CS 430 - Lecture 22 - Planning and Estimation II - Intermediate COCOMO

Collin Roberts

November 28, 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CS 430 - Lecture 22 - Planning and Estimation II - Intermediate COCOMO Outline

Outline

• Estimating Duration and Cost

- Techniques for Cost Estimation
- Intermediate COCOMO
- COCOMO II
- Tracking Duration and Cost Estimates

CS 430 - Lecture 22 - Planning and Estimation II - Intermediate COCOMO Estimating Duration and Cost Techniques for Cost Estimation

Techniques for Cost Estimation

Definition 1

KDSI stands for **Thousand Delivered Source Instructions** (*i.e.* 1000s of Lines of Code).

(日) (四) (日) (日) (日)

CS 430 - Lecture 22 - Planning and Estimation II - Intermediate COCOMO Estimating Duration and Cost Techniques for Cost Estimation

Techniques for Cost Estimation

Remarks:

- There is no perfect technique for estimating the cost/duration of a S/W project.
- Some factors to consider:
 - skill levels of project personnel (including familiarity with the S/W product)

- o complexity of project
- oproject deadlines
- target hardware
- availability of CASE tools

CS 430 - Lecture 22 - Planning and Estimation II - Intermediate COCOMO Estimating Duration and Cost Techniques for Cost Estimation

Techniques for Cost Estimation

Techniques of Estimation

- Expert Judging by Analogy
 - experts using history of similar past projects.
- Ø Bottom-Up Approach
 - analogous to divide and conquer, and
 - 2 most common in my SLF experience.
- Is Algorithmic Cost Estimation Models (e.g. COCOMO)
 - Compute the size of the S/W product, using function points, or some other method.
 - Use the size of the S/W product from 1 to estimate cost
 & duration of the project to build it.

Intermediate COCOMO

COCOMO comprises three models (highest level → lowest level):

- macroestimation
- intermediate (what we use here)
- 3 microestimation
- Two stages in Intermediate COCOMO: estimate each of

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- nominal effort
- estimated effort

Intermediate COCOMO

Example like on pp278-280 in the text:

- Compute the nominal effort for a software product having
 - **organic** development mode (with multiplier 3.2 as in the text),

- exponent 1.07, (different from the 1.05 used in the text) and
- 3 12,000 LOC (i.e. 12 KDSI).

Intermediate COCOMO

Solution:

nominal effort = $3.2(KDSI)^{1.07}$ person-months = $3.2(12)^{1.07}$ ≈ 45.69555028 ,

and so we state the nominal effort as 46 person-months. (Only whole numbers make sense here; we **always round up** to be conservative.)

Intermediate COCOMO

 Use part a) to compute the estimated effort, using the given multipliers for each cost driver in Figure 9.6 from the text (reproduced here).

Intermediate COCOMO

Figure 9.6 - Intermediate COCOMO software development effort multipliers

			Rating			
Cost	Very		÷		Very	Extra
Drivers	Low	Low	Nominal	High	High	High
Product Attributes				-		-
-Required software reliability	0.75	0.88	1.00	1.15	1.40	
-Database size		0.94	1.00	1.08	1.16	
-Product complexity	0.70	0.85	1.00	1.15	1.30	1.65
Computer Attributes						
-Execution time constraint			1.00	1.11	1.30	1.66
-Main storage constraint			1.00	1.06	1.21	1.56
-Virtual machine volatility		0.87	1.00	1.15	1.30	
-Computer turnaround time		0.87	1.00	1.07	1.15	
Personnel Attributes						
-Analyst capabilities	1.46	1.19	1.00	0.86	0.71	
-Applications experience	1.29	1.13	1.00	0.91	0.82	
-Programmer capability	1.42	1.17	1.00	0.86	0.70	
-Virtual machine experience	1.21	1.10	1.00	0.90		
-Programming language experience	1.14	1.07	1.00	0.95		
Project Attributes						
-Use of modern programming practices	1.24	1.10	1.00	0.91	0.82	
-Use of software tools	1.24	1.10	1.00	0.91	0.83	
-Required development schedule	1.23	1.08	1.00	1.04	1.10	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Intermediate COCOMO

multipliers to use				
Cost	Rating			
Drivers	to Use			
Product Attributes				
-Required software reliability	Nominal			
-Database size	Low			
-Product complexity	Low			
Computer Attributes				
-Execution time constraint	High			
-Main storage constraint	Nominal			
-Virtual machine volatility	Low			
 Computer turnaround time 	Nominal			
Personnel Attributes				
-Analyst capabilities	Very High			
-Applications experience	Very High			
-Programmer capability	High			
-Virtual machine experience	Low			
-Programming language experience	High			
Project Attributes				
-Use of modern programming practices	Nominal			
-Use of software tools	Nominal			
-Required development schedule	High			

Intermediate COCOMO

Solution: The effort multipliers for the given drivers are:

multipliers to use						
Cost	Rating	Multiplier				
Drivers	to Use	to Use				
Product Attributes						
-Required software reliability	Nominal	1.00				
-Database size	Low	0.94				
-Product complexity	Low	0.85				
Computer Attributes						
-Execution time constraint	High	1.11				
-Main storage constraint	Nominal	1.00				
-Virtual machine volatility	Low	0.87				
-Computer turnaround time	Nominal	1.00				
Personnel Attributes						
-Analyst capabilities	Very High	0.71				
-Applications experience	Very High	0.82				
-Programmer capability	High	0.86				
-Virtual machine experience	Low	1.10				
-Programming language experience	High	0.95				
Project Attributes	-					
-Use of modern programming practices	Nominal	1.00				
-Use of software tools	Nominal	1.00				
 Required development schedule 	High	1.04				

Intermediate COCOMO

 \approx

Using the given effort multipliers gives

$$(1.00)(0.94)(0.85)$$

 $(1.11)(1.00)(0.87)(1.00)$
 $(0.71)(0.82)(0.86)(1.10)(0.95)$
 $(1.00)(1.00)(1.04)46$
 $19.31377308,$

and so we state the estimated effort as 20 person-months. (Only whole numbers make sense here; we **always round up** to be conservative.)

COCOMO was introduced in 1981 (before OO was widely accepted; most systems were mainframe-based; classical paradigm was prevalent), and it became less reliable as time went on.

COCOMO II

COCOMO II was a major revision to address these weaknesses.

- COCOMO is all based on LOC (equivalently KDSI)
- 3 applications of COCOMO II:
 - application composition model
 - early design model
 - opst architecture model
- Where COCOMO outputs a single estimate, COCOMO II outputs a range of estimates for each model.

COCOMO II

- When I have taught CS 430 in the past, I have made a note to myself to present COCOMO II instead of Intermediate COCOMO, because we make the case throughout the course that we should adopt the OO paradigm.
- However I found that doing this was not practical. I have posted a .pdf detailing COCOMO II on LEARN. Please peruse it at your leisure.

COCOMO II

• You may also find the following web pages about COCOMO II interesting:

Overview: http://sunset.usc.edu/csse/research/ cocomoii/cocomo_main.html

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Oral Calculator:

http://csse.usc.edu/tools/COCOMOII.php

We don't have time to go into the details of COCOMO II in CS 430. See the text for references for additional reading if interested.

▲□▶▲圖▶▲≣▶▲≣▶ ▲国▼

CS 430 - Lecture 22 - Planning and Estimation II - Intermediate COCOMO Estimating Duration and Cost Tracking Duration and Cost Estimates

Tracking Duration and Cost Estimates

Key Ideas:

- It is extremely rare for a S/W project to be completed ahead of schedule and under budget. Deviations from estimates usually make the project late and over budget.
- Hence it is critical to detect deviations from our estimates ASAP, so that we can take immediate corrective action.