
Lecture 17 - The OO Paradigm - Inheritance, Polymorphism, and Dynamic Binding

Lecture 17 - The OO Paradigm -

Inheritance, Polymorphism, and Dynamic

Binding

Collin Roberts

November 9, 2023



Lecture 17 - The OO Paradigm - Inheritance, Polymorphism, and Dynamic Binding

Outline

Outline

1 Inheritance, Polymorphism, and Dynamic Binding (§7.8)

2 The Object-Oriented Paradigm (§7.9)



Lecture 17 - The OO Paradigm - Inheritance, Polymorphism, and Dynamic Binding

Inheritance, Polymorphism, and Dynamic Binding (§7.8)

Example

1 Consider a File class, with an Open method.
2 An instantiation of a File might be stored on

1 hard disk,
2 flash drive or
3 tape,

so the code inside the Open method must be different in
each situation.

3 The File base class has derived classes
1 HardDiskFile,
2 FlashDriveFile and
3 TapeFile,

each having an Open method specific to its medium.

4 The File class has a dummy Open method.



Lecture 17 - The OO Paradigm - Inheritance, Polymorphism, and Dynamic Binding

Inheritance, Polymorphism, and Dynamic Binding (§7.8)

Example

Definition 1

At run time, the system decides which Open method to
invoke. This is called dynamic binding.

Definition 2

The Open method is called polymorphic, because it applies
to different sub-classes, differently.



Lecture 17 - The OO Paradigm - Inheritance, Polymorphism, and Dynamic Binding

Inheritance, Polymorphism, and Dynamic Binding (§7.8)

Example

5 Problems with Dynamic Binding/Polymorphism
1 We cannot determine at compile time which version of a

polymorphic method will be called at run time. This can
make failures hard to diagnose.

2 Similarly a S/W product that makes heavy use of
polymorphism can be hard to understand and hence hard
to maintain/enhance.



Lecture 17 - The OO Paradigm - Inheritance, Polymorphism, and Dynamic Binding

The Object-Oriented Paradigm (§7.9)

Summary of Reasons Why OO is Better than Classical

1 OO treats data and operations on that data together,
with equal importance.

2 So a well-designed class does a good job of modelling
some real-world entity.

3 A well-designed class also fosters re-use.

4 High cohesion + loose coupling → fewer regression faults.

5 Postdelivery maintenance is also improved.



Lecture 17 - The OO Paradigm - Inheritance, Polymorphism, and Dynamic Binding

The Object-Oriented Paradigm (§7.9)

The History that Led Us to the Current State of S/W Engineering.

1 In the 1960s and early 1970s, S/W Engineering was
non-existent.

2 The Code-And-Fix model was the norm.

3 Hence the Classical model was most developers’ first
experience with S/W Engineering practices.

4 Adopting the Classical life-cycle model yielded major
improvements in productivity and S/W quality at the
time.

5 However as S/W products grew larger and more complex,
the weaknesses of the Classical paradigm (which we have
already discussed) became more pronounced, and the OO
paradigm was proposed as a better alternative.



Lecture 17 - The OO Paradigm - Inheritance, Polymorphism, and Dynamic Binding

The Object-Oriented Paradigm (§7.9)

Problems With OO

Problem: There is a learning curve associated with adopting
the OO paradigm for the first time. The first project done with
OO takes longer than doing the same project with the Classical
paradigm. This is particularly pronounced if the project has a
large GUI component. But after the initial project,

1 the re-use of classes in subsequent projects usually pays
back the initial investment (again, this is more
pronounced with a large GUI component) and

2 post-delivery maintenance costs are reduced.



Lecture 17 - The OO Paradigm - Inheritance, Polymorphism, and Dynamic Binding

The Object-Oriented Paradigm (§7.9)

Problems With inheritance

Definition 3

Any change to the base class affects all of its descendants.
This phenomenon is known as the fragile base class
problem.

1 In the best case, all descendants need to be recompiled
after the base class is changed.

2 In the worst case, all descendants have to be re-coded
then re-compiled. This is bad!

To mitigate this, meticulously design all classes, especially
parent classes in an inheritance tree.



Lecture 17 - The OO Paradigm - Inheritance, Polymorphism, and Dynamic Binding

The Object-Oriented Paradigm (§7.9)

Cavalier use of inheritance

1 Unless explicitly prevented, every subclass inherits all the
Properties/Methods of its parent. The reason to create a
subclass is to add Properties/Methods. Hence objects
lower in the inheritance tree can quickly become large,
leading to storage problems.

2 Recommendation: change our philosophy from “use
inheritance whenever possible” to “use inheritance
whenever appropriate”.

3 Also explicitly exclude Properties/Methods from being
inherited, where this makes sense.



Lecture 17 - The OO Paradigm - Inheritance, Polymorphism, and Dynamic Binding

The Object-Oriented Paradigm (§7.9)

One Can Code Badly in Any Language

1 This is especially true of programming in an OO language.
OO languages have constructs that add unnecessary
complexity to the S/W product when they are misused.

2 We must endeavour to produce high-quality code when
working with the OO paradigm.



Lecture 17 - The OO Paradigm - Inheritance, Polymorphism, and Dynamic Binding

The Object-Oriented Paradigm (§7.9)

OO Will Be Replaced In The Future

1 As mentioned earlier, the OO paradigm is certain to be
superseded by some superior methodology in the future.

2 Aspect Oriented Programming (AOP) (covered in §18.1
in the text) is one possible candidate to replace the OO
paradigm.


	Outline
	Inheritance, Polymorphism, and Dynamic Binding (§7.8)
	The Object-Oriented Paradigm (§7.9)
	Summary of Reasons Why OO is Better than Classical
	The History that Led Us to the Current State of S/W Engineering.
	Problems With OO
	Problems With inheritance
	Cavalier use of inheritance
	One Can Code Badly in Any Language


