
Lecture 18 - Reusability

Lecture 18 - Reusability

Collin Roberts

November 15, 2023



Lecture 18 - Reusability

Outline

Outline

1 Re-Use Concepts

2 Impediments to Re-Use
3 Types of Re-Use

1 Accidental (Opportunistic)
2 Deliberate (Systematic)

4 Objects and Re-Use
5 Re-Use During Design and Implementation

1 Library (toolkit)
2 Application Framework
3 Software Architecture
4 Component-Based Software Engineering



Lecture 18 - Reusability

Re-Use Concepts

Reusability

Importance of Re-usability
1 Advantages of Re-Use

1 Save time/resources during development/testing.
“Don’t re-invent the wheel”.

2 Maintenance becomes cheaper.
3 Library subroutines are tested, (supposedly)

well–documented



Lecture 18 - Reusability

Re-Use Concepts

Reusability

1 Pitfalls of Re-Use
1 Depending too heavily on re-use can make us averse to

writing new code, even where this is needed.
2 Suppose that we need to extend/enhance an existing

module before we can re-use it. This risks introducing
regression faults for existing consumers of the module.

3 Old modules might not be as “good” (efficient, secure,
having good style, etc.) as new modules.

4 If we view the re-used module as black-box, then we may
struggle to confirm that our S/W product will actually
match the spec; if a failure occurs in the re-used module
after deployment, then we may be slow to diagnose the
cause.



Lecture 18 - Reusability

Re-Use Concepts

Reusability

1 Pitfalls of Re-Use
5 Compatibility Issues:

1 S/W versions, or

6 Writing a module to handle multiple situations can make
the module less efficient than if a separate module was
written for each individual situation - but this would not
be effective abstraction.

7 If performance of the re-used module is not optimized,
then all re-users will suffer a performance hit.

8 Undetected faults get propagated.
9 Documentation is often poor in practice.



Lecture 18 - Reusability

Re-Use Concepts

Reusability

2 Other Aspects
1 On average, 15% of any S/W product is written to serve

a unique purpose.
2 In theory, remaining 85% could be standardized and

reused.
3 In practice, only 40% reuse is achieved.

3 Re-use refers not only to code, but also to
1 documents (e.g. design, manuals, SPMP, etc.)
2 duration/cost estimates
3 test data
4 architecture
5 etc.



Lecture 18 - Reusability

Impediments to Re-Use

Impediments to Re-Use

1 Sometimes, what is a candidate for being re-used is not
obvious.

1 Poor documentation (external, or internal, e.g. lack of
comments in code) can contribute to this problem.

2 If we abstract effectively during analysis/design
workflows, then what to re-use becomes clearer.

2 SQA test cases: too outdated to use (if business rules
change)

3 Ego: unwillingness to use someone else’s code (“Not
Written Here” syndrome)

4 Quality Concerns: sometimes justified, as above.



Lecture 18 - Reusability

Impediments to Re-Use

Impediments to Re-Use

5 Re-use can be expensive. It is costly to:
1 develop reusable modules, and
2 search the libraries and re-use the right module.

6 Legal issues with contract developers (possible intellectual
property problems)

7 Commercial Of The Shelf (COTS): Developers do not
provide the source code, so there is limited to no ability
to modify and to re-use.

8 Etc.



Lecture 18 - Reusability

Types of Re-Use

Accidental (Opportunistic)

Accidental (Opportunistic)

Idea: Developer of a new S/W product realizes that a
previously developed module can be re-used as a subroutine in
the new S/W product (e.g. re-use previously developed Mean

function).



Lecture 18 - Reusability

Types of Re-Use

Deliberate (Systematic)

Deliberate (Systematic)

Idea: S/W modules are specially designed and constructed to
be used in multiple S/W products.



Lecture 18 - Reusability

Objects and Re-Use

Objects and Re-Use

Key Fact: OO classes are the best type of module that we
know about so far for fostering re-use.



Lecture 18 - Reusability

Re-Use During Design and Implementation

Re-Use During Design and Implementation

Remarks on Notation:
1 The diagrams for each type of re-use have

1 shaded areas for the parts that are re-used, and
2 whitespace for the parts that the re-user must supply.

We consider the following types of re-use.



Lecture 18 - Reusability

Re-Use During Design and Implementation

Library (toolkit)

Library (toolkit)

Assumes either the Classical or the OO paradigm.
Details:



Lecture 18 - Reusability

Re-Use During Design and Implementation

Library (toolkit)

Library (toolkit)

1 What is Re-Used: There is a library, a set of related
re-usable operations e.g.

1 A Matrix library contains many operations - +, *,
determinant, invert, etc.

2 GUI library contains different GUI classes - window,
menu, radio button, etc.

The re-user calls modules from the library.
2 What is New: The re-user must

1 supply control logic of S/W product as a whole, and
2 call library routines at the right moment using the

control logic
3 See Figure 8.2a in the text.



Lecture 18 - Reusability

Re-Use During Design and Implementation

Application Framework

Application Framework

Assumes either the Classical or the OO paradigm.
Details:



Lecture 18 - Reusability

Re-Use During Design and Implementation

Application Framework

Application Framework

1 What is Re-Used: Opposite to library approach:
Control logic is re-used

2 What is New: The re-user must
1 design application-specific sub-routines fitting inside the

control logic.
2 See Fig 8.2b in the text.



Lecture 18 - Reusability

Re-Use During Design and Implementation

Application Framework

Application Framework

3 If the goal is to improve S/W development speed, then
reusing a framework will be more effective than using
libraries/toolkits WHY? It takes

1 more effort to design control logic, and
2 less effort to develop application-specific sub-routines,

but
1 in my experience, Library re-use is much more common

than Application Framework re-use.
Reason: It is rare to find two different S/W products
with identical control logic.



Lecture 18 - Reusability

Re-Use During Design and Implementation

Application Framework

Application Framework

4 Examples of Application Framework Re-Use:
1 games
2 Automated Teller Machines (ATMs)

1 Suppose you are managing a team to develop S/W for
ATMs, deployed by several banks.

2 The control logic for an ATM deposit will be the same,
regardless of the bank (note, we are over-simplifying a
tiny bit here).

3 However the details of how to carry out a deposit will
depend completely on the choice of bank.

4 A side comment here is that this would be an example
of deliberate (systematic) re-use. We would design and
build the control logic with the intent to re-use it at all
of the banks.



Lecture 18 - Reusability

Re-Use During Design and Implementation

Software Architecture

Software Architecture

Remarks:
1 Software architecture encompasses a wide range of design

issues, including
1 organization of components (logical and physical)
2 control structures
3 communication / synchronization issues
4 DB organization and access
5 performance
6 choice of design alternatives

2 Architecture can also be re-used.

3 A more detailed treatment of architecture will be beyond
the scope of CS 430.



Lecture 18 - Reusability

Re-Use During Design and Implementation

Component-Based Software Engineering

Component-Based Software Engineering

Goal: construct a standard library of re-usable components
(i.e. for Library Re-Use). See §18.3 in the text if you want to
read further.


	Outline
	Re-Use Concepts
	Impediments to Re-Use
	Types of Re-Use
	Accidental (Opportunistic)
	Deliberate (Systematic)

	Objects and Re-Use
	Re-Use During Design and Implementation
	Library (toolkit)
	Application Framework
	Software Architecture
	Component-Based Software Engineering


