
Functional Kotlin
CS 398: Application Development

Function types; Lambdas; Collections; Sequences

Functional Programming (FP) is a declarative programming style where
programs are constructed by compositing functions together. As much as
possible, computation is expressed as a series of functions that return
values.

• Functional programming treats functions as first-class citizens.

• Functional programming also specifically avoids mutation and side
effects (inadvertent changes to state).

2

Functional Programming

Don’t worry, we’re not
bringing back Racket.

FP Paradigm
First-class functions means that functions are
treated as any other type. We can pass them as to
another function as a parameter, return functions from
other functions, and assign functions to variables.

Pure functions are functions that have no side
effects. More formally, the return values of a pure
function are identical for identical arguments (i.e. they
don't depend on any external state).

Immutable data means that we do not modify data
in-place. We prefer immutable data that cannot be
accidentally changed, especially as a side-effect.

Lazy evaluation is the notion that we only evaluate as
expression when we need to operate on it. This
allows us to express and manipulate complex
expressions.

3

The Functional Programming Paradigm.

https://towardsdatascience.com

Kotlin Support
Kotlin is a hybrid language that supports OO, FP and Imperative programming styles.

• It’s up to you to decide the best approach for a particular problem, and you can mix paradigms.

• Think of FP as a toolbox of goodies that you can bring to bear on a problem.

1. Mutation and side effects

• Use val instead of var

• Avoid globals for carrying program state, when you can

• Favor functions that are cohesive, and free of side-effects (“you mean it’s that easy?”)

2. First-class functions & higher-order functions

• We’ll spent most of this lecture on this topic!

4

Function Types

5

Functions as Types
Functions in Kotlin are "first-class citizens" of the language.

This means that we can define functions, assign them to variables, pass
functions as arguments to other functions, or return functions! Functions are
types in Kotlin, and we can use them anywhere we would expect to use a
regular type.

Some definitions

• Pure function: a function that does not have any side effects.

• Higher-order function: a function that accepts another function as an
argument, or returns a function.

6

Example: Barber Shop

fun calculateTotalWithFiveDollarDiscount(initialPrice: Double): Double {

 val priceAfterDiscount = initialPrice - 5.0

 val total = priceAfterDiscount * taxMultiplier

 return total

}

fun calculateTotalWithTenPercentDiscount(initialPrice: Double): Double {

 val priceAfterDiscount = initialPrice * 0.9

 val total = priceAfterDiscount * taxMultiplier

 return total

}

7

Bert's Barber shop is creating a program to calculate the cost of a haircut,
and they end up with 2 almost-identical functions (Leeds 2022).

Functions are
identical except for

this code

If we could somehow pass in that line of code as an argument, then we could
replace both with a single function that looks like this, where applyDiscount()
represents the code that we would dynamically replace:

// applyDiscount = initialPrice * 0.9, or

// applyDiscount = initialPrice - 5.0

fun calculateTotal(initialPrice: Double, applyDiscount: ???): Double {

 val priceAfterDiscount = applyDiscount(initialPrice)

 val total = priceAfterDiscount * taxMultiplier

 return total

}

8

Assign a function to a variable
Here’s how we assign one of our functions to a variable.

fun discountFiveDollars(price: Double): Double = price - 5.0

val applyDiscount = ::discountFiveDollars

applyDiscount is now a reference to the discountFiveDollars function (note
the :: notation when we have a function on the RHS of an assignment). We
can even call it.

val discountedPrice = applyDiscount(20.0) // Result is 15.0

9

The type of a function
So what is the type of our function?

// this is the original function signature

fun discountFiveDollars(price: Double): Double = price - 5.0

val applyDiscount = ::discountFiveDollars

// applyDiscount accepts a Double as an argument and returns a Double

// we use this format when specifying the type

val applyDiscount: (Double) -> Double

// we could use this format for other functions too

// note that this is now a val and not a fun

val discountFiveDollars: (Double) -> Double

10

Pass a function to a function
We can use this information to modify the earlier example:

fun discountFiveDollars(price: Double): Double = price - 5.0

fun discountTenPercent(price: Double): Double = price * 0.9

fun noDiscount(price: Double): Double = price

fun calculateTotal(initialPrice: Double, applyDiscount: (Double) -> Double): Double {

 val priceAfterDiscount = applyDiscount(initialPrice)

 val total = priceAfterDiscount * taxMultiplier

 return total

}

val withFiveDollarsOff = calculateTotal(20.0, ::discountFiveDollars) // $16.35

val withTenPercentOff = calculateTotal(20.0, ::discountTenPercent) // $19.62

val fullPrice = calculateTotal(20.0, ::noDiscount) // $21.80

11

Function signatures match

Return a function from a function
Instead of typing in the name of the function each time he calls calculateTotal(),
Bert would like to just enter the coupon code from the bottom of the coupon that he
receives from the customer.

To do this, he just needs a function that accepts the coupon code and returns the
right discount function.

// accepts a String argument, and return a function

fun discountForCouponCode(couponCode: String): (Double) -> Double = when
(couponCode) {

 "FIVE_BUCKS" -> ::discountFiveDollars

 "TAKE_10" -> ::discountTenPercent

 else -> ::noDiscount

}

12

Intro to Lambdas

13

Function Literals
We can use this same notation to express the idea of a function literal, or a function
as a value.

val applyDiscount: (Double) -> Double = { price: Double -> price - 5.0 }

val applyDiscount = { price: Double -> price - 5.0 } // type inferred

The code on the RHS of this expression is a function literal, which captures the body of
this function. We also call this a lambda. A lambda is just an anonymous function,
written in this form:

• the function is enclosed in curly braces { }

• the parameters are listed, followed by an arrow

• the body comes after the arrow

14

A lambda expression.

{ price: Double -> price - 5.0 }

The implicit “it”
Original forms:

val applyDiscount: (Double) -> Double = { price: Double -> price - 5.0 }

val applyDiscount = { price: Double -> price - 5.0 } // type inferred

In cases where there’s only a single parameter for a lambda, you can omit the
parameter name and the arrow. When you do this, Kotlin will automatically make
the name of the parameter it.

Shortened forms:

val applyDiscount: (Double) -> Double = { it - 5.0 }

// what about the type inferred version?

15

Lambdas as arguments
We can rewrite our earlier earlier example to use lambdas instead of function references:

// fun discountFiveDollars(price: Double): Double = price - 5.0

// fun discountTenPercent(price: Double): Double = price * 0.9

// fun noDiscount(price: Double): Double = price

fun calculateTotal(initialPrice: Double, applyDiscount: (Double) -> Double): Double {

 val priceAfterDiscount = applyDiscount(initialPrice)

 val total = priceAfterDiscount * taxMultiplier

 return total

}

val withFiveDollarsOff = calculateTotal(20.0, { price - 5.0 }) // $16.35

val withTenPercentOff = calculateTotal(20.0, { price * 0.9 }) // $19.62

val fullPrice = calculateTotal(20.0, { price }) // $21.80

16

In cases where function’s last parameter is a function type, you can move the
lambda argument outside of the parentheses to the right, like this:

val withFiveDollarsOff = calculateTotal(20.0) { price -> price - 5.0 }

val withTenPercentOff = calculateTotal(20.0) { price -> price * 0.9 }

val fullPrice = calculateTotal(20.0) { price -> price }

This is meant to be read as two arguments: one inside the brackets, and the
lambda as the second parameter.

17

Returning lambdas
We can easily modify our earlier function to return a lambda as well.

fun discountForCouponCode(couponCode: String): (Double) -> Double =

when (couponCode) {

 "FIVE_BUCKS" -> { price -> price - 5.0 }

 "TAKE_10" -> { price -> price * 0.9 }

 else -> { price -> price }

 }

18

Collection Functions

19

Collections
Collection classes (e.g. List, Set, Map, Array) have built-in pure functions for working
with their data. These functions frequently accept other function lambdas as arguments.

filter produces a new list of those elements that return true from a predicate function.

val list = (1..100).toList()

val filtered = list.filter { it % 5 == 0 } // 5 10 15 20 ... 100

map produces a new list that is the results of applying a function to every element that it
contains.

val list = (1..100).toList()

val doubled = list.map { it * 2 } // 2 4 6 8 ... 200

reduce accumulates value starting with the first element and applying an operation to
each element from left to right.

val strings = listOf("a", "b", "c", "d")

println(strings.reduce { acc, string -> acc + string }) // abcd

20

forEach calls a function for every element in the collection.

val fruits = listOf("advocado", "banana", "cantaloupe")

fruits.forEach { print("$it ") } // advocado banana cantaloupe

take returns a collection containing just the first n elements. drop returns a new collection
with the first n elements removed.

val list = (1..50)

val first10 = list.take(10) // 1 2 3 ... 10

val last40 = list.drop(10) // 11 12 13 ... 50

first and last return those respective elements. slice allows us to extract a range of
elements into a new collection.

val list = (1..50)

val even = list.filter { it % 2 == 0 } // 2 4 6 8 10 ... 50

even.first() // 2

even.last() // 50

even.slice(1..3) // 4 6 8

21

Chaining Operations
We can chain operations together, so the return value of one function is acted on by the next function
in the chain. e.g. map and filter a collection without needing to store the intermediate collection.

val list = (1..999999).toList()

val results = list

 .map { it * 2 }

 .take(10)

// [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

The operations are performed in top-down order: map, then take. In this case, it means that we're
mapping the entire list and then discarding most of the resulting list with the take operation. This is
really inefficient: filter your list first!

val veryLongList = listOf(0..9999999L).toList()

val results = veryLongList

 .take(10)

 .map { it * 2 }

// [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

22

Resources

• John Guthrie ed. 2021. Exploring Kotlin Functional Programming. Manning
Publications. ISBN 978-1617297090.

• Dave Leeds. 2022. Dave Leeds on Kotlin: Lambdas and Function
References. https://typealias.com/start/kotlin-lambdas/

• Pierre-Yves Saumont. 2019. The Joy of Kotlin. Manning Publications. ISBN
978-1617295362.

• Venkat Subramaniam. 2019. Programming Kotlin. Pragmatic Bookshelf.
ISBN 978-1680506358.

• Venkat Subramaniam . 2022. Functional Programming in Kotlin. Devoxx
Poland. https://www.youtube.com/watch?v=emRPH2qeG48&t=1s

23

