Lecture 15 - The OO Paradigm - Encapsulation and Abstraction

Lecture 15 - The OO Paradigm -

Encapsulation and Abstraction

Collin Roberts

November 2, 2023



Lecture 15 - The OO Paradigm - Encapsulation and Abstraction
Outline

Outline

© Encapsulation (§7.4)

©® Encapsulation and Development (§7.4.1)
@ Encapsulation and Maintenance (§7.4.2)



Lecture 15 - The OO Paradigm - Encapsulation and Abstraction
Encapsulation (§7.4)

Encapsulation

© We briefly studied modules having high cohesion and
loose coupling from §7.2 and §7.3.

@ These are key ingredients in understanding the OO
paradigm.

© We introduce another key ingredient now.



Lecture 15 - The OO Paradigm - Encapsulation and Abstraction
Encapsulation (§7.4)

Encapsulation

Definition 1

In OO programming, encapsulation refers to one of two
related but distinct notions, and sometimes to the
combination thereof:

©Q A language construct for restricting direct access to some
parts of a module.
©Q A language construct for bundling data with the
methods (or other functions) operating on that data.
We will adopt Definition # 2.




Lecture 15 - The OO Paradigm - Encapsulation and Abstraction
Encapsulation (§7.4)

Remarks

@ Why we adopt Definition # 2: In many OO languages,
hiding of components is not automatic or can be
overridden; thus, information hiding is defined as a
separate notion.

@ Encapsulation plus information hiding is used to hide
the values of a structured data module, preventing
unauthorized parties’ direct access to them.

@ Publicly accessible methods are provided (so-called
getters and setters) to access the values; other client
modules call these methods to retrieve/modify the values
within the module.



Lecture 15 - The OO Paradigm - Encapsulation and Abstraction
Encapsulation (§7.4)

Remarks

@ Hiding the internals of the module protects its integrity
by preventing users from setting the internal data of the
module into an invalid / inconsistent state.

© A benefit of encapsulation is that it can reduce system
complexity, and thus increase reliability, by allowing the
developer to limit the inter-dependencies between S/W
components (i.e. this provides a technique for achieving
separation of concerns).

@ The features of encapsulation are supported by using
classes in OO programming languages.



Lecture 15 - The OO Paradigm - Encapsulation and Abstraction
Encapsulation (§7.4)

Remarks

o

Encapsulation is not unique to OO programming.
Implementations of abstract data types offer a similar
form of encapsulation.

See the Example (text pp 199-201) of refining a S/W
product from an initial design having low cohesion into a
better design having encapsulation.

In the first solution to the Cohesion/Coupling example
(last lecture), we could have achieved high cohesion and
loose coupling by simply copying all the needed code into
both modules. But this would indicate a failure to
abstract effectively (Definition 2). We would have
duplicated code in the two modules.

Moral: Doing OO effectively requires doing a good job
on all of its ingredients.



Lecture 15 - The OO Paradigm - Encapsulation and Abstraction
Encapsulation (§7.4)
Encapsulation and Development (§7.4.1)

Remarks

@ Abstraction is a way of simplifying things so that they
become easier to understand. E.g. representing the
motion of the objects in the solar system by abstracting
planets to points.

© Effective abstraction helps us to see how things which
appear different at first glance are actually the same in all
relevant ways.

@ In S/W development, abstraction lets us focus on what a
module does and not on how the module does it.



Lecture 15 - The OO Paradigm - Encapsulation and Abstraction
Encapsulation (§7.4)
Encapsulation and Development (§7.4.1)

Abstraction

Abstraction is suppressing irrelevant details and accentuating
relevant details.

.

Definition 3

A data abstraction is an abstraction done on data.

A procedural abstraction is an abstraction done on code.

€




Lecture 15 - The OO Paradigm - Encapsulation and Abstraction
Encapsulation (§7.4)
Encapsulation and Development (§7.4.1)

Remarks

© Abstraction is a means of achieving stepwise
refinement.

© As a recommendation to the programmer, the
abstraction principle reads
Each significant piece of functionality in a program
should be implemented in just one place in the
source code. Where similar functions are carried out
by distinct pieces of code, combine them into one, ab-
stracting out the varying parts.

In short, “Don’t repeat yourself.”

© Effective abstraction guides us to good choices of what to
encapsulate when we design and develop our S/W.



Lecture 15 - The OO Paradigm - Encapsulation and Abstraction
Encapsulation (§7.4)
Encapsulation and Development (§7.4.1)

Remarks

© Abstraction and encapsulation are different, but go
hand-in-hand in OO design and development.

© Abstraction permits a designer to temporarily ignore the
details of the levels above and below the level currently
being worked on, both in terms of data and procedures.
An example of a data abstraction (Definition 3) is:
@ A database designer focuses on designing a table,
temporarily ignoring the details of

@ the whole database (the level above), and
@ the other tables having foreign key relationships to the
current table (the level below).



Lecture 15 - The OO Paradigm - Encapsulation and Abstraction
Encapsulation (§7.4)
Encapsulation and Maintenance (§7.4.2)

|dea

Design a S/W product to encapsulate the parts that are most
likely to change in the future. Doing this effectively will
minimize the impact of inevitable changes, on the other
components. N.B. There is no algorithm for deciding how to
do this. Human intuition and experience are required.

© Data structures tend not to change very frequently (but
data abstraction helps if they do).

@ Business rules tend to change more frequently (and
procedural abstraction helps when they do).



	Outline
	Encapsulation (§7.4)
	Encapsulation and Development (§7.4.1)
	Encapsulation and Maintenance (§7.4.2)


