
Lecture 13 - Testing III - Proving Program Correctness

Lecture 13 - Testing III - Proving Program

Correctness

Collin Roberts

October 26, 2023



Lecture 13 - Testing III - Proving Program Correctness

Outline

Outline

1 Testing Versus Correctness Proofs
1 Example of a Correctness Proof
2 Correctness Proof Mini Example
3 Correctness Proofs and Software Engineering

2 Who Should Perform Execution-Based
Testing?

3 When Testing Stops



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Testing Versus Correctness Proofs

Definition 1
A correctness proof is a mathematical
technique for demonstrating that a program
is correct.



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Remarks

1 The text shows a technique which uses
flowcharts to argue the correctness of a
program. This technique is cute, but is
not used in industry. So we will not
spend time learning this technique.



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Remarks

2 My lecture notes/slides show an example
(directly stolen from CS 245) which uses
the technique of Hoare triples
(assertions inserted into the code, which
assemble into a proof of program
correctness). This technique is used in
industry, but requires mathematical
machinery (Predicate logic, a.k.a.
first-order logic) which we do not have
as a pre-requisite for CS 430. So we will
not spend time learning this technique in
detail either.



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Remarks

3 It is enough for us to know that the
Hoare triple technique can be carried out,
with enough mathematical background,
and patience.



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

Prove the total correctness of the program
below, which computes a factorial.

Lx ≥ 0M
y = 1 ;
z = 0 ;
while (z != x) {

z = z + 1 ;
y = y * z ;

}
Ly = x!M



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

At the while statement:
x y z z ≠ x
5 1 0 true
5 1 1 true
5 2 2 true
5 6 3 true
5 24 4 true
5 120 5 false

From the trace and the post-condition, a
candidate loop invariant is y = z!



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

Here is the annotated program.
Lx ≥ 0M
L1 = 0!M assignment
y = 1 ;
Ly = 0!M assignment
z = 0 ;
Ly = z!M assignment
while (z != x) {

L(y = z! ∧ z ≠ x)M partial-while
Ly(z + 1) = (z + 1)!M implied (b)
z = z + 1 ;
Lyz = z!M assignment
y = y * z ;
Ly = z!M assignment

}
L(y = z! ∧ z = x)M partial-while
Ly = x!M implied (b)



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

Proof of implied (a): {x ≥ 0} ⊢ 1 = 0!.
This result is obvious, by definition of
factorial.



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

Proof of implied (b):
{(y = z! ∧ z ≠ x)} ⊢ y(z + 1) = (z + 1)!.
This result is obvious.



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

Proof of implied (c):
{(y = z! ∧ z = x)} ⊢ y = x!.
This result is also obvious.
This completes the proof of partial
correctness.



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

Proof of Termination: The factorial code
from earlier has a loop guard of z ≠ x ,
which is equivalent to x − z ≠ 0.



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

What happens to the value of x − z during
execution?
Lx ≥ 0M
y = 1 ;
z = 0 ; At start of loop: x − z = x ≥ 0✓
while (z != x) {

z = z + 1 ; x − z decreases by 1 ✓
y = y * z ; x − z unchanged

}
Ly = x!M



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

The value of x − z will eventually reach 0.
The loop then exits and the program
terminates. ✓
This completes the proof of total correctness.



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Correctness Proof Mini Example

Correctness Proof Mini Example

See the Example document.



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Correctness Proof Mini Example

Correctness Proof Mini Example

Moral: Even if a proof of a program’s
correctness has been found, the program
must still be tested thoroughly.



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Correctness Proofs and Software Engineering

Proposed reasons why correctness proving

should not be a standard software engineering

technique

1 S/W Engineers lack the mathematical
training to write correctness proofs.
Partial Refutation:

1 This may have been true in the past.
2 However many CS graduates today (including all from

uWaterloo) do have the required mathematical
background.



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Correctness Proofs and Software Engineering

Proposed reasons why correctness proving

should not be a standard software engineering

technique

2 Correctness proving is too time
consuming and hence too expensive.
Partial Refutation:

1 Costs can be assessed using a cost-benefit analysis, on a
project-by-project basis.

2 The benefit is weighted higher the more that correctness
matters, e.g. where human lives depend on program
correctness.



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Correctness Proofs and Software Engineering

Proposed reasons why correctness proving

should not be a standard software engineering

technique

3 Correctness proving is too difficult.
Partial Refutation:

1 Some non-trivial S/W products have successfully been
proven correct.

2 There exists theorem-proving software to save manual
work in some situations.

3 However proving program correctness in general is an
undecidable problem, so no theorem-prover can handle
every possible situation.



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Correctness Proofs and Software Engineering

Morals

1 Correctness proving is a useful tool, when
human lives are at stake, or when the
cost-benefit analysis justifies doing it for
other reasons.

2 However correctness proving alone is not
enough. Testing is still a crucial need for
a S/W product.



Lecture 13 - Testing III - Proving Program Correctness

Testing Versus Correctness Proofs

Correctness Proofs and Software Engineering

Morals

3 Languages like Java and C++ support
variations of an assert statement, which
permits a programmer to embed
assertions directly into the code. A
switch then controls whether assertion
checking is enabled (slower) or not
(faster) at run time.

4 Model checking is a new technology
that may eventually replace correctness
proving. It is describe in Chapter 18 of
the text, which unfortunately will be
beyond the scope of CS 430.



Lecture 13 - Testing III - Proving Program Correctness

Who Should Perform Execution-Based Testing?

Who Should Perform Execution-Based Testing?

1 Programmers should not have the
ultimate responsibility to test their own
code. Reasons:

1 Fundamental conflict of motivations
1 Coding is constructive.
2 Testing’s goal (exposing faults) is destructive.
3 Programmers feel protective of their own code, hence

they have an incentive not to expose faults in the code.

2 The programmer may have misunderstood the
specification.

1 An SQA professional has a better chance to understand
the specification correctly, and to test accordingly.



Lecture 13 - Testing III - Proving Program Correctness

Who Should Perform Execution-Based Testing?

Who Should Perform Execution-Based Testing?

2 After the programmer completes and
hands off the code artifact, SQA should
perform systematic testing:



Lecture 13 - Testing III - Proving Program Correctness

Who Should Perform Execution-Based Testing?

Definition 2
Systematic testing is described by the following procedure:

1 Select test cases to exercise all parts of the specification.
2 For each test case, determine its expected output before

execution starts.
3 Execute the program on each test case, and record the

actual results.
4 Compare the actual results to the expected results.

Document all differences.
5 Correct faults (either in the specification or in the code or

possibly both) which explain each difference, and repeat
the execution.

6 Archive all test results electronically, for purposes of
regression testing during future projects and post-delivery
maintenance.



Lecture 13 - Testing III - Proving Program Correctness

Who Should Perform Execution-Based Testing?

Ambiguity about the term desk checking in

the text

i first mention (description of testing workflow): Here desk
checking meant the testing that a programmer does
during development. This is the meaning with which I
was already familiar from my time in industry.

ii second mention (description of who should perform

execution-based testing): Here desk checking means the
checking of the design artifact that the programmer does
before starting to code.



Lecture 13 - Testing III - Proving Program Correctness

Who Should Perform Execution-Based Testing?

Who Should Perform Execution-Based Testing?

3 As outlined earlier, the SQA group must
have managerial independence from the
development team.



Lecture 13 - Testing III - Proving Program Correctness

When Testing Stops

When Testing Stops

1 Only when the S/W product is
decommissioned and removed from
service, should testing stop.



Lecture 13 - Testing III - Proving Program Correctness

When Testing Stops

Questions from the Class

1 Will we have to write correctness proofs
like the one in the notes for this lecture?
Answer: No.

1 I will include a small example of the Hoare Triple
technique for the next assignment, which can be done
“with bare hands” (i.e. you will not need the machinery
that the example uses).

2 There will be no correctness proving on the Final Exam.


	Outline
	Testing Versus Correctness Proofs
	Example of a Correctness Proof
	Correctness Proof Mini Example
	Correctness Proofs and Software Engineering

	Who Should Perform Execution-Based Testing?
	When Testing Stops

