
Working with Databases
CS 398: Application Development

Relational databases; SQL; SQLite.

2

Instead of storing data in files, we can choose to store everything in a database: a
system designed for organizing and managing data.

Databases range in size and complexity from simple file-based databases that run on
your local computer, to large scalable databases. They are optimized for fetching text
and numeric data, and performing set operations on this data.

They also have the advantage of scaling extremely well. They’re optimized not just for
efficient storage and retrieval of large amounts of data, but also for concurrent access
by hundreds or thousands of users simulaneously1.

—————

1. This is a huge topic and we’re not even scratching the surface. I’d strongly
encourage you to take a formal database course e.g. CS 348.

Databases

3

We’re going to focus on one particular type: relational databases.

Kotlin uses a SQL library to query a relational database.

4

A relational database structures data into tables1:

• A table represents some logical entity e.g. Customer, Transactions. It consists of
columns and rows.

• A row is a record, containing values for each field. e.g. a Customer table would
have one row for each of its customers.

• A column is a field in that table. e.g. a “Customer“ table might have “name“,
“city“, “birthdate“ fields in row, which are the fields for each customer.  

———

1. The relational data model was proposed by E. F. Codd in 1970. Relational databases,
that utilize this model, are common. e.g. Oracle, SQL Server, PostgreSQL, MySQL.

Relational Databases

5

Here’s our earlier example shown as a class, a set of records in a CSV file and as a set of
relational database tables.

Data integrity is retained across data representations, even if the structure changes slightly

6

Why is this approach valuable?

1. Relational databases allow for very efficient storage and access of data.

2. Relational databases support operations on sets of records. e.g.

• Fetch a list of all purchases greater than $100.

• Delete customers from ”Ottawa”.

Our example is pretty trivial, but imagine useful queries like:

• ”Find all transactions between 2:00 and 2:30”, or

• ”Find out which salesperson sold the most during Saturday’s sale”.

Table

• A table is the foundational concept. It collects together a number of related
fields into records.

• e.g. Customer table contains customer information

• One record (row) per customer

• One field (column) for each property of that customer.

7

I like to think of a table
as roughly analogous to a

class. All of the fields
relate to that one entity.

Keys

• A key is a column that helps us identify a row or set of rows in a table.

• A primary key is a column in a database with a value that uniquely identifies
that row. A table cannot have more than one primary key.

• e.g. cust_id is a unique identifier for each row in the customer table.

• Using “cust_id=1002” to filter any operation will force that operation to only
affect the “Marie Curie” record.

8

Keys

• A foreign key is a key used to refer
to data being held in a different
table.

• Customer table

• Primary key: cust_id

• Transactions table

• Primary key: tx_id

• Foreign key: cust_id

9

Customer

Transactions

10

It’s common to have a record spread across multiple tables. A join
describes how to relate data across tables using foreign keys.

Transactions: we need to join data to recreate a record.

Joins

SQLite

11

12

SQLite (pronounced ESS-QUE-ELL-ITE) is a small-scale relational DBMS. It is
small enough for local, standalone use and is preinstalled on Android and
many operating systems.

 "SQLite is a C-language library that implements a small, fast, self-
contained, high-reliability, full-featured, SQL database engine.

SQLite is the most used database engine in the world.
SQLite is built into all mobile phones and most computers..."

https://www.sqlite.org/index.html

SQLite

13

You can install the SQLite database under Mac, Windows or Linux.

1. Visit the SQLite Download Page.

2. Dowload the binary for your platform.

3. To test it, launch it from a shell.

$ sqlite3
SQLite version 3.28.0 2019-04-15 14:49:49
Enter ".help" for usage hints.
Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database.
sqlite> .exit
$

4. We will create a database from the command line. Optionally, you can install SQLite Studio,
a GUI for managing databases.

Installing SQLite

14

SQLite Demo
You can download the SQLite Sample Database and confirm that SQLite is working.
We can open and read from this database using the command-line tools:

$ sqlite3
SQLite version 3.28.0 2019-04-15 14:49:49
Enter ".help" for usage hints.
Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database. sqlite>

SQLite database commands start with a period (.):

sqlite> .help
.help
.auth ON|OFF Show authorizer callbacks
.backup ?DB? FILE Backup DB (default "main") to FILE
....

15

SQLite Commands
These commands are ”meta-commands” that act on the database itself, and
not the data that it contains. Some particularly useful commands:

Command Purpose
.open <filename> Open database <filename>.
.database Show all connected databases.
.log <filename> Write console to log <filename>.
.read <filename> Read input from <filename>.
.tables Show a list of tables in the open database.
.schema <table> SQL to create a particular <table>.
.fullschema SQL to create the entire database structure.
.quit Quit and close connections.

16

We often use these meta-commands to change settings, and setup our queries.

$ sqlite3
SQLite version 3.28.0 2019-04-15 14:49:49
Enter ".help" for usage hints.
Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database.

sqlite> .open chinook.db // name of the file
sqlite> .mode column // lines up data in columns
sqlite> .headers on // shows column names at the top

// determine which tables to query
sqlite> .tables
albums employees invoices playlists
artists genres media_types tracks
customers invoice_items playlist_track

17

SQL Queries
Once we’ve identified what we want to do, we can just execute our queries. Examples of
selecting from a single table at a time:

 sqlite> SELECT * FROM albums WHERE albumid < 5;
 AlbumId Title ArtistId
 ---------- ------------------------- ----------
 1 For Those About To Rock 1
 2 Balls to the Wall 2
 3 Restless and Wild 2
 4 Let There Be Rock 1

 sqlite> SELECT * FROM artists WHERE ArtistId = 1;
 ArtistId Name
 ---------- ----------
 1 AC/DC

18

Example of a JOIN across two tables (based on a primary key, “ArtistId“’). You often will
have multiple WHERE clauses to join between multiple tables.

 sqlite> SELECT albums.AlbumId, artists.Name, albums.Title
 FROM albums, artists
 WHERE albums.ArtistId = artists.ArtistId
 AND albums.AlbumId < 4;

 AlbumId Name Title
 ---------- ---------- ------------------------
 1 AC/DC For Those About To Rock
 2 Accept Balls to the Wall
 3 Accept Restless and Wild
 4 AC/DC Let There Be Rock

Structured Query Language (SQL)

19

20

What is SQL?
SQL (pronounced ”Ess-que-ell”) is a Domain-Specific Language (DSL) for describing
your queries. Using SQL, you write statements describing the operation to perform,
against which tables, and the database performs the operations for you.

SQL is a standard1, so SQL commands work across different databases. You can:

• C reate new records

• R etrieve sets of existing records

• U pdate the fields in one or more records

• D elete one or more records

———

1. SQL was adopted as a standard by ANSI in 1986 as SQL-86, and by ISO in 1987.

Yes, we actually use
the acronym CRUD to

remember this.

21

SQL has a particular syntax for managing sets of records:

 <operation> FROM [table] [WHERE [condition]]

 operations: SELECT, UPDATE, INSERT, DELETE, ...
 conditions: [col] <operator> <value>

You issue English-like sentences describing what you intend to do.

SQL is declarative: you describe what you want done, but don’t need to tell
the database how to do it.

There’s also a relatively small number of operations to support.

Syntax

22

INSERT adds new records to your database.

INSERT INTO Customer(cust_id, name, city)
VALUES ("1005", "Sandra Avery", "Kitchener")

INSERT INTO Customer(cust_id, name, city)
VALUES ("1005", "Austin Avery", "Kitchener") // uh oh

Create: add new records

23

SELECT returns data from a table, or a set of tables.

• asterix (*) is a wildcard meaning “all”.

• an optional WHERE clause can filter the data.

SELECT * FROM customers
--> returns ALL data

SELECT * FROM Customers WHERE city = "Ottawa"
-- > {"cust_id"1003, "name":"Billy Bishop", "city":"Ottawa")

SELECT name FROM Customers WHERE custid = 1001
--> "Jeff Avery"

Retrieve: display existing records

24

UPDATE modifies one or more fields based in every row that matches the
criteria that you provide.

If you want to operate on a single row, you need to use a WHERE clause to give
it some criteria that makes that row unique.

UPDATE Customer SET city = "Kitchener" WHERE cust_id = 1001
—> updates one matching record since cust_id is unique for each row

UPDATE Customer SET city = "Kitchener" // uh oh
 —> no “where” clause, so we update everything to Kitchener.

Update: modify existing records

25

DELETE removes every record from a table that matches the criteria that
you provide.

If you want to operate on a single row, you need to use a WHERE clause to give
it some criteria that makes that row unique.

DELETE FROM Customer WHERE cust_id = 1001
—> deletes one matching record since cust_id is unique for each row

DELETE FROM Customer// uh oh
 —> deletes everything from this table

Delete: delete records

WHERE clause
• A where clause allows us to filter a set of records.

• We’ve already seen this a few times:

UPDATE Customer SET city = "Kitchener" WHERE cust_id = 1001
—> updates one matching record since cust_id is unique for each row

It also allows us to define relations between tables.

This means that we can start to run more complex queries across multiple
tables.

26

27

$ SELECT c.customer_id, c.first_name + “ “ + c.last_name, t.date,
p.name, p.cost

 FROM Customer c, Transactions t, Products p
 WHERE c.customer_id = t.customer_id
 AND t.product_id = p.product_id

$ 1001, Jeff Avery, 12-Aug-2020, T-shirt, 29.95

28
Our examples are all Inner Joins, using a simpler syntax.

Accessing Database in Code

29

30

Kotlin doesn’t have built-in database support, but it does include a library for this.

Kotlin leverages the Java JDBC API (”Java DataBase Connectivity”). This provides a
standard mechanism for connecting to databases, issuing queries, and managing
results.

Creating a database project in IntelliJ:

1. Create a Gradle/Kotlin project. 
2. Modify the “build.gradle“ to include a dependency on SQLite/JDBC.

implementation 'org.xerial:sqlite-jdbc:3.30.1'

3. Use the Java SQL package classes to connect and fetch data.

java.sql.Connection
java.sql.DriverManager
java.sql.SQLException

Accessing Databases in Code

31

This example uses a sample database from the SQLite tutorial.

fun connect(): Connection? {
 var conn: Connection? = null
 try {
 val url = "jdbc:sqlite:chinook.db"
 conn = DriverManager.getConnection(url)
 println("Connection to SQLite has been established.")
 } catch (e: SQLException) {
 println(e.message)
 }
 return conn
}

Public repository: /databases/JDBC

fun query(conn:Connection?) {
 try {
 if (conn != null) {
 val sql = "select albumid, title, artistid from albums where albumid < 5"
 val query = conn.createStatement()
 val results = query.executeQuery(sql)
 println("Fetched data:");
 while (results.next()) {
 val albumId = results.getInt("albumid")
 val title = results.getString("title")
 val artistId = results.getInt("artistid")
 println(albumId.toString() + "\t" + title + "\t" + artistId)
 }
 }
 } catch (ex: SQLException) {
 println(ex.message)
 }
}

32

Connection to SQLite has been established.
Fetched data:
1 For Those About To Rock We Salute You. 1
2 Balls to the Wall 2
3 Restless and Wild 2
4 Let There Be Rock 1
Connection closed.

Tips on Using SQLite
• The connection string (val url = "jdbc:sqlite:chinook.db") describes the database name,

including the path to the database.

• The sample project doesn’t include a path, which means that it looks for the database in the
current running directory. This is why the sample database is located in the root of the project.

• You will want your application to access an instance of the database when it runs. You can
either:

1. Ship with an empty database. You can pre-populate it with the tables and data that you
need. If you do this, you might need a way to create a “clean” database every time that
you run your app.

2. Create a new empty database when you launch your app. If your database does not
exist when you attempt to connect to it, it will be created for you. However, it will be
empty: no tables, or data. For this to be useful, your app would need to create tables and
starting data when it’s launched.

33

