Lecture 13 - Testing Il - Proving Program Correctness

Lecture 13 - Testing Il - Proving Program

Correctness

Collin Roberts

October 26, 2023



Lecture 13 - Testing Il - Proving Program Correctness
Outline

Outline

@ Testing Versus Correctness Proofs

©® Example of a Correctness Proof
@ Correctness Proof Mini Example
@ Correctness Proofs and Software Engineering

@ Who Should Perform Execution-Based
Testing?

@ When Testing Stops



Lecture 13 - Testing Il - Proving Program Correctness

Testing Versus Correctness Proofs

Testing Versus Correctness Proofs

Definition 1

A correctness proof is a mathematical
technique for demonstrating that a program
Is correct.




Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs

Remarks

@ The text shows a technique which uses
flowcharts to argue the correctness of a
program. This technique is cute, but is
not used in industry. So we will not
spend time learning this technique.



Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs

Remarks

@ My lecture notes/slides show an example
(directly stolen from CS 245) which uses
the technique of Hoare triples
(assertions inserted into the code, which
assemble into a proof of program
correctness). This technique is used in
industry, but requires mathematical
machinery (Predicate logic, a.k.a.
first-order logic) which we do not have
as a pre-requisite for CS 430. So we will
not spend time learning this technique in
detail either.



Lecture 13 - Testing Il - Proving Program Correctness

Testing Versus Correctness Proofs

Remarks

@ It is enough for us to know that the
Hoare triple technique can be carried out,
with enough mathematical background,

and patience.



Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

Prove the total correctness of the program
below, which computes a factorial.

§]7x>OP

Whlle (z = X) {

z =z

y=Yy *z;
}

Iy = 1)



Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

At the while statement:

X 'y z zZ#FX
b 1 0 true
5 1 1 true
5 2 2 true
5 6 3 true
5 24 4 true
5 120 5 false

From the trace and the post-condition, a
candidate loop invariant is y = Z!



Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

Here is the annotated program.

x > 0)
1=0I) assignment
y=1;
(y =01 assignment
z =0
ly =2!) assignment
while (z !'= x) {
y=z!Az#x)) partial-while
y(z+1)=(z+1)]) implied (b)
z=z+1;
(lyz = z!) assignment
y=y*z;
ly =2!) assignment

(y=2z'rz=x)) partial-while
y =x!) implied (b)



Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

Proof of implied (a): {x>0}+1=0!
This result is obvious, by definition of
factorial.



Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

Proof of implied (b):

{(y=zlnzzx)}Fy(z+1)=(z+1)l.
This result is obvious.



Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs
Example of a Correctness Proof

Example of a Correctness Proof

Proof of implied (c):
{(y=2zlrz=x)}+y=xl
This result is also obvious.

his completes the proof of partial

correctness.



Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

Proof of Termination: The factorial code
from earlier has a loop guard of z # x,

which is equivalent to x —z # 0.



Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

What happens to the value of x - z during
execution?

(x>0)

y=1;

z =0 ; At start of loop: x—z=x>0V
while (z !'= x
=z + 1 ; X — z decreases by 1 v/
=y *x z x — z unchanged

< N



Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs

Example of a Correctness Proof

Example of a Correctness Proof

The value of x — z will eventually reach 0.
The loop then exits and the program

terminates. v
This completes the proof of total correctness.



Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs

Correctness Proof Mini Example

Correctness Proof Mini Example

See the Example document.



Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs

Correctness Proof Mini Example

Correctness Proof Mini Example

Moral: Even if a proof of a program’s
correctness has been found, the program
must still be tested thoroughly.



Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs

Correctness Proofs and Software Engineering

Proposed reasons why correctness proving

should not be a standard software engineering
technique

@ S/W Engineers lack the mathematical

training to write correctness proofs.
Partial Refutation:

©® This may have been true in the past.

@ However many CS graduates today (including all from
uWaterloo) do have the required mathematical
background.



Lecture 13 - Testing Il - Proving Program Correctness

Testing Versus Correctness Proofs

Correctness Proofs and Software Engineering

Proposed reasons why correctness proving

should not be a standard software engineering
technique

@ Correctness proving is too time
consuming and hence too expensive.
Partial Refutation:

@ Costs can be assessed using a cost-benefit analysis, on a
project-by-project basis.

@ The benefit is weighted higher the more that correctness
matters, e.g. where human lives depend on program
correctness.



Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs

Correctness Proofs and Software Engineering

Proposed reasons why correctness proving

should not be a standard software engineering

technique

@ Correctness proving is too difficult.
Partial Refutation:

@ Some non-trivial S/W products have successfully been
proven correct.

@ There exists theorem-proving software to save manual
work in some situations.

@ However proving program correctness in general is an
undecidable problem, so no theorem-prover can handle
every possible situation.



Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs

Correctness Proofs and Software Engineering

Morals

@ Correctness proving is a useful tool, when
human lives are at stake, or when the
cost-benefit analysis justifies doing it for
other reasons.

@ However correctness proving alone is not
enough. Testing is still a crucial need for
a S/W product.



Lecture 13 - Testing Il - Proving Program Correctness
Testing Versus Correctness Proofs

Correctness Proofs and Software Engineering

Morals

@ Languages like Java and C++ support
variations of an assert statement, which
permits a programmer to embed
assertions directly into the code. A
switch then controls whether assertion
checking is enabled (slower) or not

(faster) at run time.

@ Model checking is a new technology
that may eventually replace correctness
proving. It is describe in Chapter 18 of
the text, which unfortunately will be
beyond the scope of CS 430.



Lecture 13 - Testing Il - Proving Program Correctness
Who Should Perform Execution-Based Testing?

Who Should Perform Execution-Based Testing?

@ Programmers should not have the
ultimate responsibility to test their own
code. Reasons:

©® Fundamental conflict of motivations
©® Coding is constructive.
@ Testing's goal (exposing faults) is destructive.
© Programmers feel protective of their own code, hence
they have an incentive not to expose faults in the code.
@ The programmer may have misunderstood the
specification.
@ An SQA professional has a better chance to understand
the specification correctly, and to test accordingly.



Lecture 13 - Testing Il - Proving Program Correctness
Who Should Perform Execution-Based Testing?

Who Should Perform Execution-Based Testing?

@ After the programmer completes and

hands off the code artifact, SQA should
perform systematic testing:



Lecture 13 - Testing Il - Proving Program Correctness
Who Should Perform Execution-Based Testing?

Systematic testing is described by the following procedure:
Q Select test cases to exercise all parts of the specification.
© For each test case, determine its expected output before

execution starts.

Execute the program on each test case, and record the

actual results.

Compare the actual results to the expected results.

Document all differences.

Correct faults (either in the specification or in the code or

possibly both) which explain each difference, and repeat

the execution.

Archive all test results electronically, for purposes of

regression testing during future projects and post-delivery

maintenance.

© © ©o

©




Lecture 13 - Testing Il - Proving Program Correctness
Who Should Perform Execution-Based Testing?

Ambiguity about the term desk checking in
the text

@ first mention (description of testing workflow): Here desk

checking meant the testing that a programmer does
during development. This is the meaning with which |
was already familiar from my time in industry.

@ second mention (description of who should perform
execution-based testing): Here desk checking means the

checking of the design artifact that the programmer does
before starting to code.




Lecture 13 - Testing Il - Proving Program Correctness
Who Should Perform Execution-Based Testing?

Who Should Perform Execution-Based Testing?

@ As outlined earlier, the SQA group must
have managerial independence from the
development team.



Lecture 13 - Testing Il - Proving Program Correctness
When Testing Stops

When Testing Stops

@ Only when the S/W product is

decommissioned and removed from
service, should testing stop.



Lecture 13 - Testing Il - Proving Program Correctness
When Testing Stops

Questions from the Class

@ Will we have to write correctness proofs

like the one in the notes for this lecture?
Answer: No.

@ | will include a small example of the Hoare Triple
technique for the next assignment, which can be done
“with bare hands” (i.e. you will not need the machinery
that the example uses).

@ There will be no correctness proving on the Final Exam.



	Outline
	Testing Versus Correctness Proofs
	Example of a Correctness Proof
	Correctness Proof Mini Example
	Correctness Proofs and Software Engineering

	Who Should Perform Execution-Based Testing?
	When Testing Stops

