CS 430 - Lecture 19 - Design Patterns

CS 430 - Lecture 19 - Design Patterns

Collin Roberts

December 14, 2023



CS 430 - Lecture 19 - Design Patterns
Outline

@ Design Patterns

Introduction

Adapter Design Pattern (§8.6.2)

Bridge Design Pattern (§8.6.3)

Iterator Design Pattern (§8.6.4)

Abstract Factory Design Pattern (§8.6.5)
Categories of Design Patterns (§8.7)
Strengths/Weaknesses of Design Patterns (§8.8)

@ Re-Use During Post-Delivery
Maintenance

Q00060000



CS 430 - Lecture 19 - Design Patterns

Design Patterns

Introduction

Unlike Library (Toolkit) and Application
Framework from last lecture, Design patterns
assume the OO paradigm.

Definition 1

A design pattern is a solution to a general
design problem, in the form of a set of
interacting classes that have to be
customized to create a specific design.




CS 430 - Lecture 19 - Design Patterns
Design Patterns

Introduction

@ What is Re-Used: relationships among
classes (usually expressed as a class
diagram)

@ What is New: details within each class
(usually a new class diagram, with the
generic classes from the previous diagram
replaced by classes tailored to the specific
problem to be solved)



CS 430 - Lecture 19 - Design Patterns

Design Patterns
Adapter Design Pattern (§8.6.2)

Motivation: FLIC Example (§8.6.1)

@ Until recently, premiums at Flintstock
Life Insurance Company (FLIC) depended
on both the age and the gender of the
applicant for coverage.

@ FLIC has recently decided that some
policies will now be gender-neutral. That
is, the premiums for those policies will
depend solely on the age of the applicant.



CS 430 - Lecture 19 - Design Patterns
Design Patterns
Adapter Design Pattern (§8.6.2)

@ The old computation of premiums used

Applicant

computePremium(age,gender)

this class:
@ The new computation of premiums will

Neutral Applicant

. computeNeutralPremium(age
use this class: (pee)




CS 430 - Lecture 19 - Design Patterns
Design Patterns
Adapter Design Pattern (§8.6.2)

@ However there has not been enough time
to change the entire system. The
situation is displayed in the following
figure (Fig 8.4 in the text).

Client

I

Insurance

determinePremium()

applicant.computePremium(age,gender);

}

Neutral Applicant

computeNeutralPremium(age)

Notation: ____ for "References”.




CS 430 - Lecture 19 - Design Patterns
Design Patterns
Adapter Design Pattern (§8.6.2)

@ Note the three interface problems with

the bottom reference in the above
diagram:
@ Insurance calls the Applicant class instead of the
NeutralApplicant class.
@ Insurance calls the computePremium method instead
of the computeNeutralPremium method.
@ The parameters passed are age and gender, instead of
age alone.



CS 430 - Lecture 19 - Design Patterns
Design Patterns
Adapter Design Pattern (§8.6.2)

@ To solve these problems, we interpose the
Wrapper class, as shown in this diagram
(Figure 8.5 in the text):

Insurance

determinePremium()
{

wrapper.computePremium(age,gender);

!

Wrapper

computePremium(age,gender)
{

neutralApplicant.computeNeutralPremium(age);
}

Neutral Applicant

computeNeutralPremium(age)

Notation: _____ for "References’.




CS 430 - Lecture 19 - Design Patterns
Design Patterns
Adapter Design Pattern (§8.6.2)

The Adapter Design Pattern

@ Generalizing the Wrapper construction
above leads to the Adapter Design
Pattern (Figure 8.6 in the text):

Client

Abstract Target

abstract request()

p

Adapter

request()

adaptee.specificRequest();

|

Adaptee

specificRequest()

Notation: ____ for “References”.




CS 430 - Lecture 19 - Design Patterns
Design Patterns
Adapter Design Pattern (§8.6.2)

Definition 2

An abstract class is a class which cannot
be instantiated, but which can be used as a

base class for inheritance.

Example: Abstract Target in the
Adapter Design Pattern is an abstract class.




CS 430 - Lecture 19 - Design Patterns
Design Patterns
Adapter Design Pattern (§8.6.2)

Definition 3

An abstract method /s a method which
has an interface, but which does not have an

implementation.

Example: In the Adapter Design Pattern,

Abstract Target class, request () is an
abstract method. Usually abstract methods
live inside of abstract classes.



CS 430 - Lecture 19 - Design Patterns
Design Patterns

Adapter Design Pattern (§8.6.2)

@ Abstract methods are implemented in
subclasses of the abstract class.

@ The abstract request method from
Abstract Target is implemented in the
(concrete) subclass Adapter, to invoke
the specificRequest method in
Adaptee.

@ This solves the interfacing problems from

earlier. This is the raison d'étre for the
Adpater design pattern.



CS 430 - Lecture 19 - Design Patterns

Design Patterns
Adapter Design Pattern (§8.6.2)

@ But the pattern is more powerful than
that. It provides a way for an object to
permit access to its internal
implementation in such a way that clients
are not coupled to the structure of that
internal implementation. In other words,
it provides the benefits of information
hiding without having to actually hide
the implementation details.



CS 430 - Lecture 19 - Design Patterns
Design Patterns
Bridge Design Pattern (§8.6.3)

See the Lecture Notes.



CS 430 - Lecture 19 - Design Patterns
Design Patterns
Abstract Factory Design Pattern (§8.6.5)

See the Lecture Notes.



CS 430 - Lecture 19 - Design Patterns
Design Patterns

Categories of Design Patterns (§8.7)

@ Creational, e.g. Abstract Factory
@ Structural, e.g. Adapter, Bridge
@ Behavioural, e.g. lterator, Mediator

See Figure 8.12 in the text for the complete
list of 23 documented by Gamma, Helm,
Johnson and Vlissides.




CS 430 - Lecture 19 - Design Patterns
Design Patterns
Strengths/Weaknesses of Design Patterns (§8.8)

Strengths

@ promote re-use by solving a general
design problem,

@ provide high-level documentation of the
design, because patterns specify design
abstractions,

@ may already have implementations
written, and

@ make maintenance easier for programmers
who are familiar with the patterns.



CS 430 - Lecture 19 - Design Patterns
Design Patterns
Strengths/Weaknesses of Design Patterns (§8.8)

Weaknesses

0 lack a systematic way to determine when
patterns should be applied,

@ often require multiple patterns together,
which is complicated, and

@ are incompatible with the Classical
paradigm.



CS 430 - Lecture 19 - Design Patterns
Re-Use During Post-Delivery Maintenance

@ As we have seen throughout the course,
an improvement in S/W methodology has
a bigger payoff in maintenance than it
does in development. This is true for the
technique of re-use also:

©® Reusable components are well designed, thoroughly
tested, well documented and independent. These are the
features of low maintenance S/W.

@ Reusable components do not cause problems during
maintenance.



	Outline
	Design Patterns
	Introduction
	Adapter Design Pattern (§8.6.2)
	Bridge Design Pattern (§8.6.3)
	Abstract Factory Design Pattern (§8.6.5)
	Categories of Design Patterns (§8.7)
	Strengths/Weaknesses of Design Patterns (§8.8)

	Re-Use During Post-Delivery Maintenance

