
Asynchronous programming
CS 398: Application Development

Blocking; Threads; Callbacks; Promises; Coroutines.



Motivation

2



Programs typically consists of functions that we call in order to perform some 
operations. One underlying assumption is that functions will run to completion 
before returning control to the calling function. 


Once called, a subroutine will block your program from executing any further 
until it completes.

3



Programs often have work to do that takes time to complete: reading a file, 
writing to a database, making a request over a network. We call these 
blocking operations since they essentially halt the program from running any 
further until the operations have completed. 


The solution is to design software so that long-running tasks can be run in the 
background, or asynchronously.

4

The Task Manager on Windows will show you all of 
the processes that are running simultaneously. It’s 

normal for your computer to do a lot of 
background processing!



5

Our goal is for our main program to continue executing while other 
work gets done in the background. In the example above, the client 

doesn’t want to be blocked waiting for the server to return data.

Source: https://medium.com/i-learn-esp32-and-you-should-too/9-the-esp32-real-time-chart-591c0cbb03f



6

Concurrent tasks. 
The processor can alternate between 2 tasks and 
make progress on both. No performance gain overall.

Parallel tasks. 
The processor can have 2 tasks running 
simultaneously, usually by splitting computation across 
threads (and having multiple processors or cores on 
the system).

We need to be clear about what we mean by running “in the background”. 
There is a difference between concurrent and parallel computation.



Do accomplish either, we need to 
understand threads.


A thread is a “stream” of execution, that 
handles executing instructions within a 
program.


Every program has a main thread, and may 
optionally have additional threads for 
background processing.


Every thread has its own instructions that it 
executes, and the processor is responsible 
for allocating time for each thread to run.


Asynchronous programming involves 
programming models that can leverage 
multiple threads.

7

All instructions in a program are processed 
by one or more threads. Most programs 

only have one thread.

Source: https://www.backblaze.com/blog/whats-the-
diff-programs-processes-and-threads/



Strategies

8

How do we accomplish this?



Multi-threading
Multi-threading is the idea of manually 
splitting up computation across threads. 
These would result in one primary thread, 
and one or more background threads all 
running at the same time.


• This can help solve the blocking 
problem, since one thread can wait for 
the blocking operation to complete, 
while the other threads continue 
processing.


• This also has the potential to increase 
performance, if we can split up work 
and have it done in parallel.

9

Threads share a heap. However, you want to 
take care to ensure that 2 threads aren’t 

competing for something in-memory!



Managing Threads
Kotlin has native support for creating and managing threads. This is done by 


• Creating a user thread (distinct from the main thread where you application code 
typically runs).


• Defining some task for it to perform.


• Starting the thread.


• Cleaning up when it completes.


In this way, threads can be used to provide asynchronous execution, typically running 
in parallel with the main thread (i.e. running "in the background" of the program).

10



val t = object : Thread() { 
    override fun run() { 
    // define the task here 
    // it will run to completion on this thread 
  } 
} 

t.start() // launch the thread, it will run to completion 
t.stop()  // we can also stop it manually

11

Managing a thread



Alternate Syntax
fun thread( 
  start: Boolean = true,  
  isDaemon: Boolean = false,  
  contextClassLoader: ClassLoader? = null,  
  name: String? = null,  
  priority: Int = -1,  
  block: () -> Unit 
): Thread 

// a thread can be instantiated quite simply 
// pass in the arguments where you want a non-default value 
thread(start = true) { 
  // the thread will end when this block completes 
  println("${Thread.currentThread()} has run.") 
}

12



Threads: Pros/Cons
Background threads can solve the two issues that we identified above.


• a worker thread could wait for background computation to complete, while the 
main thread continues to process user commands or interaction.


• a worker thread can allow us to manage work in parallel or concurrently.


However, manually managing threads is challenging:


• It requires us to divide work and control the thread. It’s easy to encounter race 
conditions.


• Shared state is difficult and error-prone to manage. You need to take great care to 
ensure that two threads are not accessing the same resources at the same time 
(contention).


• User threads may not always available, or may not be available in the number that 
we require.

13



Callbacks
Another solution is to use a callback function. Essentially, you provide the long-running function with a 
reference to a function and let it run on a thread in the background. When it completes, it calls the callback 
function.


fun postItem(item: Item) { 
    preparePostAsync { token -> 
        submitPostAsync(token, item) { post -> 
            processPost(post) 
        } 
    } 
} 

fun preparePostAsync(callback: (Token) -> Unit) { 
    // make request and return immediately, arrange callback to be invoked later 
} 

This is still not an ideal solution, and can be difficult to implement:


• Nested callbacks. Usually a function that is used as a callback, often needs its own callback…. complex.


• Error handling. The nesting model makes error handling and propagation of these more complicated.
14



Promises
Instead of blocking, a function can return a Promise - an object that we can reference immediately but which will be 
processed at a later time.


fun postItem(item: Item) { 
    preparePostAsync() 
        .thenCompose { token -> submitPostAsync(token, item) } 
        .thenAccept { post -> processPost(post)} 
} 

fun preparePostAsync(): Promise<Token> { 
    // make request and return a promise that is completed later 
    return promise 
} 

Challenges


• Different programming model. The model moves from top-down imperative to compositional with chained calls.


• Different APIs. Need to learn a new API such as thenCompose or thenAccept, which can vary across platforms.


• Specific return type. Return type is a Promise which has to be introspected to determine the actual data.


• Error handling can be complicated. The propagation and chaining of errors aren’t always straightforward.
15



Coroutines

16

The idiomatic “Kotlin Way” to handle this.



Coroutines
Kotlin’s approach to working with asynchronous code is to use coroutines. 


A coroutine is a suspendable computation: a function that can suspend its execution 
at some point in time, and resume later on. 


Coroutines can be thought of as light-weight threads, in the sense that they run a 
block of code in parallel with the rest of the code. However, they differ in some 
important ways:


• A coroutine is not tied to any particular thread. It may suspend its execution in 
one thread and resume in another one, taken from a pool of threads. This makes 
allocating and managing coroutines much more performant than managing threads.


• A coroutine may remember state between calls. This means that we can use 
coroutines to have cooperating functions, where control is passed back and forth 
between them.

17



Example: Lightweight Coroutines
import kotlinx.coroutines.* 

fun main() = runBlocking { 
    repeat(100_000) {      // launch a lot of coroutines 
        launch { 
            delay(5000L) 
            print(".") 
        } 
    } 
} 

// output 
……………………………………………………………………………………………………………………………………………………………………… (repeat 100,000 times)

18

public repo: coroutines/lightweight



Advantages of Coroutines
• The function signature remains exactly the same. The only difference is suspend 

being added to it. The return type however is the type we want to be returned.


• The code is still written as if we were writing synchronous code, top-down, without 
the need of any special syntax, beyond the use of a function called launch to kicks 
off the coroutine.


• The programming model and APIs remain the same. We can continue to use loops, 
exception handling, etc. and there’s no need to learn a complete set of new APIs.


• It is platform independent. Whether we’re targeting JVM, JavaScript or any other 
platform, the code we write is the same. The compiler takes care of adapting it to 
each platform!

19



Setup
Kotlin provides the kotlinx.coroutines library with a number of high-level 
coroutine-enabled primitives. You will need to add the dependency to your 
build.gradle file, and then import the library.


// build.gradle 
implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-core:1.6.0' 

// code 
import kotlinx.coroutines.* 

20



Your first coroutine
fun main() = runBlocking { // this: CoroutineScope 
    launch {               // launch a new coroutine and continue 
        delay(1000L)       // non-blocking delay for 1 second 
        println("World!")  // print after delay 
    } 
    println("Hello")       // main coroutine continues while previous delays 
} 

//output 
Hello  
World 

> The section of code within the launch {} scope is delayed for 1 second. The 
program runs through the last line, prints "Hello" and then prints "World" after 
the delay.

21

public repo: coroutines/hello



How does it work?
The section of code within the launch {} scope is delayed for 1 second. The program 
runs through the last line, prints "Hello" and then prints "World" after the delay.


• runBlocking is a coroutine builder that bridges the non-coroutine world of a regular 
fun main() and the code with coroutines inside of the runBlocking { ... } curly 
braces. This is highlighted in an IDE by this: CoroutineScope hint right after the 
runBlocking opening curly brace.


• launch is also a coroutine builder. It launches a new coroutine concurrently with the 
rest of the code, which continues to work independently. That's why Hello has 
been printed first.


• delay is a special suspending function. It suspends the coroutine for a specific 
time. Suspending a coroutine does not block the underlying thread, but allows 
other coroutines to run and use the underlying thread for their code.

22



Suspending Functions
We can extract the block of code inside launch {} into a suspending function. 


Suspending functions can be used inside coroutines just like regular functions, but their additional 
feature is that they can use other suspending functions (like delay) to suspend execution of a coroutine.


fun main() = runBlocking {    // this: CoroutineScope 
    launch { doWorld() }      // call a suspending function using launch 
    println("Hello") 
} 

// this is your first suspending function, indicated with suspend keyword 
suspend fun doWorld() { 
    delay(1000L)             // delay is also a suspending function 
    println("World!") 
} 

// output 
Hello                       // same behaviour as before 
World!

23

public repo: coroutines/hello



Structured Concurrency
Coroutines follow a principle of structured concurrency which means that new 
coroutines can be only launched in a specific CoroutineScope which delimits the 
lifetime of the coroutine. 


The above example shows that runBlocking establishes the corresponding scope and 
that is why the previous example waits until everything completes before exiting the 
program.


In a real application, you will be launching a lot of coroutines. Structured concurrency 
ensures that they are not lost and do not leak. An outer scope cannot complete until all 
its children coroutines complete. 

24



Coroutine Builders: Launch
A coroutine builder is a function that creates a new coroutine. Most coroutine builders also start the coroutine 
immediately.  The most common coroutine builder is launch, which takes a lambda argument representing the 
function to execute. 


val ENDPOINT = "http://kotlin-book.bignerdranch.com/2e/flight" 
fun fetchData(): String = URL(ENDPOINT).readText() 

@OptIn(DelicateCoroutinesApi::class) 
fun main() { 
    println("Started") 
    GlobalScope.launch { 
        val data = fetchData() 
        println(data) 
    } 
    println("Finished") 
} 

// output 
Started 
Finished

25

When we run this program, it completes 
immediately. After the fetchData() function is 
called, the program continues executing and 
completes. 


This is the due to the launch builder.


This is a case where running the entire program 
asynchronously isn’t really what we want. 

public repo: coroutines/flight



Coroutine Builders: runBlocking
val ENDPOINT = "http://kotlin-book.bignerdranch.com/2e/flight" 
fun fetchData(): String = URL(ENDPOINT).readText() 

@OptIn(DelicateCoroutinesApi::class) 
fun main() { 
    runBlocking { 
        println("Started") 
        launch { 
            val data = fetchData() 
            println(data) 
        } 
        println("Finished") 
    } 
} 

// output 
Started 
Finished 
ZI9135,ALQ,FPC,Delayed,30

26

Using the runBlocking builder, launch is called 
asynchronously, and then execution continues to 
the end of the scope before pausing.


The ordering of data demonstrates how the data 
from fetchData()is returned after “Finished” is 
displayed.

public repo: coroutines/flight



Coroutine Builders: Scope Builder
In addition to the coroutine scope provided by different builders, it is possible to 
declare your own scope using the coroutineScope builder. It creates a coroutine 
scope and does not complete until all launched children complete.


runBlocking and coroutineScope builders may look similar because they both 
wait for their body and all its children to complete. The main difference is that 


• runBlocking method blocks the current thread for waiting, 


• coroutineScope suspends, releasing the underlying thread for other usages. 


27



Coroutine Builders: Scope Builder
// Sequentially executes doWorld followed by "Done" 
fun main() = runBlocking { 
    doWorld() 
    println("Done") 
} 

// Concurrently executes both sections 
suspend fun doWorld() = coroutineScope { // this: CoroutineScope 
    launch {                    // coroutine 1 
        delay(2000L) 
        println("World 2") 
    } 
    launch {                    // coroutine 2 
        delay(1000L) 
        println("World 1") 
    } 
    println("Hello") 
} 

// output  
Hello 
World 1 
World 2 
Done 28

A coroutine scope builder can 
be used inside of any 

suspending function. Here we 
use it to launch 2 concurrent 

coroutines.



import kotlinx.coroutines.* 

suspend fun main() {                                // A function that can be suspended and resumed later (suspend) 
    val start = System.currentTimeMillis() 
    coroutineScope {                                // Create a scope for starting coroutines (coroutineScope) 
        for (i in 1..10) { 
            launch {                                // Start 10 concurrent tasks (launch) 
                delay(3000L - i * 300)              // Pause their execution (delay) 
                log(start, "Countdown: $i") 
            } 
        } 
    } 
    log(start, “Liftoff!")                          // Execution continues when all coroutines in the scope have finished 
} 

fun log(start: Long, msg: String) { 
    println("$msg " + "(on ${Thread.currentThread().name}) " + “after ${(System.currentTimeMillis() - start)/1000F}s") 
} 

> Countdown: 10 (on DefaultDispatcher-worker-1 @coroutine#10) after 0.216s 
> Countdown: 9 (on DefaultDispatcher-worker-1 @coroutine#9) after 0.516s 
> Countdown: 8 (on DefaultDispatcher-worker-1 @coroutine#8) after 0.814s 
> Countdown: 7 (on DefaultDispatcher-worker-1 @coroutine#7) after 1.114s 
> Countdown: 6 (on DefaultDispatcher-worker-1 @coroutine#6) after 1.414s 
> Countdown: 5 (on DefaultDispatcher-worker-1 @coroutine#5) after 1.616s 
> Countdown: 4 (on DefaultDispatcher-worker-1 @coroutine#4) after 1.821s 
> Countdown: 3 (on DefaultDispatcher-worker-1 @coroutine#3) after 2.143s 
> Countdown: 2 (on DefaultDispatcher-worker-1 @coroutine#2) after 2.365s 
> Countdown: 1 (on DefaultDispatcher-worker-1 @coroutine#1) after 2.659s 
> Liftoff! 29

https://kotlinlang.org
public repo: coroutines/countdown



Managing Coroutines

30



Jobs
A launch coroutine builder returns a Job object that is a handle to the launched 
coroutine and can be used to explicitly wait for its completion. For example, you 
can wait for completion of the child coroutine and then print "Done" string:


val job = launch { // launch a new coroutine and keep a reference to its Job 
    delay(1000L) 
    println("World!") 
} 
println("Hello") 
job.join() // wait until child coroutine completes 
println("Done")  

31

public repo: coroutines/job



Cancellation
The launch function returns a Job that can be used to cancel the running coroutine:


coroutineScope { 
val job = launch { 
    repeat(1000) { i -> 
        println("job: I'm sleeping $i ...") 
        delay(500L) 
    } 
} 
delay(1300L) // delay a bit 
println("main: I'm tired of waiting!") 
job.cancel() // cancels the job 
job.join() // waits for job's completion  
println("main: Now I can quit.”) 

} 

32

// output 
job: I'm sleeping 0 ... 
job: I'm sleeping 1 ... 
job: I'm sleeping 2 ... 
main: I'm tired of waiting! 
main: Now I can quit.

public repo: coroutines/job



Composing  
Suspending Functions

33



Sequential (Default)
What do we do if we need 2 functions to be called sequentially? e.g. we want to 
execute doSomethingUsefulOne and then doSomethingUsefulTwo, and compute 
the sum of their results.


• Just use a normal sequential invocation, because the code in the coroutine, 
just like in the regular code, is sequential by default.


• In other words, we can just call the functions outside of a coroutine scope 
and they will execute like regular functions.

34



Sequential Example
suspend fun doSomethingUsefulOne(): Int { 
    delay(1000L) // pretend we are doing something useful here 
    return 13 
} 

suspend fun doSomethingUsefulTwo(): Int { 
    delay(1000L) // pretend we are doing something useful here, too 
    return 29 
} 

val time = measureTimeMillis { 
    val one = doSomethingUsefulOne() 
    val two = doSomethingUsefulTwo() 
    println("The answer is ${one + two}") 
} 
println("Completed in $time ms") 

// output 
The answer is 42 
Completed in 2017 ms

35



Async for Promises
What if there are no dependencies between invocations of doSomethingUsefulOne and 
doSomethingUsefulTwo and we want to get the answer faster, by doing both 
concurrently? 


• Use async, another builder.


Conceptually, async is just like launch. It starts a separate coroutine which is a light-
weight thread that works concurrently with all the other coroutines. The differences:


• launch returns a Job and does not carry any resulting value


• async returns a Deferred — a lightweight non-blocking future that represents a 
promise to provide a result later. You can use .await() on a deferred value to get its 
eventual result, but Deferred is also a Job, so you can cancel it if needed.

36



Async Example
val time = measureTimeMillis { 
    val one = async { doSomethingUsefulOne() } 
    val two = async { doSomethingUsefulTwo() } 
    println("The answer is ${one.await() + two.await()}") 
} 
println("Completed in $time ms") 

// output 
The answer is 42 
Completed in 1017 ms

37



Resources
• Andrew Bailey, David Greenhalgh & Josh Skeen. 2021. Kotlin Programming: The Big Nerd 

Ranch Guide. 2nd Edition. Pearson. ISBN 978-0136891055.


• Korhan Bircan. 2017. Multithreading and Kotlin. https://medium.com/@korhanbircan/
multithreading-and-kotlin-ac28eed57fea


• Roman Elizarov. 2017. Introduction to Coroutines. KotlinConf. https://www.youtube.com/
watch?v=_hfBv0a09Jc


• Google. 2022. Kotlin Coroutines on Android. https://developer.android.com/kotlin/coroutines


• Ryan Harrison. Make HTTP Requests in Kotlin. https://ryanharrison.co.uk/2018/06/15/make-
http-requests-kotlin.html


• Soufiane Sakhi. 2019. Kotlin Coroutines: An Introduction. https://simply-how.com/kotlin-
coroutines-introduction


• Upsana. 2022. Using Java 11 HttpClient with Kotlin Coroutines. https://
www.javacodemonk.com/using-java-11-httpclient-with-kotlin-coroutines-f0ca9111

38


