctness of your results.


2. To gain confidence that you are handling edge cases and errors properly, which will result in 
a better user experience.


3. To produce an improved design, usually as a by-product of having written tests. The process 
of writing tests forces us to structure our code more carefully.


4. To help identify deficiencies and flaws in both software design and implementation.

2



How do we test?
We produce automated tests that can confirm that our 
system is working as expected.


We can identify three types of tests:


1. Unit tests: tests operating at the class level (or 
smallest functional unit), which are meant to check 
the validity of low-level interfaces and systems.


2. Integration tests: testing across multiple classes 
or functional units, to check interaction between 
objects.


3. System tests: this is testing functionality from the 
perspective of the user; end-to-end feature 
testing. Sometimes called functional testing.

3



Traditional views were that testing should be done after implementation. This is costly. Testing is 
more useful when done earlier in the process.


Different tests are suitable for different parts of the development process:

When should we test?

4

• Unit Tests: done during implementation, 
when you are working on a class.


• Integration Tests: done during 
implementation, when you want to ensure 
that classes work together.


• System Tests: done when features are 
complete and merged, to ensure that the 
system continues working.

Unit and Integration Tests

System Tests



Test-Driven Development (TDD)

5



Test-Driven Development (TDD)
Promoted by Kent Beck around 2002 as an Extreme 
Programming (XP) practice. 


The basic idea is that you write tests before writing the 
corresponding implementation code.


TDD development cycle 

1. Define an interface or specification for your class or module.


2. Write a test against that interface. 


3. Write the implementation code that causes the test to pass.


4. Repeat until completed.


6

TDD assumes 100% test 
coverage.



Why do we do TDD?
There are some clear benefits:


• Early bug detection. You are building up a set of tests that can verify that your code works as 
expected.


• Better designs. Making your code testable often means improving your interfaces, having 
clean separation of concerns, and cohesive classes. Testable code is by necessity better 
code.


• Confidence to refactor. You can make changes to your code and be confident that the tests 
will tell you if you have made a mistake.


• Simplicity. Code that is built up over time this way tends to be simpler to maintain and 
modify.

7



TDD is based on Unit and Integration Tests
Unit tests are meant to exercise the interface of a single class or module.


• Unit tests should be very quick to execute and report results.


• They should return consistent results from a specified input.


• They should be integrated into our development workflow, so that they are routinely 
executed. i.e. they need to be automated.


Unit testing is behavioural testing, because we want to test interactions over objects instead of 
discovering the state of them. In other words we want to test how they behave, based on their 
interfaces.


How many unit tests should you have? As many as required to cover your critical classes and 
workflows. (You will NOT get 100% code coverage, despite best intentions).

8



JUnit Basics

9



Installing JUnit
To manage our tests, we’re going to use JUnit 5*, a popular testing framework. It can be 
installed in number of ways: directly from the JUnit home page, or one of the many package 
managers for your platform.


We’ll let Gradle manage JUnit for us as a project dependency. If you look at the build.gradle 
file, you should see these lines, which will force Gradle to manage our test libraries.


dependencies {

  // Use the Kotlin test library.

  testImplementation org.jetbrains.kotlin:kotlin-test’


  // Use the Kotlin JUnit integration.

  testImplementation'org.jetbrains.kotlin:kotlin-test-junit'

} 


10
* Kent Beck and Eric Gamma invented xUnit, a Smalltalk unit testing framework, while on a flight to OOPSLA in 1997. Over time, it was adapted into nUnit for .NET, CPPUnit for C++ and JUnit for Java.



JUnit Integration
In a Gradle source tree, Tests should be placed under src/
test/kotlin. It’s best practice to have one test class for each 
class that you want to test. 


e.g. class Main has a test class MainTest.


Unit tests are executed automatically when you build a project 
(command-line or from IntelliJ).


$ gradle build

BUILD SUCCESSFUL in 928ms

8 actionable tasks: 8 up-to-date // this includes tests


We can also execute the gradle “test” task to run them directly.


$ gradle test 

BUILD SUCCESSFUL in 775ms

3 actionable tasks: 3 up-to-date

11

Gradle build will automatically execute 
any tests in the test directory structure!



Create a Test Class
1. Create a class under src/main/kotlin. 


class Sample() {


    fun sum(a: Int, b: Int): Int {

        return a + b

    }

}


2. Create a corresponding test class under src/test/kotlin. Add functions, where a function 
represents a test.

import kotlin.test.Test

import kotlin.test.assertEquals


internal class SampleTest {


    private val testSample: Sample = Sample()


    @Test

    fun testSum() {

        val expected = 42

        assertEquals(expected, testSample.sum(40, 2))

    }

}

12



IntelliJ Tips
1. Press Cmd-N to generate a new test for the 

selected class.


2. In the test class itself, you can execute a 
particular test by clicking the Run icon in the 
gutter.

13



Characteristics of Unit Tests
Here are some general guidelines for writing unit tests.


1. Tests should be small. Favour many tests that each check a single thing.


2. Tests must be independent. 


• Build up, test and then tear-down any supporting classes. 


• Tests should be able to execute in any order, or in parallel, without assuming any underlying 
conditions.


• We should be able to run a single test to focus on a break.


3. Tests should be consistent. 


• They should not generate, or rely on side-effects or unpredictable results.


14



How do you write a unit test?
Every unit test should be a separate function, consisting of the following steps:


1. Arrange:


• Setup the conditions for your test.


• Initialize variables, load data, setup any dependencies that you might need.


• Do NOT reuse anything from a different test.


2. Act: 


• Execute the functionality that you want to test and capture the results.


3. Assert: 


• Check that the actual and expected results match.


• Use asserts appropriately - see next page.

15



Example
import kotlin.test.Test


class MainTest {

    @Test

    fun saveFile() {

        // FILE 1

        val f1 = "file1.txt"        // arrange

        val file1 = File(f1)


        val status1 = file1.save()  // act


        assert(status1 == FILE.OK)  // assert


        // FILE 2

        val f2 = "file2.txt"        // arrange

        val file2 = File(f2)


        val status2 = file2.save()  // act


        assert(status2 == FILE.OK)  // assert

    }

}

16

Note that we don’t reuse anything 
from the previous test.



Annotations
The @Test annotation tells JUnit that this is a unit test function. The kotlin.test package 
provides annotations to mark test functions, and denote how they are managed:

17

Annotation Purpose

@AfterTest Marks a function to be invoked after each test

@BeforeTest Marks a function to be invoked before each test

@Ignore Mark a function to be ignored

@Test Marks a function as a test



Assertions
We call utility functions to perform assertions of how the function should successfully perform.

18

Function Purpose

assertEquals Provided value matches the actual value

assertNotEquals The provided and actual values do not match

assertFalse The given block returns false

assertTrue The given block returns true



19

class CalcTest { 

@Test 

fun validPlus() { 
   val input = arrayOf("1", "+" , "2") 

   val results = Calc().calculate(input)} 

   assertEquals(3, results) 

}

 

@Test 
fun invalidPlus() { 

   val input = arrayOf("1", "+", "2") 

   val results = Calc().calculate(input) 

   assertNotEquals(5, results) 

} 


@Test 
fun insufficientArguments() { 

   try { 

      val input = arrayOf("1", "+") 

      Calc().calculate(input) 

   } catch (e:Exception) { 

      assertTrue(true) 

   }

}


}


$ gradle test

BUILD SUCCESSFUL in 760ms

3 actionable tasks: 3 up-to-date

Test valid input conditions.

Create a unit test like this for 
each operation or function.

Test invalid input conditions.

Create a unit test like this for each operation or 
function to ensure that you handle input errors 
correctly. Choose representative values (or 
important outliers)

Special-purpose unit test to check 
a specific error condition.



20

https://xkcd.com/2200/



Mocks

21



What does “isolation” mean?
• We stated that unit tests should run “in isolation”. 


• This means that you should attempt to test just the class 
in question, independent of other classes. 


• This is difficult due to dependencies: classes often rely 
on the behaviour of other classes to work correctly. 


• To accomplish this, we often create test doubles — 
classes that are meant to look like a dependent class, but 
that don’t actually implement all of the underlying 
behaviour. 


• This lets us swap in these “fake” classes for testing, to 
simplify testing.


There are five principal kinds of test doubles: Dummies, 
Fakes, Stubs, Spies and Mocks.

22



Mocks
Martin Fowler describes mocks as “objects pre-programmed with expectations which form a 
specification of the calls they are expected to receive.”


A mock is a fake object that holds the expected behaviour of a real object but without any 
genuine implementation. For example, we can have a mocked File System that would report a 
file as saved, but would not actually modify the underlying file system.


You can fairly easily create these mock classes yourself for code domain objects. 


Several libraries have also been established to help create mocks of objects. Mockito is one of 
the most famous, and it can be complemented with Mockito-Kotlin. Here’s an example of a 
mock File that reports a path, but doesn’t actually do anything else.


private val mockedFile: File {

  return mock { on { absolutePath} doReturn "/random"}

}

23



Code Coverage

24



How many tests do I need?
“Tests shouldn’t verify units of code. Rather, they should verify units of behaviour: something that 
is meaningful for the problem domain and, ideally, something that a business person can 
recognize as useful. The number of classes it takes to implement such a unit of behaviour is 
irrelevant. ” — Khorikov (2020)


Code coverage is a metric comparing the number of lines of code with the number of lines of 
code that have unit tests covering their execution. In other words, what “percentage” of your code 
is tested?


This is a misleading statistic at the best of times (we can easily contrive cases where code will 
never be executed or tested).


TDD would suggest that you should have 100% unit test coverage but this is impractical and not 
that valuable. You should focus instead on covering key functionality. e.g. domain objects, critical 
paths of your source code.

25



IntelliJ Coverage
• One recommendation is to 

look at the coverage tools in 
IntelliJ, which will tell you how 
your code is being executed, 
as well as what parts of your 
code are covered by unit 
tests.


• Use this to determine which 
parts of the code should be 
tested more completely.

26

https://www.jetbrains.com/help/idea/running-test-with-coverage.html
https://www.jetbrains.com/help/idea/code-coverage.html


