
Kotlin Multiplatform
CS 398: Application Development

Cross-Platform Development; KMP; Kotlin/Native

What’s our operating environment?

2

Windows

Android

Mac

iOS

Android on Windows

watchOS

The case for cross-platform development
Developers have always been challenged to build for different platforms

• Differences in CPU architectures, operating systems limits software portability.

• Vendors produce libraries and tools for their platform only. Competitive not collaborative.

• Native tools and functionality will always be “the best available”.

3
Swift running in XCode (macOS)C# running in Visual Studio (Windows)

What options do we have?
What are our choices as application developers?

1. Limit ourselves to one platform. e.g. Windows desktop, or iOS. This is bad for everyone.

2. Target multiple platforms, with separate projects for each. Cost and time prohibitive.

3. Find ways to reuse our code. This is ideal if we can do it!

• Favour programming languages and libraries that are explicitly cross-platform: C++ not C#.

• Recognize that some things are platform specific: UI, graphics especially.

4

Desktop toolkits

• Java JDK: Swing, JavaFX for user interfaces. Write against JVM using Java, Kotlin, Scala.

• GTK, Qt, wxWidgets. Write in C++, produce native code. Non-standard.

Mobile toolkits

• PhoneGap: Enabled writing mobile apps using HTML5, CSS3 and JavaScript.

• Apache Cordova: Open source fork of PhoneGap.

• Appcelerator Titanium: JavaScript-based SDK that supported iOS, Android, Windows and Blackberry.

• Xamarin: Microsoft-owned C#-based development framework that includes the .NET runtime.

• React Native: Based on the popular React web framework. Slow bridge between native and web.

• Flutter: Write your UI once and it will work on all platforms using native widgets. Relies on Dart.

5

Cross-platform toolkits!

The failure of cross-platform toolkits
• Vendors will always favour their own tools/libraries

• Platform innovation is introduced by vendors in their native tools first.

• Cross-platform is always playing catch-up.

• Cross-platform toolkits cannot achieve feature parity

• Time + effort for cross-platform toolkits to fully support new platforms e.g. WatchOS.

• Developers are restricted to capabilities of that platform. e.g. no hardware acceleration.

• Native will provide a “better experience” for users.

• I’m not convinced that this is the best overall strategy.

6

Cross-platform toolkits can still be
useful! JavaFX is great for desktop, but

it took 15 years to get here. It also
won’t run on mobile.

Kotlin Multiplatform (KMP)

7

How is KMP different?
Kotlin Multiplatform (KMP) offers a unique solution to this problem, which provides the best of
native + cross-platform.

• Produce Kotlin code which can be compiled across each platform.

• Recognize that sometimes you want native code instead, so provide interoperability with
native libraries and native code.

• Generate native binaries that are a combination of Kotlin code and native code.

8

Linux (x86_64, arm32, arm64) macOS (x86_64)

Windows (mingw x86_64, x86) tvOS (arm64, x86_64)

Android (arm32, arm64, x86, x86_64) watchOS (arm32, arm64, x86)

iOS (arm32, arm64, simulator x86_64) WebAssembly (wasm32)

Supported native targets for KMP

9

Common Kotlin includes the language,
core libraries, and basic tools.

• Code written in common Kotlin works on
all supported platforms. Libraries cover
everyday tasks such as HTTP,
serialization, and managing coroutines.

Kotlin also includes platform-specific
versions of Kotlin libraries and tools (Kotlin/
JVM, Kotlin/JS, Kotlin/Native).

• Access the platform native code (JVM,
JS, and Native) and leverage all native
capabilities.

Multiplatform Projects
Kotlin multi-platform organizes the source code in hierarchies, with common-code at the
base, and branches representing platform specific modules. All platform-specific source
sets depend upon the common source set by default.

10

In some cases, it may be desirable to define and access platform-specific APIs in common. This
is particularly useful for areas where certain common and reusable tasks are specialized for
leveraging platform-specific capabilities.

Kotlin multi-platform uses expected to indicate a required function in common modules, and
actual declarations in the platform specific modules.

11

Creating a project
In IntelliJ IDEA, select Kotlin - Multiplatform - Library.

12

This generates a project with the kotlin-multiplatform Gradle plugin. This plugin is added to our
build.gradle file.

13

plugins {

 kotlin("multiplatform") version "1.4.0"

}

Writing common code
fun add(num1: Double, num2: Double): Double {

 val sum = num1 + num2

 writeLogMessage("The sum of $num1 & $num2 is $sum", LogLevel.DEBUG)

 return sum

}

fun subtract(num1: Double, num2: Double): Double {

 val diff = num1 - num2

 writeLogMessage("The difference of $num1 & $num2 is $diff", LogLevel.DEBUG)

 return diff

}

fun multiply(num1: Double, num2: Double): Double {

 val product = num1 * num2

 writeLogMessage("The product of $num1 & $num2 is $product", LogLevel.DEBUG)

 return product

}

fun divide(num1: Double, num2: Double): Double {

 val division = num1 / num2

 writeLogMessage("The division of $num1 & $num2 is $division", LogLevel.DEBUG)

 return division

}

14

/commonMain

Note that it’s platform
neutral code, that only
uses Kotlin libraries.

Writing platform code
The writeLogMessage() function should be platform specific, since each OS will handle this
differently. We will add a top-level declaration to our common code defining how that function
should look:

enum class LogLevel {

 DEBUG, WARN, ERROR

}

internal expect fun writeLogMessage(message: String, logLevel: LogLevel)

The expect keyword tells the compiler that the definition will be handled at the platform level, in
another module. For example, we can flesh this out in the jvmMain module for Kotlin/JVM
platform. The build for that platform will use the platform-specific version of this function.

internal actual fun writeLogMessage(message: String, logLevel: LogLevel) {

 println("Running in JVM: [$logLevel]: $message")

}

15

Kotlin/Native

16

Kotlin/Native is a subproject of KMP that is responsible for compiling the Kotlin source to native
binaries specific to the target platform. Kotlin/Native provides an LLVM based backend for the
Kotlin/Native compiler and native implementations of the Kotlin standard library. The Kotlin/
Native compiler itself is known as Konan.

LLVM is a compiler infrastructure that we can use to develop a front end for any programming
language and a back end for any instruction set architecture.

17

Kotlin/Native supports a number of platforms:

• Linux (x86_64, arm32, arm64, MIPS, MIPS little-endian)

• Windows (mingw x86_64, x86)

• Android (arm32, arm64, x86, x86_64)

• iOS (arm32, arm64, simulator x86_64)

• macOS (x86_64)4

• tvOS (arm64, x86_64)

• watchOS (arm32, arm64, x86)

• WebAssembly (wasm32)

In our Gradle configuration, there is a check for the host operating system. This determines what is built.

kotlin {

 val hostOs = System.getProperty("os.name")

 val isMingwX64 = hostOs.startsWith("Windows")

 val nativeTarget = when {

 hostOs == "Mac OS X" -> macosX64("native")

 hostOs == "Linux" -> linuxX64("native")

 isMingwX64 -> mingwX64("native")

 else -> throw GradleException("Host OS is not supported in Kotlin/Native.")

 }

}

18

Interoperability
Kotlin/Native supports two-way interoperability with native programming languages for different
operating systems. The compiler creates:

• an executable for many platforms

• a static library or dynamic library with C headers for C/C++ projects

• an Apple framework for Swift and Objective-C projects

Kotlin/Native supports interoperability to use existing libraries directly from Kotlin/Native:

• static or dynamic C libraries

• C, Swift, and Objective-C frameworks

19

Platform libraries and framework
typically support C interop.

Creating a native project

To create Kotlin/Native applications, you
need the Kotlin Multiplatform plugin in
your build.gradle file.

plugins {

 kotlin("multiplatform") version "1.6.10"

}

Build it. The native executable will be
placed under:

build/bin/native/debugExecutable/
<your_app_name>.kexe

20

Yes that’s
all of it.

Example: Native/Interop
Building native apps is awesome, but the really interesting situation is when you start
interoperating with native libraries.

This tutorial demonstrates how to use IntelliJ IDEA to create a simple HTTP client that can run
natively on specified platforms using Kotlin/Native and the libcurl library.

This is taken from the Kotlin/Native samples:

• https://kotlinlang.org/docs/native-app-with-c-and-libcurl.html

• https://github.com/Kotlin/kotlin-hands-on-intro-kotlin-native

21

1. Create the project

22

2. Update the build.gradle
kotlin {

 def hostOs = System.getProperty("os.name")

 def isMingwX64 = hostOs.startsWith("Windows")

 def nativeTarget

 if (hostOs == "Mac OS X") nativeTarget = macosX64('native')

 else if (hostOs == "Linux") nativeTarget = linuxX64("native")

 else if (isMingwX64) nativeTarget = mingwX64("native")

 else throw new FileNotFoundException("Host OS is not supported in Kotlin/Native.")

 nativeTarget.with {

 binaries {

 executable {

 entryPoint = 'main'

 }

 }

 }

}

23

3. Create a definition file
Kotlin/Native helps consume standard C libraries. We can link in a standard C library by
describing the header and library location.

• Create a directory named src/nativeInterop/cinterop.

• Create a file libcurl.def with the following contents.

headers = curl/curl.h

headerFilter = curl/*

compilerOpts.linux = -I/usr/include -I/usr/include/x86_64-linux-gnu

linkerOpts.osx = -L/opt/local/lib -L/usr/local/opt/curl/lib -lcurl

linkerOpts.linux = -L/usr/lib/x86_64-linux-gnu -lcurl

24

4. Add interoperability to your build
Add this to your build.gradle file.

nativeTarget.with {

 compilations.main { // NL

 cinterops { // NL

 libcurl // NL

 } // NL

 } // NL

 binaries {

 executable {

 entryPoint = 'main'

 }

 }

25

5. Write application code
Update the source file Main.kt with the following source.

import kotlinx.cinterop.*

import libcurl.*

fun main(args: Array<String>) {

 val curl = curl_easy_init()

 if (curl != null) {

 curl_easy_setopt(curl, CURLOPT_URL, "https://example.com")

 curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L)

 val res = curl_easy_perform(curl)

 if (res != CURLE_OK) {

 println("curl_easy_perform() failed ${curl_easy_strerror(res)?.toKString()}")

 }

 curl_easy_cleanup(curl)

 }

}

26

6. Compile and run it
$./httpclient.kexe

<!doctype html>

<html>

<head>

 <title>Example Domain</title>

 <meta charset="utf-8" />

 <meta http-equiv="Content-type" content="text/html; charset=utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1" />

 <style type="text/css">

 body {

 background-color: #f0f0f2;

 margin: 0;

 padding: 0;

27

curl returns the contents
of a URL i.e. a website.

Kotlin Multiplatform Mobile (KMM)

28

What is KMM?
Kotlin Multiplatform Mobile (KMM) designed to build
Android and iOS from the same project.

A basic KMM project consists of three components:

• Shared module – a Kotlin module that contains
common logic for both Android and iOS
applications. Builds into an Android library and
an iOS framework.

• Android application – a Kotlin module that
builds into the Android application. Uses Gradle
as a build system.

• iOS application – an Xcode project that builds
into the iOS application. Uses CocoaPods for
builds.

29

Kotlin supports two-way interop with iOS: Kotlin can call into iOS libraries, and vice-versa using
the Objective-C bindings. (Swift bindings are being developed). In order to use KMM you need
to be using a Mac, and have the Xcode toolchain installed.

KMM is exciting because we can use Kotlin for both targets, and share probably 50-75%
of the code between platforms.

A KMM application could potentially offer identical functionality on Android and iOS, while
delivering a completely native UI experience with Jetpack Compose on Android, and SwiftUI on
iOS.

See the list of KMM Samples. https://kotlinlang.org/docs/multiplatform-mobile-samples.html

30

Reference
Kumar Chandrakant. 2021. Introduction to Multiplatform Programming in Kotlin. https://
www.baeldung.com/kotlin/multiplatform-programming

JetBrains. 2022. Kotlin Native. https://kotlinlang.org/docs/native-overview.html

JetBrains. 2022. Kotlin Multiplatform. https://kotlinlang.org/docs/multiplatform-get-started.html

JetBrains. 2022. Kotlin Multiplatform Mobile. https://kotlinlang.org/docs/multiplatform-mobile-
getting-started.html

Carlos Mota, Saeed Taheri and Kevin D Moore. 2022. Kotlin Multiplatform by Tutorials. https://
www.raywenderlich.com/books/kotlin-multiplatform-by-tutorials

31

