
CS 430 - Lecture 04 - Life-Cycle Models

CS 430 - Lecture 04 - Life-Cycle Models

Collin Roberts

September 19, 2023

CS 430 - Lecture 04 - Life-Cycle Models

Outline

Outline

1 Other Life Cycle Models
1 Code and Fix Life-Cycle Model
2 Waterfall (Modified) Life-Cycle Model
3 Rapid Prototyping Life-Cycle Model
4 Open Source Life-Cycle Model
5 Agile Processes
6 Synchronize and Stabilize Life-Cycle Model
7 Spiral Life-Cycle Model

2 Comparison of Life-Cycle Models

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Code and Fix Life-Cycle Model

Code and Fix Life-Cycle Model

Key Idea: Implement the product without
requirements, specification or design.
Remarks:

1 See Figure 2.8 in the text or on slide 17
for Chapter 2; but know that it is the
only possible picture without
requirements, specification or design.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Code and Fix Life-Cycle Model

Code and Fix Life-Cycle Model

Strengths:
1 This technique may work on very small
systems (≤ 200 lines of code).

2 Easy to incorporate changes to
requirements.

3 Generates a lot of lines of code (whether
this is actually a strength depends on
organizational norms).

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Code and Fix Life-Cycle Model

Code and Fix Life-Cycle Model

Weaknesses:
1 This technique is totally unsuitable for
systems of any reasonable size.

2 This technique is unlikely to yield the
optimal solution.

3 Slow.
4 Costly.
5 Likelihood of regression faults is high.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Code and Fix Life-Cycle Model

Code and Fix Life-Cycle Model

Remarks:
1 It is appropriate (and really the only
choice) for a user base of size 1, e.g. for
any programming assignment you would
do for a CS assignment at uWaterloo.

2 We met this model once before: it was
the only model in existence before the
Waterfall model was introduced in 1970.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Waterfall (Modified) Life-Cycle Model

Waterfall (Modified) Life-Cycle Model

Key Idea: Augment the “vanilla” waterfall
diagram, to add the “feedback loops” during
the project, and for post-delivery
maintenance.
Here is a sketch of Figure 2.9 in the text,

using the key:
// Development
// Maintenance .

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Waterfall (Modified) Life-Cycle Model

Waterfall (Modified) Life-Cycle Model

Requirements

##

Changed requirements

uu
Analysis

!!

PP

Design

$$

PP

Implementation

��

QQ

Postdelivery Maintenance

��

OO

OO

OO

OO

Retirement

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Waterfall (Modified) Life-Cycle Model

Waterfall (Modified) Life-Cycle Model

Remarks:
1 No phase is complete until all its
documents are complete, and the
output(s) of the phase are approved by
the SQA (Software Quality
Assurance) team.

2 Testing is carried out throughout the
project.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Waterfall (Modified) Life-Cycle Model

Waterfall (Modified) Life-Cycle Model

Strengths:
1 Discipline enforced by SQA.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Waterfall (Modified) Life-Cycle Model

Waterfall (Modified) Life-Cycle Model

Weaknesses:
1 Specification documents are often written
in a way that does not enable the client
to understand what the finished product
will look like.

1 Hence specification documents may not be fully
understood before they are approved.

2 Hence the finished product may not actually meet the
client’s needs.

The next model, rapid prototyping, is an
adaptation if the waterfall model to address
this key weakness.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Rapid Prototyping Life-Cycle Model

Rapid Prototyping Life-Cycle Model

Here is a sketch of Figure 2.10 in the text,

using the key:
// Development
// Maintenance .

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Rapid Prototyping Life-Cycle Model

Rapid Prototyping Life-Cycle Model

Rapid prototype

##

Changed requirements

uu
Analysis

!!

PP

Design

$$

PP

Implementation

��

QQ

Postdelivery Maintenance

��

OO

OO

OO

OO

Retirement

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Rapid Prototyping Life-Cycle Model

Rapid Prototyping Life-Cycle Model

Remarks:
1 This diagram looks almost identical to
that for Waterfall (Modified).

2 Key Difference: Requirements has
been replaced with Rapid Prototype.
Huh?

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Rapid Prototyping Life-Cycle Model

Rapid Prototyping Life-Cycle Model

Definition 1
A rapid prototype is a working model that
is functionally equivalent to a subset of the
software product.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Rapid Prototyping Life-Cycle Model

Rapid Prototyping Life-Cycle Model

Motivation: Develop a rapid prototype
(during Requirements phase) to let the client
interact and experiment with it early. This
way the requirements document can be
written with higher confidence that the
software product it describes will meet the
client’s needs. Users can give better feedback
from working with a rapid prototype than
from reading a long requirements document.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Rapid Prototyping Life-Cycle Model

Rapid Prototyping Life-Cycle Model

Examples:
1 If the product is a payroll system, then a
rapid prototype might have a subset of
the screens and might produce
mocked-up pay stubs, but might not have
any database updating or batch
processing behind the scenes.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Rapid Prototyping Life-Cycle Model

Rapid Prototyping Life-Cycle Model

Remarks:
1 The feedback loops from the waterfall
model are less heavily used here.

2 The word “rapid” is crucial. Speed is of
the essence!

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Rapid Prototyping Life-Cycle Model

Rapid Prototyping Life-Cycle Model

Summary: The purpose of a rapid
prototype is to improve requirements.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Rapid Prototyping Life-Cycle Model

Open Source Life-Cycle Model

Here is a sketch of Figure 2.11 in the text,

using the key:
// Development
// Maintenance .

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Rapid Prototyping Life-Cycle Model

Open Source Life-Cycle Model

Implement the
first version

((
Perform corrective,
perfective and adaptive
postdelivery maintenance

((

��

Retirement

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Rapid Prototyping Life-Cycle Model

Open Source Life-Cycle Model

Key Idea: Open Source software projects
proceed in two phases:

1 A single individual has an idea for a
program (e.g. MySQL, LibreOffice,
Notepad++, R, Linux, Firefox, Apache,
etc.), builds the initial version, and makes
it available free of charge to anyone who
wants a copy.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Rapid Prototyping Life-Cycle Model

Open Source Life-Cycle Model

2 (Informal) If there is sufficient interest,
then users become co-developers
(co-maintainers) for Post-Delivery
Maintenance:

1 Report / correct faults (Corrective Maintenance)
2 Add additional functionality (Perfective Maintenance)
3 Port the program to new platforms (Adaptive

Maintenance)

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Rapid Prototyping Life-Cycle Model

Open Source Life-Cycle Model

3 All participants can offer suggestions:
1 new features
2 new platforms

4 Participation is voluntary and unpaid.
5 Roles:

1 Core group: dedicated maintainers
2 Peripheral group: suggest bug fixes from time to time

6 Success depends on the interest
generated by the initial version.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Rapid Prototyping Life-Cycle Model

Open Source Life-Cycle Model

Many open source projects do not amount to
anything. But there have been some
spectacularly successful examples (mentioned
at the beginning of the section).

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Rapid Prototyping Life-Cycle Model

Open Source Life-Cycle Model

Reasons Why Open Source Projects
Are Successful:

1 Perception that the initial release is a
“winner” (most important)

2 Large potential user base

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Rapid Prototyping Life-Cycle Model

Open Source Life-Cycle Model

Instructor Remarks:
1 Participation in an Open Source project is
voluntary and unpaid.

2 The idea of Open Source is in direct
conflict with a corporation’s need to
achieve competitive advantage, by writing
good software.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Agile Processes

Agile Processes

Guiding Principles
1 Communication
2 Speed: Satisfying the Client’s needs as
quickly as possible (ideally new versions
every 2-3 weeks)

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Agile Processes

Agile Processes

According to the Scrum Method, we
iterate through the following two phases until
the backlog of tasks is empty.
Requirements Sprints
User Stories Daily Meetings
Prioritization Eventually Reassign Tasks
Build Backlog of Tasks

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Agile Processes

Agile Processes

Techniques to ensure frequent delivery of
new versions:

1 timeboxing: Fix an amount of time to
work on a task; do as much as possible
on the task during that time window.
Agile processes demand fixed time, not
fixed features.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Agile Processes

Agile Processes

2 daily 15 minute stand-up meeting
(to raise and resolve issues): Each
team member answers five questions:

1 What have I done since yesterday’s meeting?
2 What am I working on today?
3 What problems are preventing me from achieving my

goal for today?
4 What have we forgotten?
5 What did I learn that I would like to share with the

team?

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Agile Processes

Differences Between Agile and Classical

Diagram of Team Organization:

CTO

Project Manager

Scrum Master

Developer Developer Developer

1 1-week “sprints”
2 Each sprint gets us closer to the ultimate goal.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Agile Processes

Agile Processes

1 Iterative process
2 One phase need not finish before the next
can start

3 A client representative sits with the IT
team

4 No specializations
5 Members from all different areas work
together at different times

6 Working software is prioritized over
detailed documentation

7 test-driven development

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Agile Processes

Agile Processes

Strengths:
1 Speed
2 Flexibility
3 Team Cohesion
4 Some history of success with smaller
projects.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Agile Processes

Agile Processes

Weaknesses:
1 Heavy on meetings
2 Not scalable with team size
3 This technique is untested on large
projects (many software professionals
have expressed doubts that this will be
successful)

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Agile Processes

Agile Processes

When you have time, you may enjoy
watching this YouTube video about Iteration
& Incrementation Leading to Agile Processes:
https://youtu.be/Vlc2r_U30yo

https://youtu.be/Vlc2r_U30yo

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Agile Processes

Agile Processes

Remarks on Agile Processes:
1 The text makes a big deal of Extreme
Programming (XP), and states that a
key feature of XP is pair programming.
I had always suspected that this was a bit
too rigid - now we have this suspicion
confirmed by presentations from students
who have worked under this model. It
made a lot more sense to me that the
groups formed to do the work need not
always be pairs - they are whatever is
appropriate to the task at hand.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Synchronize and Stabilize Life-Cycle Model

Synchronize and Stabilize Life-Cycle Model

This is Microsoft’s adaptation of Iteration
and Incrementation.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Synchronize and Stabilize Life-Cycle Model

Synchronize and Stabilize Life-Cycle Model

1 Pull requirements from the clients.
2 Write Specification document.
3 Divide the work into four builds (most
important features in earlier builds):

1 critical
2 major
3 minor
4 trivial

N.B. Developers can add requirements
during a build.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Synchronize and Stabilize Life-Cycle Model

Synchronize and Stabilize Life-Cycle Model

4 Carry out each build using small teams
working in parallel.

5 Synchronize at the end of each day,
then

6 Stabilize at the end of each build (then
freeze).

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Synchronize and Stabilize Life-Cycle Model

Synchronize and Stabilize Life-Cycle Model -

Strengths

1 Users’ needs are met
2 Components are successfully integrated
3 Tolerant of changes to specifications
4 Encourages individual developers to be
innovative and creative

5 Daily synchronization and Build-ly
stabilization ensure developers will all
work in the same direction

6 Good for large projects

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Synchronize and Stabilize Life-Cycle Model

Synchronize and Stabilize Life-Cycle Model -

Weaknesses

1 So far, this has only been used
successfully at Microsoft

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Spiral Life-Cycle Model

Spiral Life-Cycle Model

This incorporates elements of several of the
earlier models.
Key Problem: There are many risks
associated with software development
projects, which if realized will mean that the
project is a failure.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Spiral Life-Cycle Model

Spiral Life-Cycle Model

Key Ideas:
1 Minimize risks inherent in software
development by the (repeated) use of
proof-of-concept prototypes and
other means.

2 N.B. Unlike rapid prototypes, which
aim to improve requirements by letting
users interact with a subset of the target
functionality, a proof-of-concept
prototype aims to determine whether an
architecture design is good (e.g. will it
perform quickly enough?)

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Spiral Life-Cycle Model

Spiral Life-Cycle Model

Figure 2.13: Spiral, Full

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Spiral Life-Cycle Model

Spiral Life-Cycle Model

Remarks:
1 The quadrants in the above diagram
could be labelled:
1. Planning / Requirements 2. Risk Analysis

4. Plan Next Phase 3. Develop and Verify

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Spiral Life-Cycle Model

Spiral Life-Cycle Model

Figure 2.12: Spiral, Simplified

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Spiral Life-Cycle Model

Spiral Life-Cycle Model - Strengths

1 Emphasis on alternatives and constraints
supports re-use, and software quality.

2 This technique encourages doing the
correct amount of testing.

CS 430 - Lecture 04 - Life-Cycle Models

Other Life Cycle Models

Spiral Life-Cycle Model

Spiral Life-Cycle Model - Weaknesses

1 This model is only meant for internal
building of large-scale software.

2 If risks are not analyzed correctly, then all
may appear fine even when the project is
headed for disaster.

3 Makes the (often wrong) assumption that
software is developed in discrete phases,
when in reality, software is developed
iteratively and incrementally (like in the
Winburg example).

CS 430 - Lecture 04 - Life-Cycle Models

Comparison of Life-Cycle Models

Comparison of Life-Cycle Models

Here is Figure 2.14 from the text:

CS 430 - Lecture 04 - Life-Cycle Models

Comparison of Life-Cycle Models

Comparison of Life-Cycle Models
Life-Cycle Model Strengths Weaknesses
Evolution Tree (§2.2) -Closely models real-world

software production
-Equivalent to iteration
and incrementation

Iteration and -Closely models real-world
Incrementation (§2.5) software production

-Underlies the Unified
Process

Code-and-fix (§2.9.1) -Fine for short programs that -Totally unsuitable for
require no maintenance non-trivial programs

Waterfall (§2.9.2) -Disciplined approach -Delivered product may
-Document driven not meet client’s needs

Rapid Prototyping (§2.9.3) -Ensures the delivered -Not yet proven beyond
product meets the client’s needs all doubt

Open Source (§2.9.4) -Has worked extremely well in -Limited applicability
a small number of instances -Usually does not work

Agile Processes (§2.9.5) -Works well when the client’s -Appear to work on only
requirements are vague small-scale projectes

Synchrionize-and- -Future users’ needs are met -Has not been widely
stabilize (§2.9.6) -Ensures that components used other than at

can be successfully integrated Microsoft
Spiral (§2.9.7) -Risk driven -Can be used for only

large-scale, in-house
products
-Developers have to be
competent in risk analysis
and risk resolution

	Outline
	Other Life Cycle Models
	Code and Fix Life-Cycle Model
	Waterfall (Modified) Life-Cycle Model
	Rapid Prototyping Life-Cycle Model
	Agile Processes
	Synchronize and Stabilize Life-Cycle Model
	Spiral Life-Cycle Model

	Comparison of Life-Cycle Models

