
Lecture 12 - Testing II - Execution-Based Testing

Lecture 12 - Testing II - Execution-Based

Testing

Collin Roberts

October 24, 2023



Lecture 12 - Testing II - Execution-Based Testing

Outline

Outline

1 Execution-Based Testing
2 What Should Be Tested?

1 Utility
2 Reliability
3 Robustness
4 Performance
5 Correctness



Lecture 12 - Testing II - Execution-Based Testing

Execution-Based Testing

Execution-Based Testing

Testing is a crucial part of any software
development life-cycle.
However we must keep in mind that (as
Dijkstra points out), testing can
demonstrate the presence of faults in a
software product, not their absence.



Lecture 12 - Testing II - Execution-Based Testing

Execution-Based Testing

Execution-Based Testing

One reason: Test cases are only as good as
the tester selecting them. Things can get
missed.



Lecture 12 - Testing II - Execution-Based Testing

What Should Be Tested?

What Should Be Tested?

Definition 1
Execution-Based Testing is a process of
inferring certain behavioural properties of a
software product based, in part, on the
results of running the software product in a
known environment with selected inputs.



Lecture 12 - Testing II - Execution-Based Testing

What Should Be Tested?

Three Troubling Details About Definition 1

1 Testing is an inferential process. There is
no algorithm for determining whether
faults are present! A test run with correct
results may simply fail to expose a fault.



Lecture 12 - Testing II - Execution-Based Testing

What Should Be Tested?

Three Troubling Details About Definition 1

2

What do we mean by known environment?
We can never fully know our
environment. The text gives the example
that an intermittent hardware fault in the
computer’s memory system could cause
failures, even if the code is perfect.



Lecture 12 - Testing II - Execution-Based Testing

What Should Be Tested?

Three Troubling Details About Definition 1

3 What do we mean by selected inputs?
With a real-time system, no control over
the inputs is possible, e.g.

1 an avionics system in an aircraft, for which the inputs
describing the current state of the aircraft’s flight cannot
be controlled (a partial solution to this problem is
provided by a simulator), and

2 a system for controlling trains.



Lecture 12 - Testing II - Execution-Based Testing

What Should Be Tested?

Remarks

1 Despite these problems, Definition 1 is
the best one available.



Lecture 12 - Testing II - Execution-Based Testing

What Should Be Tested?

Utility

Utility

Definition 2
The utility of a software product is the
extent to which the software product meets
the user’s needs when operated under
conditions permitted by its specification.



Lecture 12 - Testing II - Execution-Based Testing

What Should Be Tested?

Utility

Elements

1 Is the software product easy to use?
2 Does the software product perform useful
functions?

3 Is the software product cost effective?



Lecture 12 - Testing II - Execution-Based Testing

What Should Be Tested?

Utility

Remarks

1 If a software product fails a test of its
utility, then testing should proceed no
further!



Lecture 12 - Testing II - Execution-Based Testing

What Should Be Tested?

Reliability

Reliability

Definition 3
The reliability of a software product
measures the frequency and severity of its
failures.



Lecture 12 - Testing II - Execution-Based Testing

What Should Be Tested?

Reliability

Elements

1 mean time between failures Long
times → more reliable.

2 mean time to repair failures Long
times → less reliable.

1 Also important (often overlooked): time required to
fix the effects of the failure (e.g. correcting corrupted
data). Long times → less reliable.



Lecture 12 - Testing II - Execution-Based Testing

What Should Be Tested?

Robustness

Elements

1 range of operating conditions (permissible
by the specifications, or not)

1 A robust product has a wide range of operating
conditions, including some outside its specification.

2 possibility of unacceptable output given
acceptable input

1 A robust product produces acceptable output, given
acceptable input.

3 acceptability of output given
unacceptable input

1 A robust product produces acceptable output (e.g. a
helpful error message instead of a crash), even given
unacceptable input.



Lecture 12 - Testing II - Execution-Based Testing

What Should Be Tested?

Performance

Performance

1 It is crucial to verify that a software
product meets its constraints with respect
to:

1 Space constraints which can be critical in miniature
applications, e.g.

1 missile guidance systems as in the text, or
2 smart phone apps.

2 Time constraints which can be critical in real time
applications, e.g.

1 measuring core temperature in a nuclear reactor as in
the text, or

2 controlling signals on a railroad network.



Lecture 12 - Testing II - Execution-Based Testing

What Should Be Tested?

Correctness

Correctness

Definition 4
A software product is correct if it satisfies
its output specification, without regard for
the computing resources consumed, when
operated under permissible (pre-)conditions.



Lecture 12 - Testing II - Execution-Based Testing

What Should Be Tested?

Correctness

Remarks

1 This definition is partial correctness. It
tacitly assumes that the program
terminates.



Lecture 12 - Testing II - Execution-Based Testing

What Should Be Tested?

Correctness

Problems with Definition 4

1 Specifications can be wrong.
1 Then a software product can be correct, but not be

acceptable.
1 Cute text example: a sort program whose specification

omits the requirement that the sorted list be a
permutation of the original list - clearly not acceptable!

2 1 A software product can be acceptable, but not be
correct.

1 Cute text example: a compiler, faster than its
predecessor, but which prints a spurious error message
(which is easily ignored) in one rare situation. This
compiler is acceptable. However it is not correct since
producing the spurious error message is not part of its
specification.


	Outline
	Execution-Based Testing
	What Should Be Tested?
	Utility
	Reliability
	Robustness
	Performance
	Correctness


