
CS 430 - Lecture 09 - Tools of the Trade I

CS 430 - Lecture 09 - Tools of the Trade I

Collin Roberts

October 17, 2023

CS 430 - Lecture 09 - Tools of the Trade I

Outline

Outline

1 Stepwise Refinement
2 Cost-Benefit Analysis
3 Divide and Conquer
4 Separation of Concerns
5 Software Metrics

CS 430 - Lecture 09 - Tools of the Trade I

Stepwise Refinement

Stepwise Refinement

Definition 1
Stepwise refinement is a technique by
which we defer nonessential decisions until
later, while focusing on the essential
decisions first.

CS 430 - Lecture 09 - Tools of the Trade I

Stepwise Refinement

Stepwise Refinement

1 This is a response to Miller’s Law.
2 The text presents a mini case study in

§5.1.1, about designing an updater for a
master file.

3 The details of each step in the text
example of stepwise refinement are not
important. The important thing is to
notice how decisions get deferred until
they must be settled in later iterations.

CS 430 - Lecture 09 - Tools of the Trade I

Stepwise Refinement

Stepwise Refinement

4 I like the fact that the example in the
text is a refinement of a design. I have
found this technique extremely fruitful
during my own design work. It would be
less effective during the implementation
workflow, for example.

CS 430 - Lecture 09 - Tools of the Trade I

Stepwise Refinement

Stepwise Refinement

5 Key Challenge: Decide which issues
must be handled in the current
refinement, and which can be deferred
until a later refinement. There is no
algorithm to decide! Experience and
human intuition are required.

6 In my experience the technique can be
effective when working on a problem
either individually or in a group. In a
group setting

1 brainstorming can be used in the early stages, and
2 more structured reviews can be used in the later stages.

CS 430 - Lecture 09 - Tools of the Trade I

Stepwise Refinement

Stepwise Refinement

7 Features of Brainstorming
1 The problem to be solved may initially be unclear e.g.

the team might start with a symptom, and understand
the underlying cause through brainstorming.

2 All team members are encouraged to speak, especially
the shy ones.

3 No editing in the first round(s), when ideas are being
suggested. Editing happens after all ideas have been
suggested.

4 Student Question: Is brainstorming always top-down
then?
Instructor Answer: Brainstorming can be

1 top-down for Intuitives, and
2 bottom-up for Sensors.

Either way can be productive.

CS 430 - Lecture 09 - Tools of the Trade I

Cost-Benefit Analysis

Cost-Benefit Analysis

Definition 2

Cost-Benefit Analysis is
1 a technique for determining whether a possible course of

action would be profitable, in which we
2 compare estimated future benefits against estimated

future costs,
3 often referred to as the “balance sheet view”.
4 When selecting from among several options, the optimal

choice maximizes the difference

(estimated benefits) − (estimated costs).

CS 430 - Lecture 09 - Tools of the Trade I

Cost-Benefit Analysis

Pitfalls

We must quantify everything to start.
Some things are easier to quantify than
others.

CS 430 - Lecture 09 - Tools of the Trade I

Cost-Benefit Analysis

Tangible benefits

Tangible benefits are easy to measure, e.g.
estimated revenue from a new product.

CS 430 - Lecture 09 - Tools of the Trade I

Cost-Benefit Analysis

Intangible benefits

Intangible benefits can be more challenging
e.g. the reputation of your organization
(think Facebook, recently).

CS 430 - Lecture 09 - Tools of the Trade I

Cost-Benefit Analysis

Intangible benefits

To quantify intangible benefits, we must
make assumptions, e.g. Facebook hacks
will cause 5000 users to close their accounts
- then we can estimate lost advertising
revenue, using historical data.

1 Advantage: With better assumptions (say
from improved historical data or from a
new team member who brings new
experiences) we can obtain more accurate
quantifications of our intangible benefits.

2 As software engineering practitioners, we
must gather all of our information by
ethical means!

CS 430 - Lecture 09 - Tools of the Trade I

Divide and Conquer

Divide and Conquer

Definition 3
To divide and conquer is to break a large
problem down into sub-problems, each of
which is easier to solve.

CS 430 - Lecture 09 - Tools of the Trade I

Divide and Conquer

Divide and Conquer

Remarks:
1 Like Stepwise Refinement, Divide and
Conquer is also common sense.

2 This is the “oldest trick in the book”.
3 This is a component of the Unified
Process.

CS 430 - Lecture 09 - Tools of the Trade I

Divide and Conquer

Divide and Conquer

Definition 4
An analysis package is defined by:
During the analysis workflow:

1 Partition the software product into
analysis packages.

2 Each package consists of a set of related
classes that can be implemented as a
single unit.

CS 430 - Lecture 09 - Tools of the Trade I

Divide and Conquer

Divide and Conquer

4 During the design workflow:
1 Partition the implementation workflow into

corresponding manageable pieces, termed subsystems.

5 During the implementation workflow:
1 Implement each subsystem in the chosen programming

language.

CS 430 - Lecture 09 - Tools of the Trade I

Divide and Conquer

Divide and Conquer

6 Key Problem: There is no algorithm
for deciding how to partition a software
product into smaller pieces. Experience
and human intuition are required.

7 Example: My last large project at
SunLife (2003) was developing a new
intranet site. The homepage consisted of
four independent quadrants. Hence the
home page naturally broke down into four
analysis packages, and later, into four
subsystems and four streams of
implementation.

CS 430 - Lecture 09 - Tools of the Trade I

Separation of Concerns

Separation of Concerns

Definition 5
A software product has separation of
concerns if it is broken into components
that overlap as little as possible with respect
to their functionalities.

CS 430 - Lecture 09 - Tools of the Trade I

Separation of Concerns

Separation of Concerns

Remarks:
1 Separation of concerns is a “new and
improved” version of divide and conquer.
The new guiding principle for how to
divide up the components is to reduce or
eliminate the overlaps in their
functionalities.

CS 430 - Lecture 09 - Tools of the Trade I

Separation of Concerns

Separation of Concerns

Motivation:
1 Minimize the number of regression faults!
If separation of concerns is truly achieved,
then changing one module cannot affect
another module.

2 When done correctly, this also facilitates
re-use of modules in future software
products.

CS 430 - Lecture 09 - Tools of the Trade I

Separation of Concerns

Separation of Concerns

3 Manifestations of separation of concerns:
1 design technique of high cohesion: maximum

interaction within each module (§7.2).
2 design technique of loose coupling: minimum

interaction between modules (§7.3).
3 encapsulation (§7.4).
4 information hiding (§7.6).
5 three tier architecture (§8.5.4).

4 Tracking which modules were written by
weaker programmers may facilitate more
proactive maintenance work.

CS 430 - Lecture 09 - Tools of the Trade I

Separation of Concerns

Separation of Concerns

Moral: Separation of concerns is desirable
for Software Engineering.

CS 430 - Lecture 09 - Tools of the Trade I

Software Metrics

Software Metrics

Definition 6
A metric is anything that we measure
quantitatively.

CS 430 - Lecture 09 - Tools of the Trade I

Software Metrics

Software Metrics

1 We need metrics to detect problems
early in the software process before they
become crises.

2 Examples:
1 # LOC, lines of code (measures size)
2 # faults / 1000 lines of code (measures quality)
3 (after deployment) mean time between failures

(measures reliability)
4 number of person-months to build (measures size)
5 staff turnover (high turnover affects budgets and

timelines)
6 cost

CS 430 - Lecture 09 - Tools of the Trade I

Software Metrics

Software Metrics

3 Two types (Exercise: categorize the list
above into one of these types):

1 product metrics, e.g. # lines of code for a software
product.

2 process metrics, e.g.
1 # lines of code for the organization.
2

of faults detected during product development
of faults detected during product’s lifetime

, taken over all

software products in the organization. (measures
effectiveness of fault detection during development)

4 Some metrics are clearly tied to a certain
workflow (e.g. we cannot count lines of
code until implementation)

CS 430 - Lecture 09 - Tools of the Trade I

Software Metrics

Software Metrics

5 Five essential, fundamental metrics for a
software project:

1 Size (e.g. in # Lines of Code)
2 Cost to develop / maintain (in dollars)
3 Duration to develop (in months)
4 Effort to develop (in person-months; or as in my

experience in person-days)
5 Quality (in number of faults detected during the project)

6 There is no universal agreement among
software engineers about which metrics
are right, or even preferred.

	Outline
	Stepwise Refinement
	Cost-Benefit Analysis
	Divide and Conquer
	Separation of Concerns
	Software Metrics

