Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects

Lecture 16 - The OO Paradigm - Abstract
Data Types, Information Hiding and

Objects

Collin Roberts

November 6, 2023

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Outline

Outline

© Abstract Data Types (§7.5)
@ Information Hiding (§7.6)
@ Objects (§7.7)

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Abstract Data Types (§7.5)

Abstract Data Types (§7.5)

Definition 1

An abstract data type is a mathematical model of
Q the data objects comprising a data type, and
@ the functions that operate on these data objects.

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Abstract Data Types (§7.5)

Examples

© The integers are an ADT, defined as the values
{...,-2,-1,0,1,2,...}, and by the operations of +, —, *,
and sometimes /, etc., which behave according to the
familiar rules of arithmetic (e.g. associativity,
commutativity, distributive laws, no dividing by 0, etc).
Typically integers are represented in a data structure as
binary numbers, but there are many representations.
The user is abstracted from the concrete choice of
representation, and can simply use the data objects and
operations according to the familiar rules.

@ a stack (i.e. a last-in, first-out data structure).

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Abstract Data Types (§7.5)

Remarks

© An abstract data type (ADT) need not be an
arithmetic object itself; however each of its operation
must be defined by some algorithm.

@ In CS, an abstract data type (ADT) is a mathematical
model, where a data type is defined by its behaviour
(“what it does”, not “how it does it") from the point of
view of a user (not an implementer), specifically:

@ possible values,
@ possible operations on data of this type, and
@ the behaviour of these operations.

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Abstract Data Types (§7.5)

Remarks

© This contrasts with data structures, which are concrete
representations of data, from the point of view of an
implementer, not a user.

@ Using abstract data types supports abstraction of both
kinds, data and procedural.

© Hence abstract data types are desirable from the
viewpoints of both development and maintenance.

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Information Hiding (§7.6)

Information Hiding (§7.6)

This is the last key ingredient in understanding the OO
paradigm.

Definition 2

Information hiding means hiding the implementation details
of a module (data + code) from the outside world.

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Information Hiding (§7.6)

How Information Hiding is Useful at Design
Time

© Make a list of implementation decisions which are likely
to change in the future.

@ Design the resulting modules such that these
implementation details are hidden from other modules.

© This practice protects other parts of the software product
from the impact of extensive changes if the
implementation decisions are changed.

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Information Hiding (§7.6)

Remarks

© A module affords this protection by
@ encapsulating the data/operations to be hidden together,
@ hiding the details using a language construct like
private, and
@ providing a stable interface.
@ A class (Definition 3) may be implemented

@ without information hiding (bad), or
@ with information hiding (good).

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Objects (8§7.7)

Remarks

The text attempts to exhibit a “straight line” path from
modules to objects. In my humble opinion this does not
tell the OO story correctly.

All ingredients need to be (independently) done well for
effective OO development, which will realize the benefits
of:

@ fewer regression faults,

@ cheaper maintenance and

© re-use.

Reminder: Use our definitions from the Lectures Notes
instead of the definitions from the text, where there are
any conflicts.

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Objects (§7.7)

Classes

Definition 3

A class is an abstract data type (Definition 1) that supports
inheritance (Definition 4).

Definition 4

Inheritance allows a new data type to be defined as an
extension of a previously defined type, rather than having to
be defined from scratch.

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Objects (8§7.7)

Examples

(Remark: the text example, in which Person is the parent
class of the Parent class, is needlessly confusing!)

@ Start with a Person class, having
@ Properties (/ Attributes)
@ LastName,
@ FirstName,
© DateOfBirth
and
@ Methods
@ createFullName,
@ createEmail and
© computeAge.

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Objects (8§7.7)

Examples

@ Then define a Student class, having all the
Properties/Methods of Person, plus
© Properties

@ StudentNumber

@ CumulativeAverage (in reality we would compute this
from individual grades rather than storing it; we make it
a property here for simplicity).

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Objects (8§7.7)

Examples

© Then define a Professor class, having all the
Properties/Methods of Person, plus
© Properties

@ EmployeeNumber
@ NSERCAccountNumber.

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Objects (8§7.7)

Examples

© Then each of Student, Professor
@ inherits from Person,
@ isA Person, and
@ is a specialization of Person.

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects

Objects (§7.7)

Here is a diagram of the relationships between these classes.

Person

LastName : string
FirstName : string
—> DateOfBirth : date |[<+—

createFullName()
createEmail()
computeAge()

Student Professor

StudentNumber : string EmployeeNumber : string
CumulativeAverage : double NSERCAccountNumber : integer

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Objects (8§7.7)

Objects

Definition 5

An object is an instantiation of a class (Definition 3).

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Objects (8§7.7)

Examples

@ CollinRoberts could be an instantiation of the
Professor class.

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Objects (8§7.7)

Aggregation

Definition 6

Aggregation/Composition refers to the component classes
of a larger class (i.e. grouping related classes creates a larger
class).

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Objects (8§7.7)

Aggregation Examples

—< PersonalComputer <——

CPU Monitor| Keyboard | Printer

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Objects (8§7.7)

Association

Definition 7

Association refers to a relationship (of some kind) between
two apparently unrelated classes.

Lecture 16 - The OO Paradigm - Abstract Data Types, Information Hiding and Objects
Objects (8§7.7)

Association Examples

. . consults
Radiologist Lawyer

The diagram indicates that Radiologist consults Lawyer.

	Outline
	Abstract Data Types (§7.5)
	Information Hiding (§7.6)
	Objects (§7.7)

