
Software Releases
CS 398: Application Development

Copyright; Licensing; Packaging; Software release process



2



The final step to getting our software into the hands of our users is software distribution. This 
can take many forms, depending on the environment in which the software needs to operate.


1. We sometimes need to install the software into a client’s environment. With complex 
or specialized software, we may need to install and configure it. e.g. we might write 
medical software that needs to integrate with existing patient data or billing systems.


2. We might sell packaged software, for distribution through a retail chain. e.g. shrink-
wrapped games, or firmware updates for the latest carOS.


3. Sometimes software is distributed from a website, or digital distribution channel. 
e.g. Visual Studio Code, a third-party distributor e.g. SetApp, or a package manager e.g. 
homebrew, winget.


4. Distribution through a user-facing application store is very common. e.g. Steam for 
distributing games; the Apple App Store or Google Play Store for mobile and desktop 
applications. This is really a specialized case of digital distribution.

3



Each of these deployment mechanisms will require software to be prepared in a different 
way. 


e.g. selling packaged software will require a DVD image that includes digital assets. 
Selling from an online application store required code signing, going through a code 
review process with the company that runs the store, and so on. 


However, there are a number of issues to sort out prior to releasing our software.


• Legal: how do we protect ourselves from unauthorized use, or further redistribution 
of our software?


• Usability: how do we ensure that users know how to use our software? do we 
provide documentation or training?


• Logistical: how do we package our software so that we can distribute it, and users 
can successfully obtain and install it?


4



Copyright

5



Before distributing your software, in any form, it's critical to establish ownership and rights 
pertaining to that software. 


A copyright is a type of intellectual property that gives its owner the exclusive right to copy and 
distribute a creative work, usually for a limited time. Copyright is intended to protect the original 
expression of an idea in the form of a creative work, but not the idea itself. A copyright is subject 
to limitations based on public interest considerations, such as the fair use doctrine. 


Software copyright is the application of copyright in law to machine-readable software. Under 
Canadian and US law, all software is copyright protected, in both source code and object code 
forms. 


Practically, this means that different companies can independently produce software that solves 
the same problem, and there is no law preventing that from occurring, provided that they do not 
reuse actual source or object code from their competitor.

6



In Canada, software is protected under the Copyright Act of Canada. 


Copyright is acquired automatically when an original work is generated; the creator is not 
required to register or mark the work with the copyright symbol in order to be protected. 
The rights holder is granted: the exclusive right of reproduction, the right to rent the software, 
the right to restrain others from renting the software and the right to assign or license the 
copyright to others. 


It's common practice to assert your copyright claim in the header of your software source files. 
Although is not required to assert copyright, it's a flag for potential violators, and it might make it 
easier to defend in court.


Copyright (c) 2022. Jeff Avery.

7

How do I assert copyright?

See U Waterloo’s IP policy. 

https://uwaterloo.ca/secretariat/
policies-procedures-guidelines/
policies/policy-73-intellectual-

property-rights



Software Licensing

8



As the rights holder, you can grant others rights with respect to your software. 


A software license is a legal instrument that grants the licensee (i.e. an end-user) permission to 
use the software in a manner dictated by the license. These rights could include (but aren't 
limited to)  


• the right to install and use it, 


• the right to modify the source code, or 


• the right to redistribute the software with or without changes.


Authors of copyrighted software can also choose to donate their software to the public domain, 
in which case it is also not covered by copyright and, as a result, cannot be licensed.

9



A permissive software license, sometimes also called BSD-style is a free-software license which instead of 
copyleft protections, carries only minimal restrictions on how the software can be used, modified, and 
redistributed, usually including a warranty disclaimer.


Copyleft is the practice of granting the right to freely distribute and modify intellectual property with the 
requirement that the same rights be preserved in derivative works created from that property. Copyleft 
software licenses require that information necessary for reproducing and modifying the work must be made 
available to recipients. 


Non-commercial licenses are intended to be used only be entities with no profit motive, including charities 
and public institutions.

10

Permissive Copyleft Noncommercial  Proprietary

Description
Grants use rights, 
including right to 
relicense.

Grants use rights, 
forbids proprietization.

Grants rights for 
noncommercial use 
only.

Traditional use of 
copyright; no rights need 
be granted.

Examples MIT, Apache, MPL GPL, AGPL JRL, AFPL Proprietary software, no 
public license



How do I apply a license?
1. Distribute the license with your program.


• Include a license.txt file in your distribution.


• If you provide source code to anyone, include a statement about how it is licensed in the 
header of each file. Check the license to see what is required.


2. Include a licensing statement on your website.


• See terms of each license to check what’s suitable. 


Unless explicitly stated otherwise all files in this repository are licensed under the 
Apache Software License 2.0 [insert boilerplate notice here]

11

For projects, a simple 
license is fine. For 

commercial purposes? 
Consult a lawyer!



Documentation

12



User Documentation
If your product is complex, or if you want a way to showcase your features, you might consider 
producing different types of user documentation:


• Getting started guide (web page, PDF): the basics to use your software


• Tutorials (web pages): walk through simple tasks with examples


• User Guide: comprehensive documentation


This all takes effort. Tailor your documentation to the complexity of your product (and the 
likelihood of users actually taking the time to read it!)


Documentation can be printed and bundled (uncommon), distributed with your software (PDF, 
other formats, more common) or hosted on your website (very common).

13

DetailLikelihood of 
being read



Release Notes
Every public release should include release notes: a list of changes that you have made to your product 
for that particular release. Depending on the nature of your product, and your relationship with your 
users, the details can be fairly general ("added support for Windows 11") or incredibly detailed ("fixed 
bug XXX"). 


The release notes are also a good place to put things like


• OS or hardware compatibility details


• information on how users can contact you or get help


Release notes are typically released in one of the following ways:


• a readme.txt file included in your distribution.


• a popup window in your application that includes these details.


• a page on your website (if you do this, put a way to open that page from within your application).


14



Suggestions
Starting points for writing maintainable documentation:


• Consider Markdown as an authoring format. You can 
then convert markdown to PDF, EPUB, or HTML for 
publishing using pandoc. The course website is 
authored in Markdown and then converted to a 
website using Hugo.


If you need to produce documentation for other 
developers:


• Dokka can generate HTML documentation from Kotlin 
code (much as Javadoc does for Java code).


• IntelliJ IDEA can generate class diagrams from source 
code. Right-click on the project file, then select 
Diagrams from the popup menu.

15



Packaging


16



Packaging
Packaging just refers to putting together your software components in a way that you can 
distribute to your end-user. 


As we’ve seen, this could be physical (a retail box including a DVD), or a digital image (ISO 
image, package file, installer executable). 


Packaging is the ”bundling” part of building software. Let’s focus on digital distribution.

17



Applications

18



What does packaging entail?
Packaging is also one of those tasks that we tend to hand wave: just compile, link and hand-out the 
executable right? Unfortunately it’s not that simple. 


Preparing a package includes


• Compiling and linking your application.


• Preparing images, sound clips, documentation, other resources to include with your application.


• Writing or configuring software to install the application, which includes


• Copying binaries and resources to the correct locations


• Registering services and resources with the OS


• Installing applications in the correct system location 


• Creating application icons

19

Packaging services 
may be different. We’ll 

discuss that later.



Packaging Tools
This is far too tedious to do by-hand, but luckily we have some tools to perform some of these 
actions for us. Here’s what we need to do to make our software installable.

20

Step Explanation

Step 1: Compiling classes Use the kotlinc compiler to create classes from our source code.

Step 2: Creating archives Use the jar command to create jar files of classes and related libraries.

Step 3: Creating scripts Optionally, create scripts to allow a user to execute directly from the JAR files.

Step 4: Creating an installer Use jpackage to create platform specific installers.



1. Compiling Code
To compile from the command-line, we can use the Kotlin compiler, kotlinc. By default, it takes 
Kotlin source files (.kt) and compiles them into corresponding class files (.class) that can be 
executed on the JVM.


$ kotlinc Hello.kt 


$ ls 

Hello.kt HelloKt.class


$ kotlin HelloKt

Hello Kotlin!


We could also just do this with IntelliJ IDEA or Android Studio, where Gradle - build - build 
will generate class files. 


As we will see at the end of this section, we can often just generate the final installer in a single step 
without doing each step manually.

21

This is the easy 
part, just including 
for completeness.



2. Creating an archive
A JAR file is just a compressed file (just like a ZIP file) which has a specific structure and contents. 
Most distribution mechanisms expect a JAR file.


$ kotlinc Hello.kt -include-runtime -d Hello.jar


$ ls

Hello.jar Hello.kt


• The -d option tells the compiler to package all of the required classes into our jar file. 


• The -include-runtime flag tells it to also include the Kotlin runtime classes. These classes 
are needed for all Kotlin applications, so you should always include them in your distribution.


To run from a jar file, use the java command:


$ java -jar Hello.jar

Hello Kotlin!


22



JAR File Contents
$ unzip Hello.jar -d contents

Archive:  Hello.jar

  inflating: contents/META-INF/MANIFEST.MF  

  inflating: contents/HelloKt.class  

  inflating: contents/META-INF/main.kotlin_module  

  inflating: contents/kotlin/collections/ArraysUtilJVM.class 

    ...


$ tree -L 2 contents/

.

├── META-INF

│   ├── MANIFEST.MF

│   ├── main.kotlin_module

│   └── versions

└── kotlin

    ├── ArrayIntrinsicsKt.class

    ├── BuilderInference.class

    ├── DeepRecursiveFunction.class

    ├── DeepRecursiveKt.class

    ├── DeepRecursiveScope.class

    ...

23

The JAR file contains these main features:


• HelloKt.class – a class wrapper generated 
by the compiler


• META-INF/MANIFEST.MF – a file containing 
metadata.


• kotlin/ – Kotlin runtime classes not 
included in the JDK.

$ cat contents/META-INF/MANIFEST.MF 

Manifest-Version: 1.0

Created-By: JetBrains Kotlin

Main-Class: HelloKt


The 
manifest file contains 

metadata, like which class to 
run first. It’s similar in function 

to the Android Manifest 
file.



3. Creating scripts
We can distribute JAR files like this to our users, but they’re awkward: users would need to have 
the Java JDK installed, and type java -jar filename.jar to actually run our programs.


The simplest thing we can do it create a script to launch our application from a JAR file, with the 
same effect as executing from the command-line:


$ cat hello

 #!/bin/bash 

 java -jar hello.jar


$ chmod +x hello


$ ./hello

Hello Kotlin!

24

For simple applications, especially ones that we use ourselves, this may be sufficient. It has 
the downside of requiring the user to have the Java JDK installed on their system



Generating scripts
For a more robust script, we can let Gradle generate one for us. In IntelliJ IDEA, Gradle - distribution - 
distZip will create a zip file that includes a custom runtime script.


$ tree build/distributions -L 3

build/distributions

├── app

│   ├── bin

│   │   ├── app

│   │   └── app.bat

│   └── lib

│       ├── annotations-13.0.jar

│       ├── app.jar

│       ├── checker-qual-3.8.0.jar

│       ├── error_prone_annotations-2.5.1.jar

│       ├── failureaccess-1.0.1.jar

│       ├── guava-30.1.1-jre.jar

│       ├── j2objc-annotations-1.3.jar

│       ├── jsr305-3.0.2.jar

│       ├── kotlin-stdlib-1.5.31.jar

│       ├── kotlin-stdlib-common-1.5.31.jar

│       ├── kotlin-stdlib-jdk7-1.5.31.jar

│       ├── kotlin-stdlib-jdk8-1.5.31.jar

│       └── listenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jar

└── app.zip

25

Public repo

Console/Archey



Running from a script
The bin/app script is quite robust, and will handle many different types of system configurations.


# OS specific support (must be 'true' or 'false').

cygwin=false

msys=false

darwin=false

nonstop=false

case "$( uname )" in                #(

  CYGWIN* )         cygwin=true  ;; #(

  Darwin* )         darwin=true  ;; #(

  MSYS* | MINGW* )  msys=true    ;; #(

  NONSTOP* )        nonstop=true ;;

esac


CLASSPATH=$APP_HOME/lib/app.jar:$APP_HOME/lib/kotlin-stdlib-jdk8-1.5.31.jar:$APP_HOME/lib/guava-30.1.1-jre.jar:$APP_HOME/
lib/kotlin-stdlib-jdk7-1.5.31.jar:$APP_HOME/lib/kotlin-stdlib-1.5.31.jar:$APP_HOME/lib/kotlin-stdlib-common-1.5.31.jar:
$APP_HOME/lib/failureaccess-1.0.1.jar:$APP_HOME/lib/listenablefuture-9999.0-empty-to-avoid-conflict-with-guava.jar:
$APP_HOME/lib/jsr305-3.0.2.jar:$APP_HOME/lib/checker-qual-3.8.0.jar:$APP_HOME/lib/error_prone_annotations-2.5.1.jar:
$APP_HOME/lib/j2objc-annotations-1.3.jar:$APP_HOME/lib/annotations-13.0.jar


# Determine the Java command to use to start the JVM.

if [ -n "$JAVA_HOME" ] ; then

    if [ -x "$JAVA_HOME/jre/sh/java" ] ; then


    . . .
26



Archey running from a script
Simple applications work fine:


$ build/distributions/app/bin/app 


               ####                   User: jaffe

               ###                    Home: /Users/jaffe

       #######    #######             Name: Bishop.local

     ######################           OS: Mac OS X

    #####################             Version: 11.3

    ####################              CPU: x86_64

    ####################              Cores: 10

    #####################             Free Memory: 514 MB

     ######################           Total Memory: 520 MB

      ####################            Disk Size: 582 GB

        ################              Free Space: 582 GB

         ####     #####               IP Address: 127.0.0.1


However, the script doesn’t work so well when we require complex runtime components, like JavaFX libraries.


$ ./clock_advanced

Error: JavaFX runtime components are missing, and are required to run this application


27

Public repo

Console/Archey

Public repo

Desktop/JavaFX/Clock



JavaFX from a script
Scripts like this are really only suitable for console applications i.e. applications without a GUI. 


If you are building a JavaFX or Compose desktop application, you need to either use jlink or jpackage to 
build an installer.


JLink will let you build a custom runtime that will handle the module dependencies for JavaFX. The 
simplest way to do this is to add the JLink plugin to your build.gradle file and let Gradle handle it.


plugins {

    id 'org.beryx.jlink' version '2.25.0'

}


jlink{

    launcher {

        name = "clock"

    }

    imageZip.set(project.file("${project.buildDir}/image-zip/clock-image.zip"))

}


28

For details see the plugin page: https://badass-jlink-plugin.beryx.org/releases/latest/



Clock running from a script
We can rebuild the clock sample using Gradle - build - jLink to produce a runtime script in build/image


Here’s the resulting directory structure. Notice that it includes a number of libraries that our application needs to run.


$ tree build/image -L 2

AnalogClock/build/image

├── bin

│   ├── clock_advanced

│   ├── clock_advanced.bat

│   ├── java

│   ├── jrunscript

│   └── keytool

├── conf

│   ├── net.properties

│   ├── security

│   └── sound.properties

├── include

│   ├── classfile_constants.h

│   ├── darwin

│   ├── jawt.h

│   ├── jni.h

│   ├── jvmti.h

│   └── jvmticmlr.h

….. (continues)


29

Running the top-level bin/clock_advanced image will execute our application.

$ ./clock_advanced




Android from a script?
Android users should not use either of these methods, since the Android OS doesn’t support 
launching applications from a console, and it doesn’t need an installer.


Instead, Android users will want to create an APK: a bundle that contains the application and all of it’s 
related files. (APK stands for Android Package Kit).


In Android Studio or IntelliJ IDEA, in your Android project, you can select Build - Build Bundle/APK. 
This will produce a file that can be side-loaded.


To install the APK file:


• Plugin your phone with a USB cable.


• Double-click the file to install it to the connected device.


• If that fails: install the Command-Line tools from the SDK manager. Use the adb tool from the 
console to install the APK file to your connected device.

30



4. Create installers
Finally, we can use jpackage to create native installers for a number of supported operating systems. 


An installer is an application that can install something else, like our application. Installers can handle the complexities of 
installation that would difficult to do with scripts alone.


Tasks that the installer performs include:


• Copying application files to the correct location.


• Installing and registering system libraries.


• Making changes to the system registry (or similar system databases).


• Creating icons on the desktop, or applications folder.


• Prompting the user if any of these tasks require elevated privileges.


• Installing extra components, like readme.txt or license.txt

31

JPackage is not the only 
one, there are commercial 

installers as well. e.g. 
JDeploy.



JLink & JPackage
Instead of running jpackage manually, we will install a plugin into IntelliJ and use that environment to generate our 
installers. We can do this by installing the  Badass-JLink plugin page. To use the plugin, include the following in your 
gradle.build script:


plugins {

 id 'org.beryx.jlink' version '2.25.0'

}


JPackage itself has a number of other options that you can specify in the build.gradle file.


// build.gradle file options for jpackage

jlink {

    options = ['--strip-debug', '--compress', '2', '--no-header-files', '--no-man-pages']

    launcher{

        name = 'hello'

        jvmArgs = ['-Dlog4j.configurationFile=./log4j2.xml']

    }

}


If you install the plugin correctly, then you should see the jpackage command in Gradle - build - jpackage. Run this 
and it will create platform installers in the build/distribution directory.

32



If you install the plugin correctly, then you should see the jpackage command in Gradle - 
build - jpackage. Run this and it will create platform installers in the build/distribution 
directory.

33

This is a standard macOS installer. 


Drag the clock_advanced icon to 
the Applications folder. You can 
then run it from that folder.



Services

34



Unlike applications, which are hosted by users on their own systems, services are typically 
deployed on servers. These can be physical systems, VMs or containers running in the cloud, or 
any combination of these targets.


Web services, the type that we've been considering, need to be deployed to a web server. 


When we were building projects with Spring Boot, it quietly launched a web server in the 
background to support us testing our application. To deploy in a production environment 
though, we would need to install our application in an environment where a web server is 
already installed.


From Spring, we can produce one of two packages:


• WAR file: a Web Application Archive (WAR) file is a standard deployment package for 
services that run on a web server.


• JAR file: produce a standalone JAR file and deploy it (see instructions above).

35



AWS

Spring Boot’s executable jars are ready-made for most popular cloud PaaS (Platform-as-a-
Service) providers. However, you may need to adapt your application to the cloud’s notion of a 
running process, depending on the platform.


Amazon Web Services offers multiple ways to install Spring Boot-based applications, either as 
traditional web applications (war) or as executable jar files with an embedded web server. 


e.g. AWS Elastic Beanstalk, AWS Code Deploy, AWS OPS Works.


AWS Elastic Beanstalk allows deploying a WAR file directly to a Tomcat Platform (a well-known 
web/application server), or the "Java SE Platform". For web services, we would follow their 
documentation for configuring the cloud platform, and then upload the WAR file that we 
produce from IntelliJ.


This is basically trivial, and a great way to deploy services.

36



App Stores

37



An Application Store is a very unique approach to distributing software that fulfills many of the same 
requirements as our client packaging models, but offers additional functionality.


• App stores may want to install the software for you, to ease the user experience. This is likely more 
complex than just downloading and auto-running the installer. e.g. Apple or Google app stores.


• They likely include some form of user authentication, and they will track licensing of the software to 
you.


• They will want to charge you - either against store credit, or a credit card.


• They are not restricted to a particular type of software. I've personally used app stores to install 
everything from games to mobile apps to operating systems.


• They are completely proprietary. We can't point to any one service and apply our knowledge of how it 
works to deploying on a different service.


• You will need proprietary tools to work in one of those environments.


For all of these reasons, we'll avoid delving too deep into app stores. However, if you want to deploy 
software commercially, you should expect to become an expert in all of the major platforms.

38



What is our outcome?
We expect the output of this process to be an installer (or scripts/custom deliverable) for each platform.


• Installer


• Installs your software


• Installs libraries


• Sets the application icon


• Creates shortcuts


• Installs readme.txt


• Installs license.txt

39



Release Process

40



What do we need to do for a release?
Update our internal project tracking systems


Close the sprint


Update and close issues


Update our internal documentation e.g. wiki


Prepare additional materials for the release


Release notes


User documentation


Update build scripts/configuration


Build installers

41

readme.txt

license.txt

installer

These are all prepared as 
part of the software release 

process!

+

+



Versioning
You should version your software, so that every release has a release number and date associated with it. 


The standard convention is a triple, separated by decimals, of the format: major.minor.build. For 
example, 1.2.3 would be major version 1, minor version 2, build 3.


• Major signifies a major product release. This is somewhat arbitrary, but typically is released 
infrequently and includes major features changes or additions. If you charge by release, you would 
typically charge for every new major version. You might release a new major version as frequently as 
once per year, or as infrequently as once very few years.


• Minor indicates a minor product release, typically a combination of new minor features, and bug or 
compatibility fixes. You might release a minor version a few times per year and users would not 
ordinarily expect to pay for these.


• Build number is internal build number within a minor release. This is intended to reflect bug fixes 
only; you typically iterate over builds internally and release the final successful version publicly.


You should also use version numbers in your internal documentation: track the version number with the 
sprint, and use it when identifying bugs (e.g. what version number were you using for testing? What version 
number will include the fix?)

42



Pick version number

Close issues

Tag branch

Write release notes

Merge to main

Determine the correct version number for 
this release, and record it in your wiki.

Make sure that everything is merged back 
to main, and that all tests are passing. 

Make sure all issues are closed against 
this version of the software.

Tag the main branch with the version 
number as a string e.g. “1.2.3”

Release Process

Create installers

The release notes should 
contain relevant product 
release detail:


* Release date

* Version number

* Details of major changes 

that are included.

* (Optional) List of known 

issues or limits.

add readme.txt

add license.txt

add icons

update installer


