
CS 430 - Lecture 03 - Iteration and Incrementation

CS 430 - Lecture 03 - Iteration and

Incrementation

Collin Roberts

September 14, 2023



CS 430 - Lecture 03 - Iteration and Incrementation

Outline

Outline

1 Introduction to Software Development
Life-Cycle Models

2 Software Development in Theory
3 Winburg Example
4 Iteration and Incrementation



CS 430 - Lecture 03 - Iteration and Incrementation

Introduction to Software Development Life-Cycle Models

Introduction to Software Development

Life-Cycle Models

Where Chapter 1 attempted to describe
software development in the ideal world,
Chapter 2 attempts to describe software
development in the real world.



CS 430 - Lecture 03 - Iteration and Incrementation

Software Development in Theory

Software Development in Theory

Idealized Software Development

∅

��

Requirements
��

Analysis
��

Design
��

Implementation



CS 430 - Lecture 03 - Iteration and Incrementation

Software Development in Theory

Software Development in Theory

In theory, we do not have to deal with any
changes once the Requirements phase is
complete.



CS 430 - Lecture 03 - Iteration and Incrementation

Winburg Example

Winburg Example

See the description in the text and in the
examples for the course.



CS 430 - Lecture 03 - Iteration and Incrementation

Winburg Example

Winburg Example

Key Observations from the Example:
Anecdote from a business line at a bank:
IT was perceived as very slow to respond
to requests for changes to their systems.
In Lecture 02 we stated that the slowness
of getting projects done using the
Classical model was a drawback of that
model.
Corollary: IT resisted accepting changes
to the requirements once the
requirements were complete.



CS 430 - Lecture 03 - Iteration and Incrementation

Winburg Example

Winburg Example

The Example Provides an Example of the Software Crisis:

1 Requirements were incomplete: there was no
requirement describing performance (not meeting
client’s needs).

2 Assuming the project completes at the end of Episode 4,
the project was

1 very late, and
2 over budget.

3 Nothing in the Example explicitly says that there were
faults in the completed software product.



CS 430 - Lecture 03 - Iteration and Incrementation

Winburg Example

Winburg Example

There was lots of rework, which was
needed because each episode spawned a
classical life-cycle effort (iteration), in
which work done in one iteration had no
easy way to feed into the next, if they
overlapped in time.
This was caused, in part, by the overall
slowness of the Classical model.
Starting to develop the single-precision fix
before confirming it would provide the
desired performance improvement was a
waste of time.



CS 430 - Lecture 03 - Iteration and Incrementation

Winburg Example

Winburg Example

Some re-use was achieved when the
scanning software was packaged and
re-sold.
There was testing throughout the case.
More testing throughout Episode 1 might
have revealed the performance problems
sooner.



CS 430 - Lecture 03 - Iteration and Incrementation

Winburg Example

Winburg Example

Instructor Remark: Perhaps a small
pilot project, prototyping the scanning
hardware and software together would
have revealed the performance problems
earlier. This is a proof of concept
prototype. We will discuss such
prototypes again in Chapter 5.



CS 430 - Lecture 03 - Iteration and Incrementation

Winburg Example

Winburg Example

Packaging and re-selling was a win.
The project ultimately did satisfy the
specification.
Based on our own work experience to
date, this is not the worst case we have
seen so far. (The text agrees with us on
this point.)



CS 430 - Lecture 03 - Iteration and Incrementation

Winburg Example

Winburg Example

Morals of the Example:
The Classical model is most effective
when the IT team can work without
accepting changes to the requirements
after the requirements are complete.
Changes to requirements (e.g. adding the
performance requirement, the Mayor’s
later change) negatively affects software
quality, delivery dates, and budgets.



CS 430 - Lecture 03 - Iteration and Incrementation

Winburg Example

Winburg Example

BUT in the real world, change is
inevitable. We cannot prevent change; we
must learn to manage it.



CS 430 - Lecture 03 - Iteration and Incrementation

Winburg Example

Winburg Example
Here is a sketch of Figure 2.2 in the text for an example of the evolution-tree life cycle model for this example, using the key:

// Development
// Maintenance

.

∅

�� ,,
Requirements1

��

Requirements4

��
Analysis1

�� ++

Analysis4

��
Design1

�� &&

Design2

��

Design4

��
Implementation1 Implementation2 Implementation2 Implementation4

Episode 1 Episode 2 Episode 3 Episode 4

This is an ad-hoc response to the moving target problem (Definition 1).



CS 430 - Lecture 03 - Iteration and Incrementation

Winburg Example

Winburg Example

Key Idea: Each Episode spawns a new
(sometimes partial) instance of the Classical
development life-cycle model.



CS 430 - Lecture 03 - Iteration and Incrementation

Winburg Example

Winburg Example

The rest of Chapter 2 is concerned with
adapting the Classical life-cycle model to
manage change.



CS 430 - Lecture 03 - Iteration and Incrementation

Iteration and Incrementation

Iteration and Incrementation

Key Idea: Think of Iteration and
Incrementation as a generalization of the
ad-hoc, evolution tree life-cycle from the
Example. Break the project into (say 4)
increments, then each increment runs as a
small waterfall project. See Figures 2.4
through 2.6 in the text.



CS 430 - Lecture 03 - Iteration and Incrementation

Iteration and Incrementation

Iteration and Incrementation

Goals:
1 Get the benefits of Classical structure,
while

2 Being more tolerant of change than the
Classical model is.



CS 430 - Lecture 03 - Iteration and Incrementation

Iteration and Incrementation

Moving Target Problem

Useful Definitions:

Definition 1
The moving target problem occurs when
the requirements change while the software is
being developed.

Unfortunately this problem has no solution!



CS 430 - Lecture 03 - Iteration and Incrementation

Iteration and Incrementation

FeatureCreep

Definition 2
Scope creep aka feature creep is a
succession of small, almost trivial requests
for additions to the requirements.

Remarks:
1 If the IT team can refuse such changes,
then scope creep need not contribute to
the moving target problem.

2 All too often the IT team does not have
this power.



CS 430 - Lecture 03 - Iteration and Incrementation

Iteration and Incrementation

Fault

Definition 3

A fault is the (observable) result of a coding
mistake made by a programmer.



CS 430 - Lecture 03 - Iteration and Incrementation

Iteration and Incrementation

Regression Fault

Definition 4
A regression fault occurs when a change in
one part of the software product induces a
fault in an apparently unrelated part of the
software product.



CS 430 - Lecture 03 - Iteration and Incrementation

Iteration and Incrementation

Regression Test

Definition 5
A regression test provides evidence that
we have not unintentionally changed
something that we did not intend to change
(i.e. that there are no regression faults).



CS 430 - Lecture 03 - Iteration and Incrementation

Iteration and Incrementation

Regression Test

Typical Strategy:
1 Choose test cases that all fall under all
the business rules not touched by the
project specification.

2 Execute the production and the modified
code against the chosen test cases.

3 Compare the outputs. Success = no
differences.



CS 430 - Lecture 03 - Iteration and Incrementation

Iteration and Incrementation

Miller’s Law

Definition 6
Miller’s Law states that, at any one time, a
human is only capable of concentrating on
approximately seven chunks of information.



CS 430 - Lecture 03 - Iteration and Incrementation

Iteration and Incrementation

Miller’s Law

Why this Matters for Software
Engineering:

One person can effectively work on at
most seven items at once.
Any software project of significant size
will have many more than seven
components.
Hence we must start by working on ≤ 7
highly important things first, temporarily
ignoring all the rest.



CS 430 - Lecture 03 - Iteration and Incrementation

Iteration and Incrementation

Miller’s Law

This is the technique of stepwise
refinement.
This technique will come up again in
Chapter 5.



CS 430 - Lecture 03 - Iteration and Incrementation

Iteration and Incrementation

Conclusion

When you have time, you may enjoy listening
to this YouTube video (the visual is just a
static image) about Iteration &
Incrementation:
https://youtu.be/FTygpfEFFKw

https://youtu.be/FTygpfEFFKw


CS 430 - Lecture 03 - Iteration and Incrementation

Iteration and Incrementation

Conclusion

Next Time: (Almost) all the remaining
life-cycle models are variations on Iteration
and Incrementation.


	Outline
	Introduction to Software Development Life-Cycle Models
	Software Development in Theory
	Winburg Example
	Iteration and Incrementation

