
Integration Testing
CS 398: Application Development

Goals of testing; Integration tests; Dependencies

Why do we test?
The goal of testing is to ensure that the software that we produce meets our objectives when
deployed into the environment in which it will be used, and when faced with real-world
constraints.

Why do we test?

1. To gain confidence in the correctness of your results.

2. To gain confidence that you are handling edge cases and errors properly, which will result in
a better user experience.

3. To produce an improved design, usually as a by-product of having written tests. The process
of writing tests forces us to structure our code more carefully.

4. To help identify deficiencies and flaws in both software design and implementation.

2

Traditional views were that testing should be done after implementation. This is costly. Testing is
more useful when done earlier in the process.

Different tests are suitable for different parts of the development process:

When should we test?

3

• Unit Tests: done during implementation,
when you are working on a class.

• Integration Tests: done during
implementation, when you want to ensure
that classes work together.

• System Tests: done when features are
complete and merged, to ensure that the
system continues working.

Unit Tests

4

Characteristics
A unit test is a test that meets the following three requirements [Khorikov 2020]:

1. Verifies a single unit of behaviour,

2. Does it quickly, and

3. Does it in isolation from other tests.

Unit tests should target classes or components in your program. i.e. they should exercise how a
particular class works. They should be small, very focused, and quick to execute and return
results.

If they exercise more than a single class, they’re not unit tests.

5

Unit test structure
Every unit test should be a separate function, consisting of the following steps:

1. Arrange:

• Setup the conditions for your test.

• Initialize variables, load data, setup any dependencies that you might need.

• Do NOT reuse anything from a different test.

2. Act:

• Execute the functionality that you want to test and capture the results.

3. Assert:

• Check that the actual and expected results match.

• Use asserts appropriately - see next page.
6

class ObserverTests() {

 lateinit var model: Model

 lateinit var view: IView

 class MockView() : IView {

 override fun update() {

 }

 }

 @Before

 fun setup() {

 model = Model()

 view = MockView()

 }

 @Test

 fun addObserver() {

 val old = model.observers.count() // should be zero

 model.addObserver(view)

 assertEquals(old+1, model.observers.count())

 }

}

7

Public repo:

Mobile / Android / 3.MVC

Integration Tests

8

What are Integration Tests?
"Unit tests are great at verifying business logic, but it’s not enough to check that

logic in a vacuum. You have to validate how different parts of it integrate with
each other and external systems: the database, the message bus, and so on."
— Khorikov 2020.

A unit test is a test that meets these criteria:

• Verifies a single unit of failure.

• Does this in isolation from other dependencies and other tests.

An integration test is a test that fails to meet one or more of these criteria.

• It checks multiple potential units of failure.

• Tests components that have dependencies between them.

• Seeks to understand the interaction between components.
9

Component

Class

Interface

Components

Packages

Features

Areas of Responsibility

10

Unit tests primarily test the domain model, or
business logic classes.

Integration tests focus on the point where
these business logic classes interact with
external systems or dependencies.

Code that we shouldn't bother testing:

• Trivial code is low complexity, and typically
has no dependencies or external impact so
it doesn't require extensive testing.

• Overcomplicated code likely has so many
dependencies that it's nearly impossible to
test.

What should I test?
Your unit tests should cover as many business
scenarios as possible. You should have fewer
integration tests.

Identify a “happy path”: an execution path that will be
your first (aka main) integration test.

• It should reflect the most commonly used execution
path by your users. Ensure that common functionality
works before testing more obscure functions.

• This main integration test should exercise all external
dependencies i.e. libraries, interfaces, database.

The primary purpose of integration tests is to exercise
dependencies.

If your main integration test cannot satisfy this
requirement, add more integration tests!

11

Dependencies

12

What is a dependency?
When you are examining a software component, we say that your component may be
dependent on one or more other software entities to be able to run successfully. e.g. a library, or
a different class, or a database. Each of these represents code that affects how the code being
tested will execute.

We often call the external software component or class a dependency. That word describes
the relationship (classes dependent on one another), and the type of component (a dependency
with respect to the original class).

A key strategy when testing is to figure out how to control these dependencies, so that you're
exercising your class independently of the influence of other components.

13

Types
Managed vs. Unmanaged dependencies. There is a difference between those that we control
directly (managed), vs. those that may be shared with other software (unmanaged). A managed
dependency suggests that we control the state of that system.

• Examples: a library that is statically linked is managed; a dynamically linked library is not. A
database could be single-file and used only for your application (managed) or shared among
different applications (unmanaged).

Internal vs. External dependencies. Running in the context of our process (internal) or out-of-
process (external). A library is internal, a database is typically external.

• Examples: A library, regardless of whether it is managed, is internal. A database, as a separate
process is always external.

An unmanaged dependency means that we do not control its state and we may not be able to test
that specific component or dependency. The best we could do it test our interface against it, since we
may not be able to trust the results of any actions that we take against it.

Generally speaking, we cannot test unmanaged dependencies since we cannot control them. We also
tend to be limited in our ability to test external systems, since we do not manage their state.

14

Test Doubles
When talking about TDD and Unit Tests, we discussed the idea of a test double or a mock.

A mock is a fake object that holds the expected behaviour of a real object but without any
genuine implementation. For example, we can have a mocked File System that would report a
file as saved, but would not actually modify the underlying file system.

The value in a test double is to remove dependencies and allow controlled testing. As our tests
get more complex, this gets more difficult to achieve.

We have 2 strategies to help reduce coupling and control these dependencies:

1. Extract interfaces

2. Introduce dependency injection

15

Interfaces
One important recommendation is that you introduce interfaces for out-of-class dependencies.
For instance, you will often see code like this:

public interface IUserRepository

public class UserRepository : IUserRepository

This is common when testing, even in cases when that class may represent the only realization
of an interface. This allows you to easily write mocks against the interface, where it's relatively
easy to determine what expected behaviour should be.

16

Dependency Injection
Dependency injection is the practice of supplying dependencies to an object in its argument list
instead of allowing the object to create them itself.

Example: Here’s a class that manages the underlying database connection. How do you test the
saveUserProfile() method separately from the database?

class Persistence {

 val repo = UserRepository() // Persistence creates the required repo instance

 fun saveUserProfile(val user: User) {

 repo.save(user)

 }

}

val persist = Persistence()

persist.saveUserProfile(user) // save using the real database

17

To reduce coupling, we could instead change our Persistence class so that we pass in the
dependency. This allows us to control how it is created, and even replace the UserRepository()
with a mock.

class Persistence(val repo: IUserRepository) { // pass in the repo instance to decouple the classes

 fun saveUserProfile(val user: User) {

 repo.save(user)

 }

}

class MockRepo : IUserRepository {

 // body with functions that mirror how the repo would work

 // but no real implementation

}

val mock = MockRepo()

val persist = Persistance(mock)

persist.saveUserProfile(user) // save using the mock database

18

Writing Integration Tests

19

Start with your source code.

How do I test?
• Integration tests are identical to Unit Tests…. They just have a larger scope.

• i.e. you are testing more than a single class, you are focused on identifying functionality
that will likely span multiple classes.

• Continue using JUnit - it’s not just for unit testing.

• See the TDD slides for setup details.

20

Tip #1: Reduce abstraction
“All problems in computer science can be solved by another layer of indirection,

except for the problem of too many layers of indirection.” -- David J. Wheeler

• Abstraction is costly!

• A large number of abstraction layers will make it very difficult to write integration tests for your code.

• e.g. Java libraries and “class bloat”.

• Try and keep the overall number of architectural layers to a relatively small number.

• UI, controller, persistence.

• Domain model, application services, infrastructure.

21

Effective testing requires
structuring your code so that

it’s easily testable!

Tip #2: Make domain boundaries explicit
• Think about the business logic, and the domain

objects that represent your problem.

• You want to keep your domain objects grouped
in a way that makes sense.

• Be consistent in how these objects
communicate and how they relate to one
another.

• Have clean communication boundaries.

• This is no different than keeping your model and
view code separate.

• It’s really about being able to cleanly separate your
classes for testing.

22

https://martinfowler.com/bliki/BoundedContext.html

