
CS 430 - Lecture 10 - Tools of the Trade II

CS 430 - Lecture 10 - Tools of the Trade II

Collin Roberts

October 17, 2023



CS 430 - Lecture 10 - Tools of the Trade II

Outline

Outline

1 Taxonomy of CASE
2 Scope of CASE
3 Software Versions

1 Revisions
2 Variations
3 Moral

4 Configuration Control
1 Configuration Control During Postdelivery Maintenance
2 Baselines
3 Configuration Control During Development

5 Build Tools
6 Productivity Gains with CASE
Technology



CS 430 - Lecture 10 - Tools of the Trade II

Taxonomy of CASE

Taxonomy of CASE

Recall, CASE stands for Computer
Aided/Assisted Software
Engineering, not Computer
Automated Software Engineering.
At present, a computer is a tool of, and
not a replacement for, a software
professional.



CS 430 - Lecture 10 - Tools of the Trade II

Taxonomy of CASE

Taxonomy of CASE

CASE tools used during the
1 earlier workflows (requirements, analysis, design) are

called front-end or upperCASE tools, and
2 later workflows (implementation, postdelivery

maintenance) are called back-end or lowerCASE tools.



CS 430 - Lecture 10 - Tools of the Trade II

Taxonomy of CASE

Examples

1 data dictionary - list of every data item defined in the
software product. Some things to include:

1 an English description of every item in the dictionary
2 Module names ✓
3 Procedure names: ✓

1 parameters, and
2 their types,
3 locations where they are defined (i.e. which module),

and
4 description of purpose

4 Variable names: ✓
1 types, and
2 locations (i.e. which module & procedure) where they

are defined



CS 430 - Lecture 10 - Tools of the Trade II

Taxonomy of CASE

Examples

2 consistency checker - to confirm that
every data item in the specification
document is reflected in the design, and
vice versa.

3 report generator
4 screen generator - for creating data
capture screens.



CS 430 - Lecture 10 - Tools of the Trade II

Taxonomy of CASE

Taxonomy

1 Combining multiple tools creates a
workbench.

2 Combining multiple workbenches creates
an environment.

3 So our taxonomy is
tools (task level) → workbenches (team
level) → environments (organization
level).



CS 430 - Lecture 10 - Tools of the Trade II

Scope of CASE

Scope of CASE

Primary motivations for implementing CASE:
1 Produce high-quality code.
2 Have up-to-date documentation at all
times.

3 Automation makes maintenance easier.
4 Do everything more quickly, hence more
cheaply.



CS 430 - Lecture 10 - Tools of the Trade II

Scope of CASE

Scope of CASE

For example, if a specification is created
by hand, there may not be any way to tell
whether the document is current by
reading it.
On the other hand, if the specification is
maintained within CASE software, then
the latest version is the one the CASE
software displays.



CS 430 - Lecture 10 - Tools of the Trade II

Scope of CASE

Scope of CASE

Similarly, other documentation about the
software is easier to maintain inside of
CASE software.
Online documentation, word
processors, spreadsheets, web
browsers, and email are CASE tools.



CS 430 - Lecture 10 - Tools of the Trade II

Scope of CASE

Scope of CASE

Coding tools of CASE include
1 text editors (including structure
editors which are sensitive to syntax,
including online interface checking),
debuggers, pretty printers /
formatters, etc.



CS 430 - Lecture 10 - Tools of the Trade II

Scope of CASE

Scope of CASE

An operating system front end allows
the programmer to issue operating
system commands (e.g. compile, link,
load) from within the editor.
A source-level debugger automatically
causes trace output to be produced. An
interactive source-level debugger is
what its name says.



CS 430 - Lecture 10 - Tools of the Trade II

Scope of CASE

Scope of CASE

Programming-in-the-small: coding a
single module.
Programming-in-the-large: coding at
the system level.
Programming-in-the-many: software
production by a team.



CS 430 - Lecture 10 - Tools of the Trade II

Software Versions

Revisions

Revisions

Definition 1
A revision is created when a change is
made, e.g. to fix a fault.



CS 430 - Lecture 10 - Tools of the Trade II

Software Versions

Revisions

Revisions

Old revisions must be retained for reference,
e.g.

1 if a fault is found at a site still running
the old revision,

2 for auditing and
3 for other reasons.



CS 430 - Lecture 10 - Tools of the Trade II

Software Versions

Variations

Variations

Definition 2
A variation is a slightly changed version
that fulfills the same role in a slightly
changed situation.



CS 430 - Lecture 10 - Tools of the Trade II

Software Versions

Variations

Examples

1 two printer drivers, one for a laser printer
and one for an inkjet printer, or

2 optimizing an application to run on
different platforms, e.g. desktop vs.
smart phone.



CS 430 - Lecture 10 - Tools of the Trade II

Software Versions

Variations

Remarks

1 Often the variation is also embedded into
the file name.



CS 430 - Lecture 10 - Tools of the Trade II

Software Versions

Moral

Moral

1 A CASE tool is needed to effectively
manage multiple revisions of multiple
variations.



CS 430 - Lecture 10 - Tools of the Trade II

Configuration Control

Configuration Control

Definition 3
A configuration of a software product is a
list, for every code artifact, of which version
is included in the S/W product.



CS 430 - Lecture 10 - Tools of the Trade II

Configuration Control

Configuration Control

Definition 4
A configuration control tool is a CASE
tool for managing configurations (Definition
3).



CS 430 - Lecture 10 - Tools of the Trade II

Configuration Control

Configuration Control

1 Motivation: Fix S/W faults effectively.
2 The first step towards fixing a problem is
to recreate it in a development
environment.

3 If many configurations are possible, then
configuration control will be needed in
order to recreate a problem in a
development environment.

4 Version control also facilitates ensuring
that the correct versions get included
when compiling / linking.

5 A common technique is to embed the
version as part of the name.



CS 430 - Lecture 10 - Tools of the Trade II

Configuration Control

Configuration Control

6 Adding details to a configuration yields a
derivation of a S/W product:



CS 430 - Lecture 10 - Tools of the Trade II

Configuration Control

Configuration Control

Definition 5
A derivation is a detailed record of a
version of the S/W product, including

1 the variation/revision of each code
element (i.e. the configuration),

2 the versions of the compilers/linkers used
to assemble the product,

3 the date/time of assembly, plus
4 the name of the programmer who created
the version.



CS 430 - Lecture 10 - Tools of the Trade II

Configuration Control

Configuration Control

7 A version-control tool is required to
effectively track derivations.



CS 430 - Lecture 10 - Tools of the Trade II

Configuration Control

Configuration Control During Postdelivery Maintenance

Configuration Control During Postdelivery

Maintenance

1 There is an obvious problem when a team maintains a
software product.

2 Suppose that two different programmers receive two
different fault reports. Suppose further that fixing both
faults require changes to the same code artifact.

3 Without any new process in place, the programmer #2
will undo programmer #1’s changes at deployment time.

4 See the next subsection for a possible solution to this
problem, using baselines.



CS 430 - Lecture 10 - Tools of the Trade II

Configuration Control

Baselines

Baselines

1 When multiple programmers are working on fixing faults,
a baseline is needed.

2 A baseline is a set of versions of all the code artifacts in
a project (i.e. what versions are in production right now).

3 A programmer starts by copying the baseline files into a
private workspace. Then he/she can freely change
anything without affecting anything else.

4 The programmer freezes the version of the artifact to be
changed to fix the fault. No other programmer can
modify a frozen version.

5 After the fault is fixed, the new code artifact is promoted
to production, modifying the baseline.

6 The old, frozen version is kept for future reference, and
can never be changed.

7 This technique extends in the natural way to multiple
programmers and multiple code artifacts.



CS 430 - Lecture 10 - Tools of the Trade II

Configuration Control

Baselines

Instructor Remark

1 In my experience, the strict technique described here is
too slow. Instead developer #2 starts work right away,
and incorporates developer #1’s changes as soon as they
are promoted to production. SQA needs to be kept
informed in this situation!

2 One could argue that this technique is vulnerable to
exponential growth of effort as the number of faults in a
code artifact increases. The instructor counter-argues
that if we achieve separation of concerns in our
software products, then the probability of >> 2
simultaneous faults in one code artifact is low.



CS 430 - Lecture 10 - Tools of the Trade II

Configuration Control

Baselines

Student Question

What if #1 and #2 actually touch the same
code?
Instructor Answer: I recommend using the
same technique, being mindful that extra
care will be needed when

1 incorporating #1’s changes into #2’s
version, and

2 doing SQA (e.g. what should be the test
cases and expected results for pass 0 and
for pass 1?).



CS 430 - Lecture 10 - Tools of the Trade II

Configuration Control

Configuration Control During Development

Configuration Control During Development

During Development and Desk Checking,
changes are too frequent for
configuration control to be useful.
We definitely want configuration control
to be in force by the time we deploy to
production.
The text author recommends that
configuration control should apply once
the code artifact is passed off to the SQA
group.

1 In practice, we can decide when between the end of
development and the time of deployment to begin
enforcing configuration control.



CS 430 - Lecture 10 - Tools of the Trade II

Configuration Control

Configuration Control During Development

Configuration Control During Development

The same configuration control
procedures as those for postdelivery
maintenance should then apply.
Proper version control permits
management to take corrective action if
project deadlines start to slip (as they are
then aware of the status of every code
artifact).



CS 430 - Lecture 10 - Tools of the Trade II

Build Tools

Build Tools

Definition 6
A build tool selects the correct
compiled-code artifact to be linked into a
specific version of the S/W product.



CS 430 - Lecture 10 - Tools of the Trade II

Build Tools

Build Tools

Some organizations may not want to
purchase a complete
configuration-control solution.
Then at least a version control tool must
be used in conjunction with a build tool
(Definition 6).



CS 430 - Lecture 10 - Tools of the Trade II

Build Tools

Issue

While a version control tool assists
programmers in deciding which version of the
source code is the latest, compiled code does
not automatically get a version attached to
it. Possible solutions (present in class only if
time permits):

1 Automatically re-compile and re-link every night.
Obviously this is expensive.

2 Use a tool like make to decide more intelligently, based on
date and time stamps of compiled code. This idea has
been incorporated into many different programming
environments.



CS 430 - Lecture 10 - Tools of the Trade II

Build Tools

Student Question

What is the difference between a build tool
(Definition 6) and a configuration control
tool (Definition 4)?
Answer:

1 The purpose of a build tool is to make certain we have
the correct compiled code artifacts linked in to a specific
version of the S/W product. This can be effective for a
small organization, managing one version of a S/W
product at one location. This explains why
auto-recompiling each night is a viable technique.

2 A configuration control tool is needed to manage
multiple revisions of multiple variations. E.g. for a large
organization which must manage multiple configurations
running simultaneously across multiple locations.



CS 430 - Lecture 10 - Tools of the Trade II

Productivity Gains with CASE Technology

Productivity Gains with CASE Technology

1 Research to date shows a modest gain in
productivity following the introduction of
CASE tools to an organization.

2 Other benefits of using CASE tools:
1 faster development
2 fewer faults
3 better usability (e.g. from a screen generator)
4 easier maintenance
5 improved morale on the IT team



CS 430 - Lecture 10 - Tools of the Trade II

Productivity Gains with CASE Technology

Productivity Gains with CASE Technology

This list of CASE tools is summarized in
Figure 5.14 in the text.
Build tool (§5.11) Coding tool (§5.8)
Configuration-control tool (§5.10) Consistency checker (§5.7)
Data dictionary (§5.7) E-mail (§5.8)
Interface checker (§5.8) Online documentation (§5.8)
Operating system front end (§5.8) Pretty printer (§5.8)
Report generator (§5.7) Screen generator (§5.7)
Source-level debugger (§5.8) Spreadsheet (§5.8)
Structure editor (§5.8) Version-control tool (§5.9)
Word-processor (§5.8) World Wide Web browser (§5.8)


	Outline
	Taxonomy of CASE
	Scope of CASE
	Software Versions
	Revisions
	Variations
	Moral

	Configuration Control
	Configuration Control During Postdelivery Maintenance
	Baselines
	Configuration Control During Development

	Build Tools
	Productivity Gains with CASE Technology

