
Evaluation
CS 398: Application Development

Non-functional requirements; Measuring and logging data.



Non-Functional Requirements
To this point, we've focused on testing the functional requirements and the correctness of our 
results. 


However, there's other criteria: the non-functional requirements (NFRs) or properties of our 
system that we defined during the requirements gathering phase.


NFRs are defined as significant, measurable characteristics of a system. e.g.


• Processing speed: how long particular computations or functions take to execute.


• Volume of data: images processed, calculations performed and so on.


• Network performance: how long transmitting, receiving data over a network takes.


• Memory consumed: peak, and average memory consumption.


• Startup time: how long it takes to launch.
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Collecting Data
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System metrics
The Kotlin and JDK libraries contains a number of useful functions that can help us collect 
system information.
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Package Function Purpose

kotlin.system exitProcess() Terminate the currently running process.

kotlin.system getTimeMillis() Gets system time; subtract two points to 
get elapsed time in milliseconds.

kotlin.system measureTimeMillis { } Executes the given block (lambda) and 
returns elapsed time in milliseconds.

java.lang Runtime.getRuntime().freeMemory() Free memory for JVM.

java.lang Runtime.getRuntime().totalMemory() Total available memory for JVM.

java.io File("/").freeSpace Free bytes in a directory.



Typically you want to capture data before and after a critical operation, and then compare 
them to determine the cost of that operation (e.g. time to execute, memory consumed).


If you are measuring time, the measureTimeMillis function from the kotlin-stdlib is 
particularly helpful since it takes a lambda argument which is the block of code to execute.


fun performLengthyComputation() { 
    // a lot of processing goes on here 
} 

// manual 
val start = getTimeMillis() 
performLengthyComputation() 
val end = getTimeMillis() 
println("The elapsed time in milliseconds is ${end-start}") 

// using kotlin-stdlib 
val elapsed = measureTimeMillis { performLengthyComputation() } 
println("The elapsed time in milliseconds is $elapsed")
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Tips
You are going to want to measure everything that you listed in your non-functional requirements. 


• You need to exercise the functions that you want to measure: run the application, and interact 
with the features that you care about testing.


• If the functionality that you want to measure spans many classes or functions, you may need 
to write a top-level function to encapsulate that behaviour so that it's easier to measure.


• Milliseconds is probably the most coarse-grained you want to measure; there are also 
functions to measure microseconds but your tests will not be accurate to that level.


• Keep in mind that your system has other things running that will consume memory, drive 
space and so on. It is difficult/impossible to completely isolate your application.


• Test multiple times, and collect data from each attempt - average the results to get a more 
accurate estimate the value that you are collecting, which will reduce the impact of other 
applications that may be running on the system and consuming resources.
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Logging Data

7



Logging Data
You will want to gather the information in a text file or database, so that you can examine and 
analyze it later. 


You should record each data point that you collect as a single row in your log file. If you need 
to analyze it, this makes it much easier.


Each row should contain at least the following:


• Timestamp: Measure events and record time in milliseconds.


• Event type: this is more useful if you use logging for debugging purposes (where you can setup 
INFO, WARNING, EXCEPTION categories of messages). Use a default option here e.g. INFO.


• Description: Include a description of what your are logging. e.g. "time to execute bigFunction()"


• Value: Capture the numeric value in question. e.g. time in milliseconds.
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var file: FileWriter? = null 
var writer: BufferedWriter? = null 

data class Entry(val type: TYPE, val description: String, val value: Int) { 
   override fun toString(): String = “${getCurrentDateTime().toString()}, $type, $description, $value" 
} 
enum class TYPE { DEBUG, LOG} 

fun Date.toString(format: String): String = SimpleDateFormat(format, Locale.getDefault()).format(this) 
fun getCurrentDateTime(): Date = Calendar.getInstance().time 

fun open(filename: String) { 
    file = FileWriter(filename) 
    writer = BufferedWriter(file) 
} 

fun debug(description: String, value: Int) = save(Entry(TYPE.DEBUG, description, value)) 
fun log(description: String, value: Int) = save(Entry(TYPE.LOG, description, value)) 
private fun save(entry: Entry) = writer?.write(entry.toString() + "\n") 

fun close() { 
    writer?.close() 
    file?.close() 
}
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Logging Classes
Kotlin does not have a built-in logging class, but there are some options:


• Android has a Log class which is extremely robust and integrates with the development 
environment.


• Desktop/JDK users can use the Java Logging API. Although it's a Java library, its easy to use 
and compatible with Kotlin.


• There are also third-party solutions like Log4J that are popular for commercial environments.
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import java.util.logging.* 

object LoggerExample { 
    private val LOGGER = Logger.getLogger(LoggerExample::class.java.getName()) 

    @JvmStatic 
    fun main(args: Array<String>) { 
        // Set handlers for both console and log file 
        val consoleHandler: Handler? = ConsoleHandler() 
        val fileHandler: Handler? = FileHandler("./example.log") 
        LOGGER.addHandler(consoleHandler) 
        LOGGER.addHandler(fileHandler) 

        // Set to filter what gets logged at each destination 
        consoleHandler?.setLevel(Level.ALL) 
        fileHandler?.setLevel(Level.ALL) 
        LOGGER.level = Level.ALL 

        // Log some data 
        LOGGER.info("Information") 
        LOGGER.config("Configuration") 
        LOGGER.warning("Warning") 

        // Console handler removed 
        LOGGER.removeHandler(consoleHandler) 

        // This should still go to the log file 
        LOGGER.log(Level.FINE, "Finer logged without console") 
    } 
}
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<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<!DOCTYPE log SYSTEM "logger.dtd"> 
<log> 
<record> 
  <date>2022-03-08T22:13:55.289391Z</date> 
  <millis>1646777635289</millis> 
  <nanos>391000</nanos> 
  <sequence>0</sequence> 
  <logger>LoggerExample</logger> 
  <level>INFO</level> 
  <class>LoggerExample</class> 
  <method>main</method> 
  <thread>1</thread> 
  <message>Information</message> 
</record> 
</log>
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XML is the default for 
this library.



Profiling
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Real-time Profiling
Finally, IntelliJ IDEA and Android Studio both include real-time profiling tools that can help you 
detect performance issues.


To launch the profiler in IntelliJ IDEA:


• Run - Run


• Run - Attach Profiler to Process...


This will launch your application. 


IntelliJ IDEA will collect data from your application as it's running. Stop it after you have 
exercised your functions “enough times”.
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Woah.


