
CS 430 - Fall 2023 CM A05 Due Friday, November 24, 11:59 PM EDT

• Assignments must be completed individually.
• No late assignments will be accepted.
• Provide concise answers to the following questions. Use point form whenever possible.
• Submit your completed solutions to Crowdmark.

1. The Lecture Notes state that the OO paradigm is the best software development methodology[2]
invented so far. However, it is still not perfect. Briefly describe one problem associated with
the use of the OO paradigm.

2. Give an example of a module which has information hiding but not encapsulation. Briefly[4]
explain why your example is correct.

Copyright ©2023



CS 430 - Fall 2023 CM A05 Due Friday, November 24, 11:59 PM EDT

3. (a) Briefly explain the difference between[2]
i. a module having encapsulation, and

ii. an abstract data type.

(b) Give an example of an abstract data type which is not one given in the text, the Lecture[4]
Notes or the Lecture Slides. Briefly explain why your example is correct.

Copyright ©2023



CS 430 - Fall 2023 CM A05 Due Friday, November 24, 11:59 PM EDT

4. Draw a class diagram which displays the following classes and the relationships among them.[6]
• Vehicle

– Properties:
* modelName

* manufactureDate
– Methods:

* drive

* park
• Car (a derived class of Vehicle)

– Methods:
* replaceBrakeFluid

• Bicycle (a derived class of Vehicle)
– Methods:

* replaceChain

Copyright ©2023



CS 430 - Fall 2023 CM A05 Due Friday, November 24, 11:59 PM EDT

5. (a) Provide an example of dynamic binding which is different from the Open method of[3]
the File class given in the text and in the Lecture Notes and Lecture Slides.

(b) Dynamic binding provides many advantages for programming. However, it also has its[2]
shortcomings. State two problems associated with the use of dynamic binding.

(c) Briefly explain the difference between dynamic binding and polymorphism.[2]

Copyright ©2023



CS 430 - Fall 2023 CM A05 Due Friday, November 24, 11:59 PM EDT

6. At the start of the discussion of Chapter 8 in the Lecture Notes, we identified two broad[4]
categories of software re-use. Give the name of each category, together with one example of
a situation in which it occurs which is not one given in the text, in the Lecture Notes or in
the Lecture Slides.

Copyright ©2023



CS 430 - Fall 2023 CM A05 Due Friday, November 24, 11:59 PM EDT

7. This problem is about Library Re-use (part a) and Application Framework Re-use (part
b). In each part,

i. shade in the area in the given diagram that represents the part that gets re-used under
the given scheme,

ii. give the name of the re-used part (represented by the shaded area), and
iii. give an example of this type of re-use.
(a) Library Re-use[3]

(b) Application Framework Re-use[3]

Copyright ©2023



CS 430 - Fall 2023 CM A05 Due Friday, November 24, 11:59 PM EDT

8. This question is about the Memento design pattern, which is on the list of the 23 patterns
from which the text examples are chosen, but is not one of the patterns included in the text.
The pattern is described here.
Motivation: Sometimes it is necessary to record the internal state of an object. This is
required when implementing checkpoints and “undo” mechanisms, that let the user back out
of tentative operations, or recover from errors. You must save state information somewhere,
so that you can restore the object to its previous state. But an object typically hides some or
all of its state, making it inaccessible to other objects, and thus impossible to save externally.
Exposing the state would violate the principle of information hiding.
Class Diagram:

Memento

state

GetState()
SetState()Originator

state

SetMemento(Memento m)
CreateMemento()

Caretaker

Notation: // for “Creates” and // for “References”.

Method Pseudocode
(a) SetMemento(Memento m)

state = m -> GetState()
(b) CreateMemento()

return new Memento(state)
Interaction Diagram

SetState()
New Memento

CreateMemento()

GetState()
SetMemento(aMemento)

aCaretaker anOriginator aMemento

• A Caretaker requests a Memento from an Originator, holds it for a time, and
passes it back to the Originator, as the diagram indicates.

• Sometimes the Caretaker will not pass the Memento back to the Originator,
because the Originator might never need to revert to an earlier state.

Copyright ©2023



CS 430 - Fall 2023 CM A05 Due Friday, November 24, 11:59 PM EDT

• Mementos are passive. Only the Originator that created a Memento will assign
or retrieve its state.

In this question, we will work with the Memento pattern applied to a Visio-like application,
for creating diagrams via drag-and-drop. To undo a move made by dragging a Box, we will
use the Memento pattern to remember the original state of the Box, so that we can return
the Box plus any incoming/outgoing arrows to their original positions.

(a) Draw the class diagram for our application, in which[5]
• Originator is replaced by Box,

– SetMemento(Memento m) is replaced by SetBoxState(BoxState
s),

– CreateMemento() is replaced by CreateBoxState(),
• Memento is replaced by BoxState, and
• Caretaker is replaced by BoxUndo.

Copyright ©2023



CS 430 - Fall 2023 CM A05 Due Friday, November 24, 11:59 PM EDT

(b) Draw the interaction diagram for our application, in which[5]
• anOriginator is replaced by aBox,

– New Memento is replaced by New BoxState,
– SetMemento(aMemento) is replaced by SetBoxState(aBoxState),
– CreateMemento() is replaced by CreateBoxState(),

• aMemento is replaced by aBoxState, and
• aCaretaker is replaced by aBoxUndo.

(c) The primary motivation to use the Memento design pattern in this question is to pre-[3]
serve the information hiding of the Box object. Give three reasons why information
hiding is a desirable ingredient in effective object-oriented programming.

Copyright ©2023


