
CS 430
Lecture Notes
Fall 2023

Collin Roberts

December 14, 2023

Contents

1 Lecture 01 - Introduction to Software Engineering 7
1.1 Introduction to CS 430 - Course Outline . . . . . . . . . . . . 7
1.2 Introduction to the Scope of Software Engineering . . . . . . . 8
1.3 Historical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Economic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Lecture 02 - The Classical and Object-Oriented Paradigms 10
2.1 Example: Classical (Waterfall) Life-Cycle Model . . . . . . . . 11
2.2 Example: Object-Oriented Paradigm . . . . . . . . . . . . . . 13
2.3 Maintenance Aspects . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 The Importance of Postdelivery Maintenance . . . . . . 15
2.4 Requirements, Analysis and Design Aspects . . . . . . . . . . 16
2.5 Team Development Aspects . . . . . . . . . . . . . . . . . . . 16
2.6 The Object-Oriented Paradigm . . . . . . . . . . . . . . . . . 16
2.7 The Object-Oriented Paradigm In Perspective . . . . . . . . . 17
2.8 Ethical Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Lecture 03 - Iteration and Incrementation 17
3.1 Introduction to Software Development Life-Cycle Models . . . 18
3.2 Software Development in Theory . . . . . . . . . . . . . . . . 18
3.3 Winburg Example . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Iteration and Incrementation . . . . . . . . . . . . . . . . . . . 20

1



4 Lecture 04 - Life-Cycle Models 22
4.1 Other Life Cycle Models . . . . . . . . . . . . . . . . . . . . . 22

4.1.1 Code and Fix Life-Cycle Model . . . . . . . . . . . . . 22
4.1.2 Waterfall (Modified) Life-Cycle Model . . . . . . . . . 23
4.1.3 Rapid Prototyping Life-Cycle Model . . . . . . . . . . 25
4.1.4 Open Source Life-Cycle Model . . . . . . . . . . . . . . 26
4.1.5 Agile Processes . . . . . . . . . . . . . . . . . . . . . . 27
4.1.6 Synchronize and Stabilize Life-Cycle Model . . . . . . . 29
4.1.7 Spiral Life-Cycle Model . . . . . . . . . . . . . . . . . 29

4.2 Comparison of Life-Cycle Models . . . . . . . . . . . . . . . . 32

5 Lecture 05 - The Unified Process I 32
5.1 Introduction to the Software Process . . . . . . . . . . . . . . 33
5.2 The Unified Process . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Iteration and IncrementationWithin the Object-Oriented Paradigm 34
5.4 Requirements Workflow . . . . . . . . . . . . . . . . . . . . . 35
5.5 Analysis Workflow . . . . . . . . . . . . . . . . . . . . . . . . 36
5.6 Design Workflow . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.7 Implementation Workflow . . . . . . . . . . . . . . . . . . . . 37
5.8 Test Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.8.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . 37
5.8.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.8.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.8.4 Implementation . . . . . . . . . . . . . . . . . . . . . . 38

5.9 Post-Delivery Maintenance . . . . . . . . . . . . . . . . . . . . 38
5.10 Retirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Lecture 06 - The Unified Process II 39
6.1 The Phases of the Unified Process . . . . . . . . . . . . . . . . 39

6.1.1 The Interaction Between Phases and Workflows . . . . 39
6.1.2 Inception Phase . . . . . . . . . . . . . . . . . . . . . . 40
6.1.3 Elaboration Phase . . . . . . . . . . . . . . . . . . . . 41
6.1.4 Construction Phase . . . . . . . . . . . . . . . . . . . . 42
6.1.5 Transition Phase . . . . . . . . . . . . . . . . . . . . . 42

6.2 One- Versus Two-Dimensional Life-Cycle Models . . . . . . . 43
6.3 Improving the Software Process . . . . . . . . . . . . . . . . . 44
6.4 Capability Maturity Models . . . . . . . . . . . . . . . . . . . 44

2



7 Lecture 07 - Teams I 45
7.1 Team Organization . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Classical Chief Programmer Teams . . . . . . . . . . . . . . . 46
7.3 Democratic Teams . . . . . . . . . . . . . . . . . . . . . . . . 48
7.4 Beyond Chief Programmer and Democratic Teams . . . . . . . 49

8 Lecture 08 - Teams II 50
8.1 Synchronize and Stabilize Teams . . . . . . . . . . . . . . . . 50
8.2 Teams for Agile Processes . . . . . . . . . . . . . . . . . . . . 51
8.3 Open Source Programming Teams . . . . . . . . . . . . . . . . 52
8.4 People Capability Maturity Models . . . . . . . . . . . . . . . 53
8.5 Choosing an Appropriate Team Organization . . . . . . . . . . 54

9 Lecture 09 - Tools of the Trade I 55
9.1 Stepwise Refinement . . . . . . . . . . . . . . . . . . . . . . . 55
9.2 Cost-Benefit Analysis . . . . . . . . . . . . . . . . . . . . . . . 56
9.3 Divide and Conquer . . . . . . . . . . . . . . . . . . . . . . . 57
9.4 Separation of Concerns . . . . . . . . . . . . . . . . . . . . . . 57
9.5 Software Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 58

10 Lecture 10 - Tools of the Trade II 59
10.1 Taxonomy of CASE . . . . . . . . . . . . . . . . . . . . . . . . 59
10.2 Scope of CASE . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.3 Software Versions . . . . . . . . . . . . . . . . . . . . . . . . . 61

10.3.1 Revisions . . . . . . . . . . . . . . . . . . . . . . . . . 61
10.3.2 Variations . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.3.3 Moral . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

10.4 Configuration Control . . . . . . . . . . . . . . . . . . . . . . 62
10.4.1 Configuration Control During Postdelivery Maintenance 63
10.4.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.4.3 Configuration Control During Development . . . . . . 64

10.5 Build Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
10.6 Productivity Gains with CASE Technology . . . . . . . . . . . 65

11 Lecture 11 - Testing I - Non-Execution-Based Testing 66
11.1 Quality Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

11.1.1 Software Quality Assurance (SQA) . . . . . . . . . . . 66
11.1.2 Managerial Independence . . . . . . . . . . . . . . . . 67

3



11.2 Non-Execution Based Testing . . . . . . . . . . . . . . . . . . 67
11.2.1 Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11.2.2 Walkthroughs . . . . . . . . . . . . . . . . . . . . . . . 68
11.2.3 Managing Walkthroughs . . . . . . . . . . . . . . . . . 68
11.2.4 Inspections . . . . . . . . . . . . . . . . . . . . . . . . 68
11.2.5 Comparison of Walkthroughs and Inspections . . . . . 69
11.2.6 Strengths and Weaknesses of Reviews . . . . . . . . . . 69
11.2.7 Metrics for Inspections . . . . . . . . . . . . . . . . . . 69

12 Lecture 12 - Testing II - Execution Based Testing 70
12.1 Execution-Based Testing . . . . . . . . . . . . . . . . . . . . . 70
12.2 What Should Be Tested? . . . . . . . . . . . . . . . . . . . . . 70

12.2.1 Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
12.2.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . 71
12.2.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . 71
12.2.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . 72
12.2.5 Correctness . . . . . . . . . . . . . . . . . . . . . . . . 72

13 Lecture 13 - Testing III - Proving Program Correctness 73
13.1 Testing Versus Correctness Proofs . . . . . . . . . . . . . . . . 73

13.1.1 Example of a Correctness Proof . . . . . . . . . . . . . 73
13.1.2 Correctness Proof Mini Example . . . . . . . . . . . . 75
13.1.3 Correctness Proofs and Software Engineering . . . . . . 75

13.2 Who Should Perform Execution-Based Testing? . . . . . . . . 76
13.3 When Testing Stops . . . . . . . . . . . . . . . . . . . . . . . 77

14 Lecture 14 - The OO Paradigm - Cohesion and Coupling 78
14.1 What is a Module? . . . . . . . . . . . . . . . . . . . . . . . . 78
14.2 Cohesion (§7.2) . . . . . . . . . . . . . . . . . . . . . . . . . . 79
14.3 Coupling (§7.3) . . . . . . . . . . . . . . . . . . . . . . . . . . 79
14.4 Cohesion & Coupling Example . . . . . . . . . . . . . . . . . . 80

15 Lecture 15 - The OO Paradigm - Encapsulation and Abstrac-
tion 81
15.1 Encapsulation (§7.4) . . . . . . . . . . . . . . . . . . . . . . . 81

15.1.1 Encapsulation and Development (§7.4.1) . . . . . . . . 82
15.1.2 Encapsulation and Maintenance (§7.4.2) . . . . . . . . 83

4



16 Lecture 16 - The OO Paradigm - Abstract Data Types, In-
formation Hiding and Objects 84
16.1 Abstract Data Types (§7.5) . . . . . . . . . . . . . . . . . . . 84
16.2 Information Hiding (§7.6) . . . . . . . . . . . . . . . . . . . . 85
16.3 Objects (§7.7) . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

17 Lecture 17 - The OO Paradigm - Inheritance, Polymorphism,
and Dynamic Binding 88
17.1 Inheritance, Polymorphism, and Dynamic Binding (§7.8) . . . 88
17.2 The Object-Oriented Paradigm (§7.9) . . . . . . . . . . . . . . 89

17.2.1 Summary of Reasons Why OO is Better than Classical 89
17.2.2 The History that Led Us to the Current State of S/W

Engineering. . . . . . . . . . . . . . . . . . . . . . . . . 89
17.2.3 Problems With OO . . . . . . . . . . . . . . . . . . . . 89
17.2.4 Problems With inheritance . . . . . . . . . . . . . . . 90
17.2.5 Cavalier use of inheritance . . . . . . . . . . . . . . . . 90
17.2.6 One Can Code Badly in Any Language . . . . . . . . . 90
17.2.7 OO Will Be Replaced In The Future . . . . . . . . . . 91

18 Lecture 18 - Reusability 91
18.1 Re-Use Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 91
18.2 Impediments to Re-Use . . . . . . . . . . . . . . . . . . . . . . 92
18.3 Types of Re-Use . . . . . . . . . . . . . . . . . . . . . . . . . . 93

18.3.1 Accidental (Opportunistic) . . . . . . . . . . . . . . . . 93
18.3.2 Deliberate (Systematic) . . . . . . . . . . . . . . . . . 93

18.4 Objects and Re-Use . . . . . . . . . . . . . . . . . . . . . . . . 93
18.5 Re-Use During Design and Implementation . . . . . . . . . . . 93

18.5.1 Library (toolkit) . . . . . . . . . . . . . . . . . . . . . 93
18.5.2 Application Framework . . . . . . . . . . . . . . . . . . 94
18.5.3 Software Architecture . . . . . . . . . . . . . . . . . . . 95
18.5.4 Component-Based Software Engineering . . . . . . . . 95

19 Lecture 19 - Design Patterns 96
19.1 Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 96

19.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 96
19.1.2 Adapter Design Pattern (§8.6.2) . . . . . . . . . . . . . 96
19.1.3 Bridge Design Pattern (§8.6.3) . . . . . . . . . . . . . . 100
19.1.4 Iterator Design Pattern (§8.6.4) . . . . . . . . . . . . . 101

5



19.1.5 Abstract Factory Design Pattern (§8.6.5) . . . . . . . . 103
19.1.6 Categories of Design Patterns (§8.7) . . . . . . . . . . . 106
19.1.7 Strengths/Weaknesses of Design Patterns (§8.8) . . . . 106

19.2 Re-Use During Post-Delivery Maintenance . . . . . . . . . . . 106

20 Lecture 20 - Portability 107
20.1 Portability Concepts . . . . . . . . . . . . . . . . . . . . . . . 107
20.2 Hardware Incompatibilities . . . . . . . . . . . . . . . . . . . . 107
20.3 Operating System Incompatibilities . . . . . . . . . . . . . . . 107
20.4 Numerical System Incompatibilities . . . . . . . . . . . . . . . 108
20.5 Compiler Incompatibilities . . . . . . . . . . . . . . . . . . . . 108
20.6 Is Portability Really Necessary? . . . . . . . . . . . . . . . . . 108
20.7 Techniques for Achieving Portability . . . . . . . . . . . . . . 108

20.7.1 Portable Operating System Software . . . . . . . . . . 108
20.7.2 Portable Application Software . . . . . . . . . . . . . . 109
20.7.3 Portable Data . . . . . . . . . . . . . . . . . . . . . . . 109
20.7.4 Object-Oriented Technologies (OOT) . . . . . . . . . . 109

21 Lecture 21 - Planning and Estimation I - Function Points 109
21.1 Planning and the Software Process . . . . . . . . . . . . . . . 110
21.2 Estimating Duration and Cost . . . . . . . . . . . . . . . . . . 112

21.2.1 Metrics for the Size of a S/W Product . . . . . . . . . 112

22 Lecture 22 - Planning and Estimation II - Intermediate CO-
COMO 115
22.1 Estimating Duration and Cost . . . . . . . . . . . . . . . . . . 115

22.1.1 Techniques for Cost Estimation . . . . . . . . . . . . . 115
22.1.2 Intermediate COCOMO (COnstructive COst MOdel) . 116
22.1.3 COCOMO II . . . . . . . . . . . . . . . . . . . . . . . 119
22.1.4 Tracking Duration and Cost Estimates . . . . . . . . . 120

23 Lecture 23 - Planning and Estimation III - Project Manage-
ment 120
23.1 Components of a SPMP . . . . . . . . . . . . . . . . . . . . . 121
23.2 SPMP Framework . . . . . . . . . . . . . . . . . . . . . . . . . 122
23.3 IEEE SPMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
23.4 Planning Testing . . . . . . . . . . . . . . . . . . . . . . . . . 127
23.5 Planning OO Projects . . . . . . . . . . . . . . . . . . . . . . 127

6



23.6 Training Requirements . . . . . . . . . . . . . . . . . . . . . . 127
23.7 Documentation Standards . . . . . . . . . . . . . . . . . . . . 128
23.8 CASE Tools for Planning and Estimating . . . . . . . . . . . . 128
23.9 Testing the SPMP . . . . . . . . . . . . . . . . . . . . . . . . 128

24 Lecture 24 - Review and Wrap-Up 128
24.1 Course Review - Key Topics . . . . . . . . . . . . . . . . . . . 128
24.2 Course Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 131

1 Lecture 01 - Introduction to Software En-

gineering

Outline
1. Introduction to CS 430 - Course Outline
2. Introduction to the Scope of Software Engineering
3. Historical Aspects
4. Economic Aspects

1.1 Introduction to CS 430 - Course Outline

1. Look up the Course Outline on the unsecured course website.
2. This component of the evaluation for the course is still fairly new this

term (used once before):
(a) Case Studies on Kritik

i. The Case Studies will be marked via a peer evaluation tool
called Kritik. The use of Kritik is motivated by my desire
to develop your critical thinking skills more than the usual
approach of having you hand in assignments which are marked
solely by Teaching Assistants does. Since this will be my
second offering using Kritik, I am continuing with a blended
approach between Kritik and traditional assignments.

ii. Kritik is not yet supported across the University of Waterloo,
so there will be a small subscription fee of $24 (I think, and
will confirm soon) for you to use Kritik this term. If the
subscription charge is prohibitive for you, then please reach
out to me.
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iii. More details about Kritik will be posted on the unsecured
course website in advance of the release of Case Studies #1.

3. I will announce suggested pre-reading from the text for all the future
lectures, by email.

4. Clickers
(a) iClicker Remote

i. Register your iClicker using the instructions on LEARN.
ii. If your Participation grade still shows as 0 on LEARN after a

few lectures, then please contact the instructor to correct the
registration of your iClicker.

(b) Paper Submit one piece of paper to me at the end of each lecture,
indicating
i. student number / login ID / both, and
ii. one line per CQ, numbered my way, indicating which of op-

tions A–E you chose.

1.2 Introduction to the Scope of Software Engineering

1. Software Engineering: the idea of applying Engineering Principles
to the building of big software products.

1.3 Historical Aspects

Examples:
1. On November 9, 1979, U.S. Strategic Air Command had an alert

scramble when the worldwide military command and control system
(WWMCCS) computer network reported that the Soviet Union had
launched missiles aimed at the U.S.A. A simulated attack was misin-
terpreted as the real thing. See the text for full details.
Moral: Software faults can have disastrous real world consequences!

2. A Standish study of 9236 software projects completed in 2006 revealed
(see text Fig 1.1) that
(a) only 35% were delivered successfully,
(b) 19% were cancelled and
(c) 46% were late, over budget, and/or had features missing.

Remarks:
1. Bridges occasionally collapse, and power generators occasionally fail,

but not nearly as often as operating systems crash or billing systems
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produce bills for incorrect amounts.
2. Even when software is delivered fault-free, it is often late, over budget,

and/or fails to meet all the user’s requirements.
3. This motivates the following key definition.

Definition 1.3.1. The software crisis (or software depression) is the
phenomenon whereby, all too often, software is delivered:

1. with faults,
2. late,
3. over budget, and/or
4. not meeting all the user’s requirements.

Remarks:
1. Applying the same principles that traditional engineers use can help

improve the delivery of software.

Definition 1.3.2. Software engineering is a discipline whose aim is the
production of software that

1. is fault-free,
2. is delivered on time,
3. is delivered within budget, and
4. satisfies the client’s needs.

Furthermore the software must be easy to modify when the user’s needs change.

Remarks:
1. The name software engineering indicates that software developers will

have better success if they use the same principles as traditional engi-
neers.

2. Software engineering is new field with a broad scope - math, CS, science,
engineering, management, etc.

3. Software Engineering is a response to the Software Crisis.

1.4 Economic Aspects

Question: If a new coding method becomes available which is 10% faster
than the current method, then should we adopt it immediately?
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Pros Cons
-short term: lower development
costs

-higher maintenance costs with a
blended system

-longer term: compound short term
savings

-possible need to rewrite existing
code

-possible improved security features -possible compatibility problems
-new environment unproven, possi-
bly unstable
-no benefit with respect to mainte-
nance costs
-might affect user experience in un-
expected ways
-training / learning curve
-new code could be less robust
-might require hardware changes
-cost of purchasing the new devel-
opment studio is not stated
-possible issues with stability, per-
formance
-new code might be of lower quality

Moral: This is not a clear yes/no answer. More analysis is still required.
Remarks:

1. The “Pro”s touch the development phase; the “Con”s reveal impacts
in other phases.

2. It turns out that historically, maintenance costs have grown faster than
development costs. Moral: reducing maintenance costs is a bigger win.

This is Coding example. Coding = 10-15% software development effort.
Similar principles apply to all aspects of software development

2 Lecture 02 - The Classical and Object-Oriented

Paradigms

Outline
1. Example: Classical (Waterfall) Life-Cycle Model
2. Example: Object-Oriented Paradigm
3. Maintenance Aspects
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(a) The Importance of Postdelivery Maintenance
4. Requirements, Analysis and Design Aspects
5. Team Development Aspects
6. The Object-Oriented Paradigm
7. The Object-Oriented Paradigm In Perspective
8. Ethical Issues

2.1 Example: Classical (Waterfall) Life-Cycle Model

Refer to Fig 1.2 in the text for the phases of the Classical (Waterfall) life-cycle
model:

1. Requirements phase
2. Analysis (specification) phase
3. Design phase
4. Implementation phase
5. Postdelivery maintenance
6. Retirement

Refer to the Examples document on LEARN (Lecture 02)
Answers to the Questions for Discussion

1. How would each group below react to the introduction of the Waterfall
life-cycle model?
(a) IT Team

i. initial resistance to change
ii. We do not like the extra work required before development

can begin (requirements, analysis, design)
iii. Additional structure makes our work more efficient and effec-

tive
iv. We like the added quality that is now possible
v. We like the fact that we can take vacations now!
vi. We can work effectively in teams now (this was difficult to

impossible before)
vii. Since analysis/design will now be done within IT, it should

become better
viii. Additional planning should pay off later

A. better quality software; fewer firefights
(b) Business Partners

i. too slow: after freezing the requirements, no changes can be
made until the next project starts - also there is a long wait
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time between our two main points of influence: requirements
and user acceptance testing

ii. BUT - additional structure makes it much more likely that
we get our work right the first time (unlike in the past were
a lot of rework was required)

iii. It is more likely we will get our requirements correct now
iv. integration projects are now possible (they weren’t before)
v. We can plan better for the future, using past history
vi. additional structure should make the software we produce be

of higher quality
vii. We are less vulnerable to knowledge loss if developers leave

the organization
2. Why does the Waterfall life-cycle model not have any of the following

phases?
(a) Planning
(b) Testing
(c) Documentation
Answer:
(a) All three activities are crucial to project success.
(b) Therefore all three activities must happen throughout the project

and cannot be limited to just one project phase.
Other Observations

Pros Cons
-more structure -less freedom
-people can specialize their roles to
the phases

-need to finish requirements before
analysis

-better chance of getting correct
documents earlier in the project

-requirements need to be good
enough (not perfect)

-we have some chance to manage the
present, plan for the future

-we cannot test until develop-
ment/unit testing is finished

-decide which projects to do, using
cost-benefit analysis

-slow

Question from the Class: Why do we study the Classical life-cycle model
in CS 430?
Answer:

1. Understand why OO is better.
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2. Many organizations still use Classical.
3. Much legacy code still exists, that was written using Classical tech-

niques.

2.2 Example: Object-Oriented Paradigm

Refer to the Examples document on LEARN (Lecture 02)
Answers to the Questions for Discussion

1. How would each group react to the introduction of the Object-Oriented
paradigm?
(a) IT Team

i. initial resistance to change
ii. We should have fewer regression faults (Definition 3.4.4).
iii. We should have less “spaghetti” code this way (Instructor

Remark: Through structured programming, we should al-
ready have eliminated spaghetti code, even classically.)

iv. Maintenance should become easier
v. less conflict in data terms

A. more control should we need to add / modify something
vi. Classes can be re-used
vii. When interfaces need to change, it can be hard to co-ordinate

between multiple teams who maintain multiple classes.
viii. learning curve with OO

(b) Business Partners
i. initial resistance to change
ii. How do we give requirements in an OO way?
iii. buy in to the benefits of more re-use, cheaper maintenance,

going forward
iv. learning curve with OO

2. What would be some advantages and disadvantages of adopting the
Object-Oriented paradigm?
Answer:
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Pros Cons
-classes can belong to libraries, not
systems

-learning curve!

-hence classes are more easily re-
used

-it can be more difficult to enforce
code standards

-fewer regression faults -increased costs of development
maintenance work

-can test classes independently
of each other, unlike developing the
whole system before we can test

Question from the Class: Why does OO not come with a life-cycle picture,
as Classical does?
Answer:

1. The change from Classical to Object Orientation is more a change of
mindset than of methodology.

2. We change our mindset from building one monolithic thing (Clas-
sical) to building many smaller classes that do work for us to-
gether (OO). Many life-cycle models (including Waterfall) can be used
to build these classes effectively.

2.3 Maintenance Aspects

We will look at maintenance in the context of the Classical (aka Waterfall)
Life-Cycle Model, invented in 1970. Phases:

1. Requirements
(a) Elicit client requirements.
(b) Understand client needs.

2. Analysis
(a) Analyze client requirements.
(b) Draft specification document - formal.
(c) Draft Software Project Management Plan (SPMP).

3. Design
(a) Design architecture - divide software functionality into compo-

nents.
(b) Draft detailed design for each component.

4. Implementation
(a) Coding (development) - code & document each component
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(b) Unit test each individual component
(c) Integration (system) testing - combine components, test interfaces

among components
(d) Acceptance testing - use live data in client’s test environment.

Clients participate in testing & verification of test results, and
sign off when they are happy with the results.

(e) Deploy to production environment.
5. Post delivery maintenance - maintain the software while it’s being used

to perform the tasks for which it was developed.
(a)

Definition 2.3.1. Corrective Maintenance: Removal of resid-
ual faults while software functionality & specs remain relatively
unchanged. (aka fix production problems)

(b)

Definition 2.3.2. Perfective Maintenance:
i. Implement changes the client thinks will improve effective-

ness of product (e.g. additional functionality, reduce response
time) (aka enhancements or upgrades)

ii. Specs must be changed
(c)

Definition 2.3.3. Adaptive Maintenance:
i. Change the software to adapt to changes in environment (e.g.

new policy, tax rate, regulatory requirements, changes in sys-
tems environment) - may not necessarily add to functionality.
You allow software to survive

ii. Specs may change to address the new environment
6. Retirement

(a) Product is removed from service: functionality provided by soft-
ware is no longer useful / further maintenance is no longer eco-
nomically feasible.

2.3.1 The Importance of Postdelivery Maintenance

� Shelf life of good software: 10, 20, even 30 years
� Good software is a model of real world & real world keeps changing,
therefore software must change too.
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� Cost of Post delivery Maintenance continues to go up, while (possibly
surprisingly) cost of implementation is nearly flat.

Example: My first project at OpenText was to develop a Consolidated
Customer Database. After the initial scrubbing of the data, management
opted not to re-scrub the following year. The database withered and died
because management was unwilling to pay for post delivery maintenance.

2.4 Requirements, Analysis and Design Aspects

Key Facts:
1. The earlier in the life cycle a fault is found, the cheaper it is to fix.

(See Figures 1.5 and 1.6 on pp13-14 of the text.)
2. Correcting a fault in the early phases usually just requires changing a

document.
3. Hence the requirements, analysis and design phases need to be im-

proved.

2.5 Team Development Aspects

Remarks:
1. Hardware keeps getting cheaper and cheaper, and able to run more and

more complex programs.
2. Hence modern software must be developed by teams.
3. But this can lead to problems, e.g.

(a) Communication becomes challenging when teams are far apart
geographically, especially when they are in different time zones.

(b) Interpersonal problems can undermine team effectiveness.
(c) if a call to a module written by another developer mentions the

arguments in the wrong order. (If the variable types are the same,
then even the compiler may not catch this fault).

4. Software Engineering must include techniques for ensuring teams are
properly managed.

2.6 The Object-Oriented Paradigm

Problems With The Classical Paradigm
1. Works well for small systems (≤ 5000 lines of code), but does not scale

effectively to larger systems.
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2. Fails to address growing costs of post-delivery maintenance.
Reason: Classical techniques focus on data or operation, but not both.
Contrast With The Object-Oriented Paradigm:

1. The object-oriented paradigm treats data (attributes) and operations
(methods) together, as equally important.

2.7 The Object-Oriented Paradigm In Perspective

Remarks:
1. Like any software production technique, the OO paradigm must be

applied correctly to be effective.
2. The OO paradigm is the best technique invented so far; yet is is sure

to be superseded by a superior technique in the future.

2.8 Ethical Issues

Remarks:
1. Since software is developed by people, there are ethical issues connected

with software development.
2. Software engineers commit to these ethical principles (each is explained

more fully in the text):
(a) Public
(b) Client and Employer
(c) Product
(d) Judgment
(e) Management
(f) Profession
(g) Colleagues
(h) Self

3 Lecture 03 - Iteration and Incrementation

Outline
1. Introduction to Software Development Life-Cycle Models
2. Software Development in Theory
3. Winburg Example
4. Iteration and Incrementation
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3.1 Introduction to Software Development Life-Cycle
Models

Where Chapter 1 attempted to describe software development in the ideal
world, Chapter 2 attempts to describe software development in the real world.

3.2 Software Development in Theory

Idealized Software Development

∅
��

Requirements

��

Analysis

��

Design

��

Implementation

In theory, we do not have to deal with any changes once the Requirements
phase is complete.

3.3 Winburg Example

See the description in the text and in the examples for the course.
Key Observations from the Example:

1. Anecdote from a business line at a bank: IT was perceived as very slow
to respond to requests for changes to their systems.
In Lecture 02 we stated that the slowness of getting projects done using
the Classical model was a drawback of that model.
Corollary: IT resisted accepting changes to the requirements once the
requirements were complete.

2. The Example Provides an Example of the Software Crisis:
(a) Requirements were incomplete: there was no requirement describ-

ing performance (not meeting client’s needs).
(b) Assuming the project completes at the end of Episode 4, the

project was
i. very late, and
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ii. over budget.
(c) Nothing in the Example explicitly says that there were faults in

the completed software product.
3. There was lots of rework, which was needed because each episode

spawned a classical life-cycle effort (iteration), in which work done in
one iteration had no easy way to feed into the next, if they overlapped
in time.

4. This was caused, in part, by the overall slowness of the Classical model.
5. Starting to develop the single-precision fix before confirming it would

provide the desired performance improvement was a waste of time.
6. Some re-use was achieved when the scanning software was packaged

and re-sold.
7. There was testing throughout the case.
8. More testing throughout Episode 1 might have revealed the perfor-

mance problems sooner.
9. Instructor Remark: Perhaps a small pilot project, prototyping the

scanning hardware and software together would have revealed the per-
formance problems earlier. This is a proof of concept prototype.
We will discuss such prototypes again in Chapter 5.

10. Packaging and re-selling was a win.
11. The project ultimately did satisfy the specification.
12. Based on our own work experience to date, this is not the worst case

we have seen so far. (The text agrees with us on this point.)
Morals of the Example:

1. The Classical model is most effective when the IT team can work with-
out accepting changes to the requirements after the requirements are
complete. Changes to requirements (e.g. adding the performance re-
quirement, the Mayor’s later change) negatively affects software quality,
delivery dates, and budgets.

2. BUT in the real world, change is inevitable. We cannot prevent change;
we must learn to manage it.

3. Here is a sketch of Figure 2.2 in the text for an example of the evolution-
tree life cycle model for this example, using the key:
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// Development
// Maintenance

.

∅

��
--

Requirements1

��

Requirements4

��

Analysis1

��
,,

Analysis4

��

Design1

�� ))

Design2

��

Design4

��

Implementation1 Implementation2 Implementation2 Implementation4

Episode 1 Episode 2 Episode 3 Episode 4

This is an ad-hoc response to themoving target problem (Definition
3.4.1).
Key Idea: Each Episode spawns a new (sometimes partial) instance
of the Classical development life-cycle model.

4. The rest of Chapter 2 is concerned with adapting the Classical life-cycle
model to manage change.

3.4 Iteration and Incrementation

Key Idea: Think of Iteration and Incrementation as a generalization of the
ad-hoc, evolution tree life-cycle from the Example. Break the project into
(say 4) increments, then each increment runs as a small waterfall project.
See Figures 2.4 through 2.6 in the text.
Goals:

1. Get the benefits of Classical structure, while
2. Being more tolerant of change than the Classical model is.

Useful Definitions:
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1.

Definition 3.4.1. The moving target problem occurs when the re-
quirements change while the software is being developed.
Unfortunately this problem has no solution!

2.

Definition 3.4.2. Scope creep aka feature creep is a succession of
small, almost trivial requests for additions to the requirements.
Remarks:
(a) If the IT team can refuse such changes, then scope creep need not

contribute to the moving target problem.
(b) All too often the IT team does not have this power.

3.

Definition 3.4.3. A fault is the (observable) result of a coding mistake
made by a programmer.

4.

Definition 3.4.4. A regression fault occurs when a change in one
part of the software product induces a fault in an apparently unrelated
part of the software product.

5.

Definition 3.4.5. A regression test provides evidence that we have
not unintentionally changed something that we did not intend to change
(i.e. that there are no regression faults).
Typical Strategy:
(a) Choose test cases that all fall under all the business rules not

touched by the project specification.
(b) Execute the production and the modified code against the chosen

test cases.
(c) Compare the outputs. Success = no differences.

6.

Definition 3.4.6. Miller’s Law states that, at any one time, a hu-
man is only capable of concentrating on approximately seven chunks of
information.
Why this Matters for Software Engineering:
(a) One person can effectively work on at most seven items at once.
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(b) Any software project of significant size will have many more than
seven components.

(c) Hence we must start by working on ≤ 7 highly important things
first, temporarily ignoring all the rest.

(d) This is the technique of stepwise refinement (Definition 9.1.1).
This technique will come up again in Chapter 5.

When you have time, you may enjoy listening to this YouTube video (the
visual is just a static image) about Iteration & Incrementation:
https://youtu.be/FTygpfEFFKw

Next Time: (Almost) all the remaining life-cycle models are variations on
Iteration and Incrementation.

4 Lecture 04 - Life-Cycle Models

Outline
1. Other Life Cycle Models

(a) Code and Fix Life-Cycle Model
(b) Waterfall (Modified) Life-Cycle Model
(c) Rapid Prototyping Life-Cycle Model
(d) Open Source Life-Cycle Model
(e) Agile Processes
(f) Synchronize and Stabilize Life-Cycle Model
(g) Spiral Life-Cycle Model

2. Comparison of Life-Cycle Models

4.1 Other Life Cycle Models

4.1.1 Code and Fix Life-Cycle Model

Key Idea: Implement the product without requirements, specification or
design.
Remarks:

1. See Figure 2.8 in the text or on slide 17 for Chapter 2; but know that
it is the only possible picture without requirements, specification or
design.

2. Strengths:
(a) This technique may work on very small systems (≤ 200 lines of

code).
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(b) Easy to incorporate changes to requirements.
(c) Generates a lot of lines of code (whether this is actually a strength

depends on organizational norms).
3. Weaknesses:

(a) This technique is totally unsuitable for systems of any reasonable
size.

(b) This technique is unlikely to yield the optimal solution.
(c) Slow.
(d) Costly.
(e) Likelihood of regression faults is high.

Remarks:
1. It is appropriate (and really the only choice) for a user base of size 1,

e.g. for any programming assignment you would do for a CS assignment
at uWaterloo.

2. We met this model once before: it was the only model in existence
before the Waterfall model was introduced in 1970.

4.1.2 Waterfall (Modified) Life-Cycle Model

Key Idea: Augment the “vanilla” waterfall diagram, to add the “feedback
loops” during the project, and for post-delivery maintenance. Here is a sketch

23



of Figure 2.9 in the text, using the key:
// Development
// Maintenance

.

Requirements

''

Changed requirements

ss
Analysis

%%

UU

Design

))

TT

Implementation

��

XX

Postdelivery Maintenance

��

OO

OO

OO

OO

Retirement

Remarks:
1. No phase is complete until all its documents are complete, and the

output(s) of the phase are approved by the SQA (Software Quality
Assurance) team.

2. Testing is carried out throughout the project.
3. Strengths:

(a) Discipline enforced by SQA.
4. Weaknesses:

(a) Specification documents are often written in a way that does not
enable the client to understand what the finished product will look
like.
i. Hence specification documents may not be fully understood

before they are approved.
ii. Hence the finished product may not actually meet the client’s

needs.
The next model, rapid prototyping, is an adaptation if the waterfall
model to address this key weakness.
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4.1.3 Rapid Prototyping Life-Cycle Model

Here is a sketch of Figure 2.10 in the text, using the key:
// Development
// Maintenance

.

Rapid prototype

''

Changed requirements

ss
Analysis

%%

VV

Design

))

TT

Implementation

��

XX

Postdelivery Maintenance

��

OO

OO

OO

OO

Retirement

Remarks:
1. This diagram looks almost identical to that for Waterfall (Modified).
2. Key Difference: Requirements has been replaced with Rapid Proto-

type. Huh?

Definition 4.1.1. A rapid prototype is a working model that is function-
ally equivalent to a subset of the software product.

Motivation: Develop a rapid prototype (during Requirements phase) to let
the client interact and experiment with it early. This way the requirements
document can be written with higher confidence that the software product
it describes will meet the client’s needs. Users can give better feedback
from working with a rapid prototype than from reading a long requirements
document.
Examples:
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1. If the product is a payroll system, then a rapid prototype might have
a subset of the screens and might produce mocked-up pay stubs, but
might not have any database updating or batch processing behind the
scenes.

Remarks:
1. The feedback loops from the waterfall model are less heavily used here.
2. The word “rapid” is crucial. Speed is of the essence!

Summary: The purpose of a rapid prototype is to improve requirements.

4.1.4 Open Source Life-Cycle Model

Here is a sketch of Figure 2.11 in the text, using the key:
// Development
// Maintenance

.

Implement the
first version

''

Perform corrective,
perfective and adaptive
postdelivery maintenance

((

��

Retirement

Key Idea: Open Source software projects proceed in two phases:
1. A single individual has an idea for a program (e.g. MySQL, LibreOffice,

Notepad++, R, Linux, Firefox, Apache, etc.), builds the initial version,
and makes it available free of charge to anyone who wants a copy.

2. (Informal) If there is sufficient interest, then users become co-developers
(co-maintainers) for Post-Delivery Maintenance:
(a) Report / correct faults (Corrective Maintenance)
(b) Add additional functionality (Perfective Maintenance)
(c) Port the program to new platforms (Adaptive Maintenance)

3. All participants can offer suggestions:
(a) new features
(b) new platforms
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4. Participation is voluntary and unpaid.
5. Roles:

(a) Core group: dedicated maintainers
(b) Peripheral group: suggest bug fixes from time to time

6. Success depends on the interest generated by the initial version.
Many open source projects do not amount to anything. But there have been
some spectacularly successful examples (mentioned at the beginning of the
section).
Reasons Why Open Source Projects Are Successful:

1. Perception that the initial release is a “winner” (most important)
2. Large potential user base

Instructor Remarks:
1. Participation in an Open Source project is voluntary and unpaid.
2. The idea of Open Source is in direct conflict with a corporation’s need

to achieve competitive advantage, by writing good software.

4.1.5 Agile Processes

Guiding Principles
1. Communication
2. Speed: Satisfying the Client’s needs as quickly as possible (ideally new

versions every 2-3 weeks)
According to the Scrum Method, we iterate through the following two
phases until the backlog of tasks is empty.
Requirements Sprints
User Stories Daily Meetings
Prioritization Eventually Reassign Tasks
Build Backlog of Tasks

Techniques to ensure frequent delivery of new versions:
1. timeboxing: Fix an amount of time to work on a task; do as much as

possible on the task during that time window. Agile processes demand
fixed time, not fixed features.

2. daily 15 minute stand-up meeting (to raise and resolve issues):
Each team member answers five questions:
(a) What have I done since yesterday’s meeting?
(b) What am I working on today?
(c) What problems are preventing me from achieving my goal for

today?
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(d) What have we forgotten?
(e) What did I learn that I would like to share with the team?

Differences Between Agile and Classical:
1. Diagram of Team Organization:

CTO

Project Manager

Scrum Master

Developer Developer Developer

(a) 1-week “sprints”
(b) Each sprint gets us closer to the ultimate goal.

2. Iterative process
3. One phase need not finish before the next can start
4. A client representative sits with the IT team
5. No specializations
6. Members from all different areas work together at different times
7. Working software is prioritized over detailed documentation
8. test-driven development

Remarks:
1. Strengths:

(a) Speed
(b) Flexibility
(c) Team Cohesion
(d) Some history of success with smaller projects.

2. Weaknesses:
(a) Heavy on meetings
(b) Not scalable with team size
(c) This technique is untested on large projects (many software pro-

fessionals have expressed doubts that this will be successful)
When you have time, you may enjoy watching this YouTube video about
Iteration & Incrementation Leading to Agile Processes:
https://youtu.be/Vlc2r_U30yo

Remarks on Agile Processes:
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1. The text makes a big deal of Extreme Programming (XP), and
states that a key feature of XP is pair programming. I had always
suspected that this was a bit too rigid - now we have this suspicion
confirmed by presentations from students who have worked under this
model. It made a lot more sense to me that the groups formed to do
the work need not always be pairs - they are whatever is appropriate
to the task at hand.

4.1.6 Synchronize and Stabilize Life-Cycle Model

This is Microsoft’s adaptation of Iteration and Incrementation.
1. Pull requirements from the clients.
2. Write Specification document.
3. Divide the work into four builds (most important features in earlier

builds):
(a) critical
(b) major
(c) minor
(d) trivial
N.B. Developers can add requirements during a build.

4. Carry out each build using small teams working in parallel.
5. Synchronize at the end of each day, then
6. Stabilize at the end of each build (then freeze).

Strengths:
1. Users’ needs are met
2. Components are successfully integrated
3. Tolerant of changes to specifications
4. Encourages individual developers to be innovative and creative
5. Daily synchronization and Build-ly stabilization ensure developers will

all work in the same direction
6. Good for large projects

Weaknesses:
1. So far, this has only been used successfully at Microsoft

4.1.7 Spiral Life-Cycle Model

This incorporates elements of several of the earlier models.
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Key Problem: There are many risks associated with software development
projects, which if realized will mean that the project is a failure.
Key Ideas:

1. Minimize risks inherent in software development by the (repeated) use
of proof-of-concept prototypes and other means.

2. N.B. Unlike rapid prototypes, which aim to improve requirements
by letting users interact with a subset of the target functionality, a
proof-of-concept prototype aims to determine whether an architec-
ture design is good (e.g. will it perform quickly enough?)

Figure 2.13: Spiral, Full

Remarks:
1. The quadrants in the above diagram could be labelled:

1. Planning / Requirements 2. Risk Analysis
4. Plan Next Phase 3. Develop and Verify

Figure 2.12: Spiral, Simplified
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Remarks:
1. Strengths:

(a) Emphasis on alternatives and constraints supports re-use, and
software quality.

(b) This technique encourages doing the correct amount of testing.
2. Weaknesses:

(a) This model is only meant for internal building of large-scale soft-
ware.

(b) If risks are not analyzed correctly, then all may appear fine even
when the project is headed for disaster.

(c) Makes the (often wrong) assumption that software is developed in
discrete phases, when in reality, software is developed iteratively
and incrementally (like in the Winburg example).
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4.2 Comparison of Life-Cycle Models

Here is Figure 2.14 from the text:
Life-Cycle Model Strengths Weaknesses
Evolution Tree (§2.2) -Closely models real-world

software production
-Equivalent to iteration
and incrementation

Iteration and -Closely models real-world
Incrementation (§2.5) software production

-Underlies the Unified
Process

Code-and-fix (§2.9.1) -Fine for short programs that -Totally unsuitable for
require no maintenance non-trivial programs

Waterfall (§2.9.2) -Disciplined approach -Delivered product may
-Document driven not meet client’s needs

Rapid Prototyping (§2.9.3) -Ensures the delivered -Not yet proven beyond
product meets the client’s needs all doubt

Open Source (§2.9.4) -Has worked extremely well in -Limited applicability
a small number of instances -Usually does not work

Agile Processes (§2.9.5) -Works well when the client’s -Appear to work on only
requirements are vague small-scale projectes

Synchrionize-and- -Future users’ needs are met -Has not been widely
stabilize (§2.9.6) -Ensures that components used other than at

can be successfully integrated Microsoft
Spiral (§2.9.7) -Risk driven -Can be used for only

large-scale, in-house
products
-Developers have to be
competent in risk analysis
and risk resolution

5 Lecture 05 - The Unified Process I

Outline
1. Introduction to the Software Process
2. The Unified Process
3. Iteration and Incrementation Within the Object-Oriented Paradigm
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4. Requirements Workflow
5. Analysis Workflow
6. Design Workflow
7. Implementation Workflow
8. Test Workflow

(a) Requirements
(b) Analysis
(c) Design
(d) Implementation

9. Post-Delivery Maintenance
10. Retirement

5.1 Introduction to the Software Process

Definition 5.1.1. The software process encompasses the activities, tech-
niques and tools used to produce software.

Remarks:
1. With Definition 5.1.1, we could have defined the software crisis (Defi-

nition 1.3.1) as our inability to manage the software process effectively.
2. The goal of Software Engineering is to improve the software process.

5.2 The Unified Process

1. Idea: We want to explore the Unified Process, which will be our
software development methodology for the rest of the course. This
methodology will be
(a) object-oriented, and
(b) extendable.

2. This is Figure 3.1 on p88 of the text:
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3. The workflows have
(a) a technical context, e.g. the business case in the requirements

workflow is technical, and
(b) a task orientation.

4. The phases have
(a) an economic context, e.g. the business case in the Inception

phase is economic, and
(b) a time orientation.

Definition 5.2.1. An artifact is a work product from a workflow.

Questions From the Class
1. Q: Why are the artifacts tied to workflows, instead of to phases?

A: Since it is more natural to think of the artifacts from a task point
of view, it is more natural to tie the artifacts to the workflows than to
the phases.

5.3 Iteration and Incrementation Within the Object-
Oriented Paradigm

Key Idea: All variations on Iteration and Incrementation, including the
Unified Process, attempt to preserve some Classical structure, while being
more tolerant of change than the Classical model is. Under the Unified
Process,

1. the phases are the increments, and
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2. we iterate through the increments (each having a mini-Classical shape)
to complete the project.

Definition 5.3.1. UML stands for the Unified Modelling Language.

Definition 5.3.2. A model is a set of UML diagrams which describes one
or more aspects of the software product to be developed.

Example:

consults
Radiologist Lawyer

“The Radiologist class consults the Lawyer class.”

Motivation:
1. Even the best software engineers almost never get their artifacts right

on the first attempt. So stepwise refinement will be needed.
2. UML diagrams are visual, hence more intuitive than a block of ver-

biage. “A picture is worth a thousand words.”
3. The visual nature of a UML model fosters collaborative refinement.

Remarks:
1. Presenting the entire Unified Process would take more time and space

than we have during the remainder of this term, hence we will stick to
the highlights.

2. The names of the workflows (mostly) match the names of the phases
of the classical model. The descriptions of the workflow artifacts that
follow are similar to the outputs of the corresponding classical phases.

3. The classical model tied tasks and time together in sequence. The
unified model separates tasks and time.

Summary of Requirements, Analysis, Design and Implementation
Workflows

1. Each workflow corresponds (task-based) with the Classical phase hav-
ing the same name.

2. See the notes below for full details.

5.4 Requirements Workflow

1. Goal: Determine the client’s needs, and determine what constraints
there are (often referred to as concept exploration).
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2. Pitfalls: Do the Lecture 05 Example Here.
Problems Found With Requirements Given in Example
(a) Standings Changes: do we actually want all increases, all de-

creases, or both?
(b) Standing Display: If we don’t include previous, then changes will

not be clear from the report
(c) Some students with no changes in their standings should be in-

cluded (e.g. if they are still on probation)
(d) MAV used for criteria, but only CAV is displayed on the report -

unclear
(e) Conflicting sort criteria in different parts of the specification
(f) Missing criterion for filtering down to just the program for which

I am responsible
(g) Should the two inclusion criteria be combined with AND or with

OR?
(h) And possibly more...
Moral: To summarize the Example, requirements artifacts can be
(a) incorrect (only the client can detect this)
(b) ambiguous (e.g. AND versus OR in the inclusion criteria - IT can

detect this)
(c) incomplete (e.g. missing criterion to filter down to the program -

only the client can detect this)
(d) contradictory (e.g. conflicting sort criteria - IT can detect this)

3. Using UML diagrams correctly helps to mitigate the above problems
with requirements.

5.5 Analysis Workflow

1. Goal: Analyze and refine the requirements to achieve the level of detail
needed to begin designing the software, and to maintain it effectively
later.

2. Once the analysis is complete, the cost and duration of the develop-
ment are estimated → create the Software Project Management Plan
(SPMP).

3. Terminology: deliverables, milestones and budget.
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5.6 Design Workflow

1. Goal: Show how the product is to do what it must do.
2. More precisely, refine the artifacts of the analysis workflow until the

result is good enough for the developers to implement it.
3. There are differences between the classical and the object-oriented

paradigms here.
4. It is important to keep detailed records about design decisions.

5.7 Implementation Workflow

1. Goal: Implement the target software product in the chosen implemen-
tation language.

2. Usually code artifacts are implemented by different developers, and
integrated once implemented - thus design shortcomings may not come
to light until the time of integration.

5.8 Test Workflow

Goal: Ensure the correctness of the artifacts from the other workflows.

5.8.1 Requirements

1. Key Idea: traceability: every later artifact must trace back to a re-
quirement artifact.

2. Key Observation: Until Implementation, there will be no code to test,
only documents. Hence we test by holding a review of the document,
with the key stakeholders. We will delve deeper into this in Chapter 6.

5.8.2 Analysis

1. Tactic: Hold a review of analysis artifacts with the key stakeholders,
chaired by SQA.

2. Review the SPMP too.

5.8.3 Design

1. Again, design artifacts must trace back to analysis artifacts.
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2. Tactic: Again, hold a review of design artifacts (likely without the
client this time)

5.8.4 Implementation

Remarks:
1. This will be explained in detail in Chapter 6.

The testing must include
1. desk checking (programmer)
2. unit testing (SQA)
3. integration testing (SQA)
4. product testing (SQA)
5. (user) acceptance testing (SQA and client)

Remarks:
1. Some projects also incorporate alpha and beta testing (usually the

beta version is the first version that the public would see).
2. Although it is tempting, alpha testing should not replace thorough

testing by the SQA group.

5.9 Post-Delivery Maintenance

1. This is not an afterthought - it must be planned from the start.
2. Pitfall: lack of adequate documentation (deadline pressures during

initial delivery contribute to this)
3. Testing of changes must include positive and regression testing.

Definition 5.9.1. Positive testing means testing that what you in-
tended to change was changed in the desired way.

Strategy:
(a) Select test cases exercising the changed business rules.
(b) Compare pass 0 (no changes) against pass 1 (with changes).
(c) Confirm that the pass 1 output has the desired changes applied.

5.10 Retirement

1. This is triggered when post-delivery maintenance is no longer feasible
or cost-effective.
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2. Usually a software product is replaced at this point. The software
product must be replaced if the business need persists.

3. True retirements are rare.

6 Lecture 06 - The Unified Process II

Outline
1. The Phases of the Unified Process

(a) The Interaction Between Phases and Workflows
(b) Inception
(c) Elaboration
(d) Construction
(e) Transition

2. One- Versus Two-Dimensional Life-Cycle Models
3. Improving the Software Process
4. Capability Maturity Models

6.1 The Phases of the Unified Process

6.1.1 The Interaction Between Phases and Workflows

As pointed out last lecture,
1. phases have a time orientation (questions like “when do we need to

do deliver artifact x?” can be answered by naming a phase), and
2. workflows have a task orientation (“with what related artifacts should

artifact x be grouped?” can be answered by naming a workflow).
Motivation to Separate Workflows and Phases: Why 1-D models like
Waterfall break down in practice: they assume that the time and task orien-
tations agree with one another. In reality they do not, because of themoving
target problem. Iteration and Incrementation leads to the splitting of tasks
and time, which in turn leads us to the Unified Process.
Global Remarks:

1. What follows is a summary of what artifacts are typically produced for
each workflow and phase.

2. Different projects will require different timelines, and hence different
phase breakdowns.
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6.1.2 Inception Phase

Goal: Determine whether it is worthwhile to develop the target software
product. Is it economically viable to build it?
Here we explain the interaction between the Inception phase and each work-
flow (i.e. which workflow artifacts are typically produced during the Incep-
tion phase).

1. Requirements Workflow Key Steps:
(a) Understand what is

Definition 6.1.1. The domain of a software product is the place
(e.g. TV station, hospital, air traffic control tower, etc.) in which
it must operate.

(b) Build

Definition 6.1.2. A business model is a description of the
client’s business process, i.e. “how the client operates within the
domain”.

(c) Determine the project scope.
(d) The developers make the initial

Definition 6.1.3. A business case is a document which answers
these questions.
i. Is the proposed software cost effective? Will the benefits out-

weigh the costs? In what timeframe? What are the costs of
not developing the software?

ii. Can the proposed software be delivered on time? What impacts
will be realized if the software is delivered late?

iii. What risks are involved in developing the software, and how
can these risks be mitigated? Similarly to above, what risks
are there if we do not build it? There are three major risk
categories.
A. Technical Risks
B. Bad Requirements
C. Bad Architecture

2. Analysis Workflow
(a) Extract the information needed to design the architecture.

3. Design Workflow
(a) Create the design.
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(b) Answer all questions required to start Implementation.
4. Implementation Workflow

(a) Usually little to no coding is done during the inception phase.
(b) Sometimes it will be necessary to build a proof-of-concept pro-

totype.
5. Test Workflow Goal: Ensure that the requirements artifacts are cor-

rect.
Deliverables from the Inception Phase:

1. initial version of the domain model
2. initial version of the business model
3. initial version of the requirements artifacts
4. initial version of the analysis artifacts
5. initial version of the architecture
6. initial list of risks
7. initial use cases (from analysis workflow, usually documented in UML)
8. plan for Elaboration phase (we must always plan for the next phase)
9. initial version of the business case (overall aim of Inception phase).

This describes the scope of the software product plus financial details.
(a) If software is to be marketed, then this includes revenue projec-

tions, market estimates and initial cost estimates, etc.
(b) If software is to be used in-house, then this includes the initial

cost/benefit analysis.

6.1.3 Elaboration Phase

Goals:
1. Refine the initial requirements.
2. Refine the architecture.
3. Monitor risks and refine their priorities.
4. Refine the business case.
5. Produce the SPMP.

Deliverables from the Elaboration Phase:
1. the completed domain model
2. the completed business model
3. the completed requirements artifacts
4. the completed analysis artifacts
5. updated version of the architecture
6. updated list of risks
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7. SPMP
8. the completed business case

6.1.4 Construction Phase

Goal: Produce the first operational-quality version of the software product
(the beta release).
Deliverables from the Construction Phase:

1. initial user manual and other manuals, as appropriate
2. completed version of the architecture
3. updated list of risks
4. SPMP updated
5. if needed, the revised business case

6.1.5 Transition Phase

Goal: Ensure the client’s requirements have been met (using, in part, feed-
back from the users of the beta version).
Deliverables from the Transition Phase:

1. final versions of all the artifacts
2. final versions of all manuals / other documentation

Example: Do the Lecture 06 Example Here. In each answer that follows,
we state

1. the workflow first, then
2. the phase(s) during which that artifact will likely be delivered.
1. Business Model: First Draft

(a) Requirements
(b) Inception

2. Business Model: Completed
(a) Requirements
(b) Inception or Elaboration

3. User Requirements: First Draft
(a) Requirements
(b) Inception

4. User Requirements: Completed
(a) Requirements
(b) Elaboration (or Construction)

5. Inspection Report: User Requirements
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(a) Testing
(b) Elaboration (or Construction)

6. SPMP: First Draft
(a) Analysis
(b) Inception (or Elaboration)

7. SPMP: Completed
(a) Analysis
(b) Transition (or Construction)

8. System Architecture Design: First Draft
(a) Design
(b) Elaboration (or Inception)

9. Code: First Draft
(a) Implementation
(b) Construction (or Elaboration for “low hanging fruit”)

10. Code: Ready for Deployment
(a) Implementation
(b) Transition (or Construction for “low hanging fruit”)

6.2 One- Versus Two-Dimensional Life-Cycle Models

Fundamental Question: Can one’s “position” in the Life-Cycle be de-
scribed along only one axis (in which case the model is 1-D), or does one
need two axes (in which case the model is 2-D)?
Examples (not exhaustive):

1-D 2-D
Classical (Waterfall) (Figure 3.2a) Unified Process (Figure 3.2b)
Code-And-Fix Iteration and Incrementation
Open Source? Spiral
Possibly Others... Possibly Others...

Remarks:
1. Two-dimensional models are more complicated, but for all the reasons

from Chapter 2, we cannot avoid working with them, especially the
Unified Process.

2. The Unified Process is the best model we have so far, but it is sure to
be superseded by a superior methodology in the future.
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6.3 Improving the Software Process

1. Our fundamental problem in Software Engineering is our inability to
manage the software process effectively (the text cites a US government
report from 1987 to justify this statement).

2. The US DoD responded by creating the Software Engineering Institute
(SEI) at Carnegie Mellon University.

3. SEI in turn created the Capability Maturity Model (CMM) ini-
tiative.

6.4 Capability Maturity Models

The CMMs are a related group of strategies for improving the software pro-
cess, irrespective of the choice of Life Cycle model used. The word “maturity”
indicates that an organization matures as it improves its processes.

1. SW-CMM (software) We will focus on this one.
2. P-CMM (HR, “P” for “people”)
3. SE-CMM (systems engineering)
4. IPD-CMM (integrated product development)
5. SA-CMM (software acquisition)

These are gathered up as CMM Integration (CMMI).
Idea of SW-CMM:

1. Use of new software techniques alone will not result in increased produc-
tivity and profitability, because our problems stem from how we man-
age the software process. Improving our management of the software
process should drive improvements in productivity and profitability.

2. An organization advances incrementally through five levels of maturity.
(a) Initial

i. No sound software engineering practices are in place: every-
thing is done ad-hoc.

ii. Most projects are late and over budget.
iii. Most activities are responses to crises, rather than preplanned

tasks.
iv. Many organizations are at the initial level!

(b) Repeatable
i. Basic software Project Management practices are in place

(“repeatable” because planning & management techniques are
based on past experience with similar projects).
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ii. Some measurements are taken (e.g tracking costs, schedules).
iii. Managers identify problems as they arise and take immediate

corrective action to prevent them from becoming crises.
(c) Defined

i. The process for software production is fully documented (man-
agement / technical).

ii. There is continual process improvement.
iii. Reviews are used to achieve software quality goals.
iv. CASE environments increase quality / productivity further.

Definition 6.4.1. CASE stands for Computer Aided/Assisted
Software Engineering.

We will discuss CASE in more detail in Chapter 5.
(d) Managed

i. The organization sets quality/productivity goals for each soft-
ware project.

ii. Both are measured continually and corrective action is taken
when there are unacceptable deviations. (Statistical meth-
ods are used to distinguish a random deviation from a mean-
ingful violation of standards.)

iii. Typical measure: # faults / 1000 lines of code, in some time
interval.

(e) Optimizing
i. The goal is continual process improvement.
ii. Statistical quality / process control techniques are used to

guide the organization.
iii. Positive Feedback Loop: Knowledge gained from each

project is used in future projects. Therefore productivity and
quality steadily improve.

7 Lecture 07 - Teams I

Outline
1. Team Organization
2. Classical Chief Programmer Teams
3. Democratic Teams
4. Beyond Chief Programmer and Democratic Teams
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7.1 Team Organization

1. To develop a software product of any significant size, a team is re-
quired.

2. Question: Suppose that a software product requires 12 person-months
to build it. Does it follow that 4 programmers could complete the work
in 3 months?
Answer: No:
(a) There are new issues (communication / integration / etc.) once a

team is involved, as contrasted with an individual.
(b) Not all programming tasks can be fully shared in time or in se-

quencing. Maybe the software product naturally has three chunks,
or maybe it has many chunks with complicated dependencies.

(c) A project manager’s Gantt Chart is a tool for managing the
dependencies in a team project.

3. Another key point:

Definition 7.1.1. Brooks’ Law states that adding programmers
to an already late project makes it later.

Fred Brooks observed this phenomenon while managing the develop-
ment of OS/360, for IBM 360 mainframes.
One reason (not the only one):
The more programmers there are on a team, the more communication
paths there are, and hence the slower overall communication becomes.

Remarks:
1. The rest of Chapter 4 focuses on team organization applied to the

implementation workflow. The problems and solutions are equally
applicable to other workflows.

7.2 Classical Chief Programmer Teams

� A six-person team without a chief programmer has
(
6
2

)
= 15 communi-

cation paths. Every pair of people can communicate directly with each
other.

� A six-person team with a chief programmer (this is Figure 4.3 in the
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text) looks like:

Programming Secretary Chief Programmer Backup Programmer

Programmer Programmer Programmer

There are only 5 communication paths.
�

Definition 7.2.1. A Classical Chief Programmer Team is a team
organized according to some variation of the above picture, possibly with
fewer or more programmers, and having the following roles.

� Chief Programmer
– highly skilled programmer
– successful manager
– does architectural design
– writes critical/complex sections of the code
– handles all interface issues
– reviews the work of all team members (responsible for every line

of code)
� Backup Programmer

– needed in case chief programmer wins the lottery, gets sick, falls
under a bus, changes jobs, etc.

– as competent as the chief programmer in all respects.
– does tasks independent of the design process (e.g. selecting test

cases for black box testing)
� Programming Secretary (aka Librarian)

– maintain the production library, including all project documenta-
tion
* source code (responsible for compiling)
* JCL (job control language, for running mainframe batch jobs)
* test data (executes all tests)

� Programmer
– They just program.

Strengths:
1. This has been enormously successful in a few cases. It was first used

in 1971, by IBM, to automate the clippings data bank (“morgue”) of
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the New York Times and other publications. If you have the text, see
§4.3.1.

Weaknesses:
1. Chief/Backup Programmers are hard to find.
2. Secretaries are also hard to find.

(a) We seek someone with strong technical skills, then demand only
clerical work from them.

3. The Programmers may be frustrated at being “second class citizens”
under this model.

Remarks:
1. In reality, most team organizations lie somewhere between the two ex-

tremes of classical chief programmer (very hierarchical) and democratic
(non-hierarchical).

7.3 Democratic Teams

� Basic concept:

Definition 7.3.1. egoless programming:
1. Code belongs to the team as a whole, not to any individual.
2. Finding faults is encouraged.
3. Reviewers show appreciation at being asked for advice, rather than

ridiculing programmers for making mistakes.

�

Definition 7.3.2. A team of ≤ 10 egoless programmers constitutes a
democratic team.

� Possible managerial issues:
1. For such collaboration to flourish, there must be a strong culture

of open communication.
2. The path for career advancement may not be clear (by definition,

a democratic team has no leader).
� Strengths:

1. Rapid detection of faults → high quality code.
2. Addresses the problem of programmers being overly attached to

their own code.
� Weaknesses:

1. managerial issues as mentioned above
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2. It is hard to create such a team. Such teams tend to spring up
spontaneously from the “grass roots”, often in the context of re-
search as contrasted with the context of business.

3. A certain organizational culture is required before such a team
can emerge.

7.4 Beyond Chief Programmer and Democratic Teams

These two team organizations sit at opposite ends of the continuum:
Classical Chief Programmer Democratic
very hierarchical little hierarchy
little individual freedom much individual freedom

A Conflict Inherent in the Chief Programmer Model:
1. The Chief Programmer must attend all code reviews. They are respon-

sible for every line of code, as the Technical Manager of the Team.
2. The Chief Programmer must not attend any code reviews. They are

the HR Manager, and reviews should never be used for HR performance
appraisals (see Chapter 6).

3. Resolution
(a) Suggestion From Class: Divorce the performance appraisals

from review results (sounds good in theory; problematic in prac-
tice).

(b) From Text: Split the Chief Programmer role into a Team Man-
ager (non-technical) and Team Leader (technical).

4. Requirement Clearly demarcate the duties of each role, wherever there
could be some overlap. The picture below can be scaled up, as in Figure
4.5 of the text.

Team Manager Team Leader

Programmer Programmer Programmer

Student Questions:
1. Do the Programming Secretary and Backup Programmer roles still exist

here?
Instructor Answer: In my experience, no:
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(a) The first version of this model dates from 1971, when a program
was a stack of punch cards. In today’s environment, with “soft”
code, and robust version control, the Programming Secretary is
obsolete.

(b) While a backup programmer is no longer explicitly identified, ev-
ery organization must grapple with succession planning, somehow.

2. Does the Backup Programmer role also have to be split up, like the
Chief Programmer does?
Instructor Answer: No, the split would occur when the Backup
Programmer is promoted to Chief Programmer.

3. What are the strengths of the Classical Chief Programmer Team Or-
ganization?
Instructor Answer:
(a) Key Observation: This team organization is extremely rigid with

respect to which communication paths are permitted. Recall Brooks’
Law (Definition 7.1.1). A Classical Chief Programmer is least vul-
nerable to the effects of Brooks’ Law, because the number of com-
munication paths only grows linearly as the number of program-
mers grows. Under a team organization in which any programmer
can talk to any other programmer, the number of communication
paths grows as the square of the number of programmers.

(b) As will be suggested later for Synchronize and Stabilize teams,
this team organization fosters a team culture in which all team
members work together towards a common goal.

8 Lecture 08 - Teams II

Outline
1. Synchronize and Stabilize Teams
2. Teams for Agile Processes
3. Open Source Programming Teams
4. People Capability Maturity Models
5. Choosing an Appropriate Team Organization

8.1 Synchronize and Stabilize Teams

1. Recall that so far, the synchronize-and-stabilize model has only been
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used within Microsoft.
2. Rule #1: The developers must adhere strictly to the agreed upon

time to check their code in for that day’s synchronization.
3. Rule #2: If a developer’s code prevents the product from being com-

piled for that day’s synchronization, then the problem must be fixed
immediately, so that the rest of the team can test and debug.

4. Remark: The culture of the organization must fully support Rules
#1 and #2 before this life-cycle model and team organization can have
any success.

5. Strengths:
(a) Encourages individual programmers to be creative and innovative,

a characteristic of a democratic team.
(b) The synchronization step ensures that all programmers work to-

gether for a common goal, a characteristic of a chief program-
mer team.

6. Weaknesses:
(a) There is no evidence yet that this model can work outside of Mi-

crosoft.
A Possible Explanation: There is something unique about Mi-
crosoft’s culture, which has yet to be replicated elsewhere.

8.2 Teams for Agile Processes

1. Advantages of pair programming:
(a) “Two heads are better than one.”
(b) It should produce high quality code.
(c) Fewer typos/small bugs.
(d) Programmers do not test their own code.
(e) All knowledge is not lost if one programmer leaves. The remaining

programmer from the pair can train a new pair programmer.
(f) Less experienced programmers can learn from more experienced

programmers.
(g) The technique promotes group ownership of the code, a key feature

of egoless programming.
2. Disadvantages of pair programming:

(a) Twice the person-hours: more expensive.
(b) It can be slow; programmers can become distracted.
(c) Subjective disagreements can waste time.

51



(d) Each programmer must regard the other as an equal.
(e) Feedback given by teammates may not always be constructive.
(f) Extremely shy people might dislike this technique - they must

speak up while (pair) programming and during (daily) meetings.
Overbearing people might dominate.

3. More research is needed to determine whether the benefits outweigh
the costs.

8.3 Open Source Programming Teams

1. Reasons why people would not want to participate in an open source
project:
(a) unpaid
(b) philosophical disagreements about direction.
(c) Since the programmer does not own the code, he/she cannot mon-

etize the work at all, even after the development is done.
(d) You must give up control over the finished product (or even your

own piece of it).
(e) Intellectual property problems: You give away what you produce

during such an effort.
2. Reasons why people choose to participate in an open source project:

(a) You are empowered to fix problems.
(b) It benefits everyone to have some successful open-source products

available.
(c) the sheer enjoyment of accomplishing a worthwhile task. “Making

the world a better place.”
i. Volunteers must continue to perceive that the project is worth-

while; they will drift away if the project begins to seem futile.
(d) the learning experience

i. Employers frequently view experience gained working on a
large, successful open source project as more desirable than
additional academic qualifications.

ii. Hence it is crucial that the project be perceived as possibly
successful to retain its programmers.

(e) An organization depends on an open source application, and hence
is motivated to devote resources to supporting the open source
team.

In summary, an open source project must be viewed at all times as
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a “winner” to attract and retain volunteers to work on it. Corollary:
The key individual behind the project must be a superb motivator.

Morals:
1. For success, top-calibre programmers are required. Such programmers

can succeed, even in an environment as unstructured as an open-source
one.

2. The way that a successful open-source project team is organized is
essentially irrelevant to the success/failure of the project.

8.4 People Capability Maturity Models

1. Recall that P-CMM was the capability maturity model for People. It
describes best practices for managing and developing the workforce of
an organization.

2. Similarly to SW-CMM, an organization progresses through five levels
of maturity with the aim of continuously improving individual skills
and engendering effective teams.

3. Also similarly to SW-CMM, P-CMM is a framework for improving an
organization’s processes for managing and developing its workforce, and
no specific choice of team organization is put forward.
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8.5 Choosing an Appropriate Team Organization

Here is Figure 4.7 from the text:
Team Organization Strengths Weaknesses
Classical Chief Pro- -Major success of -Impractical
grammer Teams (§4.3) NYT project
Democratic -High quality code as a -Experienced staff resent
Teams (§4.2) consequence of positive atti- their code being appraised

tude towards finding faults by beginners
-Particularly good with -Cannot be externally
hard problems imposed

Modified Chief Pro- -Many successes -No success comparable
grammer Teams (§4.3.1) to the NYT project
Modern hierarchical -Team manager / Team -Problems can arise unless team
programming teams leader obviates need for manager / leader responsibilities
(§4.4) chief programmer are clearly delineated

-Scales up
-Supports decentralization
when needed

Synchronize and -Encourages creativity -No evidence so far that this
Stabilize Teams -Ensures that a huge number method can be used
(§4.5) of developers can work outside Microsoft

towards a common goal
Agile Process -Programmers do not -Still too little evidence
Teams (§4.6) test their own code regarding efficacy

-Knowledge is not lost if
one programmer leaves
-Less experienced programmers
can learn from others
-Group ownership of code

Open Source -A few projects are -Narrowly applicable
Teams (§4.7) extremely successful -Must be led by

a superb motivator
-Required top-calibre participants

1. There is no one choice of team organization that is optimal in all situ-
ations. Different strengths / weaknesses will matter more at different
times.
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2. In practice most teams are organized according to some variant of the
(modified) chief programmer model.

9 Lecture 09 - Tools of the Trade I

Outline
1. Stepwise Refinement
2. Cost-Benefit Analysis
3. Divide and Conquer
4. Separation of Concerns
5. Software Metrics

9.1 Stepwise Refinement

Definition 9.1.1. Stepwise refinement is a technique by which we defer
nonessential decisions until later, while focusing on the essential decisions
first.

1. This is a response to Miller’s Law (Definition 3.4.6).
2. The text presents a mini case study in §5.1.1, about designing an up-

dater for a master file.
3. The details of each step in the text example of stepwise refinement

are not important. The important thing is to notice how decisions get
deferred until they must be settled in later iterations.

4. I like the fact that the example in the text is a refinement of a design.
I have found this technique extremely fruitful during my own design
work. It would be less effective during the implementation workflow,
for example.

5. Key Challenge: Decide which issues must be handled in the current
refinement, and which can be deferred until a later refinement. There is
no algorithm to decide! Experience and human intuition are required.

6. In my experience the technique can be effective when working on a
problem either individually or in a group. In a group setting
(a) brainstorming can be used in the early stages, and
(b) more structured reviews can be used in the later stages.

7. Features of Brainstorming
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(a) The problem to be solved may initially be unclear e.g. the team
might start with a symptom, and understand the underlying cause
through brainstorming.

(b) All team members are encouraged to speak, especially the shy
ones.

(c) No editing in the first round(s), when ideas are being suggested.
Editing happens after all ideas have been suggested.

(d) Student Question: Is brainstorming always top-down then?
Instructor Answer: Brainstorming can be
i. top-down for Intuitives, and
ii. bottom-up for Sensors.

Either way can be productive.

9.2 Cost-Benefit Analysis

Definition 9.2.1. Cost-Benefit Analysis is
1. a technique for determining whether a possible course of action would

be profitable, in which we
2. compare estimated future benefits against estimated future costs,
3. often referred to as the “balance sheet view”.
4. When selecting from among several options, the optimal choice maxi-

mizes the difference

(estimated benefits)− (estimated costs).

Pitfalls:
1. We must quantify everything to start. Some things are easier to

quantify than others.
(a) Tangible benefits are easy to measure, e.g. estimated revenue from

a new product.
(b) Intangible benefits can be more challenging e.g. the reputation of

your organization (think Facebook, recently).
i. To quantify intangible benefits, we must make assumptions,

e.g. Facebook hacks will cause 5000 users to close their ac-
counts - then we can estimate lost advertising revenue, using
historical data.
A. Advantage: With better assumptions (say from improved

historical data or from a new team member who brings
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new experiences) we can obtain more accurate quantifica-
tions of our intangible benefits.

B. As software engineering practitioners, we must gather all
of our information by ethical means!

9.3 Divide and Conquer

Definition 9.3.1. To divide and conquer is to break a large problem down
into sub-problems, each of which is easier to solve.

Remarks:
1. Like Stepwise Refinement, Divide and Conquer is also common sense.
2. This is the “oldest trick in the book”.
3. This is a component of the Unified Process.

Definition 9.3.2. An analysis package is defined by:
During the analysis workflow:

1. Partition the software product into analysis packages.
2. Each package consists of a set of related classes (Definition 16.3.1)

that can be implemented as a single unit.

4. During the design workflow:
(a) Partition the implementation workflow into corresponding man-

ageable pieces, termed subsystems.
5. During the implementation workflow:

(a) Implement each subsystem in the chosen programming language.
6. Key Problem: There is no algorithm for deciding how to partition a

software product into smaller pieces. Experience and human intuition
are required.

7. Example: My last large project at SunLife (2003) was developing a
new intranet site. The homepage consisted of four independent quad-
rants. Hence the home page naturally broke down into four analysis
packages, and later, into four subsystems and four streams of imple-
mentation.

9.4 Separation of Concerns

Definition 9.4.1. A software product has separation of concerns if it is
broken into components that overlap as little as possible with respect to their
functionalities.
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Remarks:
1. Separation of concerns is a “new and improved” version of divide and

conquer. The new guiding principle for how to divide up the compo-
nents is to reduce or eliminate the overlaps in their functionalities.

Motivation:
1. Minimize the number of regression faults! If separation of concerns is

truly achieved, then changing one module cannot affect another mod-
ule.

2. When done correctly, this also facilitates re-use of modules in future
software products.

3. Manifestations of separation of concerns:
(a) design technique of high cohesion: maximum interaction within

each module (§7.2).
(b) design technique of loose coupling: minimum interaction be-

tween modules (§7.3).
(c) encapsulation (§7.4).
(d) information hiding (§7.6).
(e) three tier architecture (§8.5.4).

4. Tracking which modules were written by weaker programmers may fa-
cilitate more proactive maintenance work.

Moral: Separation of concerns is desirable for Software Engineering.

9.5 Software Metrics

Definition 9.5.1. A metric is anything that we measure quantitatively.

1. We need metrics to detect problems early in the software process be-
fore they become crises.

2. Examples:
(a) # LOC, lines of code (measures size)
(b) # faults / 1000 lines of code (measures quality)
(c) (after deployment) mean time between failures (measures relia-

bility)
(d) number of person-months to build (measures size)
(e) staff turnover (high turnover affects budgets and timelines)
(f) cost

3. Two types (Exercise: categorize the list above into one of these types):
(a) product metrics, e.g. # lines of code for a software product.
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(b) process metrics, e.g.
i. # lines of code for the organization.
ii. # of faults detected during product development

# of faults detected during product’s lifetime
, taken over all software

products in the organization. (measures effectiveness of fault
detection during development)

4. Some metrics are clearly tied to a certain workflow (e.g. we cannot
count lines of code until implementation)

5. Five essential, fundamental metrics for a software project:
(a) Size (e.g. in # Lines of Code)
(b) Cost to develop / maintain (in dollars)
(c) Duration to develop (in months)
(d) Effort to develop (in person-months; or as in my experience in

person-days)
(e) Quality (in number of faults detected during the project)

6. There is no universal agreement among software engineers about which
metrics are right, or even preferred.

10 Lecture 10 - Tools of the Trade II

Outline
1. Taxonomy of CASE
2. Scope of CASE
3. Software Versions

(a) Revisions
(b) Variations
(c) Moral

4. Configuration Control
(a) Configuration Control During Postdelivery Maintenance
(b) Baselines
(c) Configuration Control During Development

5. Build Tools
6. Productivity Gains with CASE Technology

10.1 Taxonomy of CASE

1. Recall, per Definition 6.4.1, CASE stands forComputer Aided/Assisted
Software Engineering, not Computer Automated Software En-
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gineering.
2. At present, a computer is a tool of, and not a replacement for, a software

professional.
3. CASE tools used during the

(a) earlier workflows (requirements, analysis, design) are called front-
end or upperCASE tools, and

(b) later workflows (implementation, postdelivery maintenance) are
called back-end or lowerCASE tools.

4. Examples
(a) data dictionary - list of every data item defined in the software

product. Some things to include:
i. an English description of every item in the dictionary
ii. Module names ✓
iii. Procedure names: ✓

A. parameters, and
B. their types,
C. locations where they are defined (i.e. which module), and
D. description of purpose

iv. Variable names: ✓
A. types, and
B. locations (i.e. which module & procedure) where they are

defined
(b) consistency checker - to confirm that every data item in the

specification document is reflected in the design, and vice versa.
(c) report generator
(d) screen generator - for creating data capture screens.

5. Taxonomy
(a) Combining multiple tools creates a workbench.
(b) Combining multiple workbenches creates an environment.
(c) So our taxonomy is

tools (task level) → workbenches (team level) → environments
(organization level).

10.2 Scope of CASE

1. Primary motivations for implementing CASE:
(a) Produce high-quality code.
(b) Have up-to-date documentation at all times.
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(c) Automation makes maintenance easier.
(d) Do everything more quickly, hence more cheaply.

2. For example, if a specification is created by hand, there may not be
any way to tell whether the document is current by reading it. On the
other hand, if the specification is maintained within CASE software,
then the latest version is the one the CASE software displays.

3. Similarly, other documentation about the software is easier to maintain
inside of CASE software.

4. Online documentation,word processors, spreadsheets,web browsers,
and email are CASE tools.

5. Coding tools of CASE include
(a) text editors (including structure editors which are sensitive

to syntax, including online interface checking), debuggers,
pretty printers / formatters, etc.

6. An operating system front end allows the programmer to issue
operating system commands (e.g. compile, link, load) from within the
editor.

7. A source-level debugger automatically causes trace output to be
produced. An interactive source-level debugger is what its name
says.

8. Programming-in-the-small: coding a single module.
9. Programming-in-the-large: coding at the system level.
10. Programming-in-the-many: software production by a team.

10.3 Software Versions

10.3.1 Revisions

Definition 10.3.1. A revision is created when a change is made, e.g. to
fix a fault.

1. Old revisions must be retained for reference, e.g.
(a) if a fault is found at a site still running the old revision,
(b) for auditing and
(c) for other reasons.
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10.3.2 Variations

Definition 10.3.2. A variation is a slightly changed version that fulfills
the same role in a slightly changed situation.

Examples:
1. two printer drivers, one for a laser printer and one for an inkjet printer,

or
2. optimizing an application to run on different platforms, e.g. desktop

vs. smart phone.
Remarks:

1. Often the variation is also embedded into the file name.

10.3.3 Moral

1. A CASE tool is needed to effectively manage multiple revisions of mul-
tiple variations.

10.4 Configuration Control

Definition 10.4.1. A configuration of a software product is a list, for
every code artifact, of which version is included in the S/W product.

Definition 10.4.2. A configuration control tool is a CASE tool for man-
aging configurations (Definition 10.4.1).

1. Motivation: Fix S/W faults effectively.
2. The first step towards fixing a problem is to recreate it in a development

environment.
3. If many configurations are possible, then configuration control will be

needed in order to recreate a problem in a development environment.
4. Version control also facilitates ensuring that the correct versions get

included when compiling / linking.
5. A common technique is to embed the version as part of the name.
6. Adding details to a configuration yields a derivation of a S/W product:

Definition 10.4.3. A derivation is a detailed record of a version of
the S/W product, including
(a) the variation/revision of each code element (i.e. the configura-

tion),
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(b) the versions of the compilers/linkers used to assemble the product,
(c) the date/time of assembly, plus
(d) the name of the programmer who created the version.

7. A version-control tool is required to effectively track derivations.

10.4.1 Configuration Control During Postdelivery Maintenance

1. There is an obvious problem when a team maintains a software product.
2. Suppose that two different programmers receive two different fault re-

ports. Suppose further that fixing both faults require changes to the
same code artifact.

3. Without any new process in place, the programmer #2 will undo pro-
grammer #1’s changes at deployment time.

4. See the next subsection for a possible solution to this problem, using
baselines.

10.4.2 Baselines

1. When multiple programmers are working on fixing faults, a baseline
is needed.

2. A baseline is a set of versions of all the code artifacts in a project (i.e.
what versions are in production right now).

3. A programmer starts by copying the baseline files into a private workspace.
Then he/she can freely change anything without affecting anything else.

4. The programmer freezes the version of the artifact to be changed to
fix the fault. No other programmer can modify a frozen version.

5. After the fault is fixed, the new code artifact is promoted to production,
modifying the baseline.

6. The old, frozen version is kept for future reference, and can never be
changed.

7. This technique extends in the natural way to multiple programmers
and multiple code artifacts.

8. Instructor Remark: In my experience, the strict technique described
here is too slow. Instead developer #2 starts work right away, and
incorporates developer #1’s changes as soon as they are promoted to
production. SQA needs to be kept informed in this situation!
One could argue that this technique is vulnerable to exponential growth
of effort as the number of faults in a code artifact increases. The
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instructor counter-argues that if we achieve separation of concerns
in our software products, then the probability of >> 2 simultaneous
faults in one code artifact is low.

Student Question: What if #1 and #2 actually touch the same code?
Instructor Answer: I recommend using the same technique, being mindful
that extra care will be needed when

1. incorporating #1’s changes into #2’s version, and
2. doing SQA (e.g. what should be the test cases and expected results for

pass 0 and for pass 1?).

10.4.3 Configuration Control During Development

1. During Development and Desk Checking, changes are too frequent for
configuration control to be useful.

2. We definitely want configuration control to be in force by the time we
deploy to production.

3. The text author recommends that configuration control should apply
once the code artifact is passed off to the SQA group.
(a) In practice, we can decide when between the end of development

and the time of deployment to begin enforcing configuration con-
trol.

4. The same configuration control procedures as those for postdelivery
maintenance should then apply.

5. Proper version control permits management to take corrective action
if project deadlines start to slip (as they are then aware of the status
of every code artifact).

10.5 Build Tools

Definition 10.5.1. A build tool selects the correct compiled-code artifact
to be linked into a specific version of the S/W product.

1. Some organizations may not want to purchase a complete configuration-
control solution. Then at least a version control tool must be used in
conjunction with a build tool (Definition 10.5.1).

2. Issue: While a version control tool assists programmers in deciding
which version of the source code is the latest, compiled code does not
automatically get a version attached to it. Possible solutions (present
in class only if time permits):
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(a) Automatically re-compile and re-link every night. Obviously this
is expensive.

(b) Use a tool like make to decide more intelligently, based on date and
time stamps of compiled code. This idea has been incorporated
into many different programming environments.

3. Student Question: What is the difference between a build tool (Def-
inition 10.5.1) and a configuration control tool (Definition 10.4.2)?
Answer: The purpose of a build tool is to make certain we have
the correct compiled code artifacts linked in to a specific version of the
S/W product. This can be effective for a small organization, managing
one version of a S/W product at one location. This explains why auto-
recompiling each night is a viable technique.
A configuration control tool is needed to manage multiple revi-
sions of multiple variations. E.g. for a large organization which must
manage multiple configurations running simultaneously across multiple
locations.

10.6 Productivity Gains with CASE Technology

1. Research to date shows a modest gain in productivity following the
introduction of CASE tools to an organization.

2. Other benefits of using CASE tools:
(a) faster development
(b) fewer faults
(c) better usability (e.g. from a screen generator)
(d) easier maintenance
(e) improved morale on the IT team

3. This list of CASE tools is summarized in Figure 5.14 in the text.
Build tool (§5.11) Coding tool (§5.8)
Configuration-control tool (§5.10) Consistency checker (§5.7)
Data dictionary (§5.7) E-mail (§5.8)
Interface checker (§5.8) Online documentation (§5.8)
Operating system front end (§5.8) Pretty printer (§5.8)
Report generator (§5.7) Screen generator (§5.7)
Source-level debugger (§5.8) Spreadsheet (§5.8)
Structure editor (§5.8) Version-control tool (§5.9)
Word-processor (§5.8) World Wide Web browser (§5.8)
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11 Lecture 11 - Testing I - Non-Execution-

Based Testing

Outline
1. Quality Issues

(a) Software Quality Assurance (SQA)
(b) Managerial Independence

2. Non-Execution Based Testing
(a) Reviews
(b) Walkthroughs
(c) Managing Walkthroughs
(d) Inspections
(e) Comparison of Walkthroughs and Inspections
(f) Strengths and Weaknesses of Reviews
(g) Metrics for Inspections

11.1 Quality Issues

Terminology:
Recall Definition 3.4.3 of a fault.

Definition 11.1.1. A failure is an observed incorrect behaviour of the S/W
product caused by a fault.

Definition 11.1.2. Error is the amount by which the software product’s
output is incorrect (i.e. the statistical sense of error).

Definition 11.1.3. A defect is a generic term for a fault, failure or error.

Definition 11.1.4. Quality describes the extent to which the S/W product
satisfies its specification.

11.1.1 Software Quality Assurance (SQA)

1. Quality alone is not enough: the software also must be easily main-
tained.

2. SQA must be built in throughout the project, not simply imposed by
the SQA group at the end of a workflow, say.

3. Primary Duty of SQA Group: Ensure
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(a) the quality (usual English meaning) of the S/W process, and thus
ensure

(b) the quality (S/W product meaning) of the S/W product.
4. Once the developers complete a workflow and check their work, the

SQA team must verify that all artifacts are correct.

11.1.2 Managerial Independence

1. Development and SQA teams should be led by independent managers,
neither of whom can overrule the other.

2. Reason: Often major faults are found as the delivery deadline ap-
proaches. Then the S/W organization must decide between
(a) delivering the S/W on time with faults (likely development’s choice,

since they are more often driven by deadlines), or
(b) fixing the faults and delivering late (likely SQA’s choice, since they

are more often driven by quality).
3. Both must report to a third manager, who must then make the decision

about what to do on a case-by-case basis.

11.2 Non-Execution Based Testing

11.2.1 Reviews

Definition 11.2.1. A review is a walkthrough or an inspection.

Common Features of All Reviews
1. non-execution based testing, i.e. no code is executed for this type

of test
2. centred around a meeting of key stakeholders
3. chaired by SQA representative (because SQA has the biggest stake in

getting all artifacts correct, and not letting faults slip through).
4. the meeting is to test a document to identify, but not attempt to

fix, faults in that document.
Reasons:
(a) committee’s solution is usually of lower quality than that of a

trained expert
(b) committee’s solution takes 4-6 times as much effort as an individ-

ual’s.
(c) not all “faults” identified during a review are truly faults.
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(d) takes too much time: a review should last at most two hours.

11.2.2 Walkthroughs

The two steps for a walkthrough:
1. preparation
2. team analysis of the document

4-6 participants (e.g. for an analysis artifact):
1. SQA (chair - as above)
2. manager responsible for requirements (previous workflow)
3. manager responsible for analysis (current workflow)
4. manager responsible for design (next workflow)
5. client representative (maybe less crucial for later workflows)

11.2.3 Managing Walkthroughs

1. Two fundamental approaches to conducting a walkthrough:
(a) participant driven
(b) document driven (usually more detailed and hence more time-

consuming and effective at finding faults)
Here is where the text explains (again) why reviews should not be used
for performance appraisals:
(a) in a review, success = finding faults
(b) in a performance appraisal, success = finding no faults

11.2.4 Inspections

The five steps for an inspection (each with a formal process):
1. overview document author gives the overview; document is distributed

to the participants.
2. preparation participants examine the document, individually.
3. inspection quick document walkthrough; immediately commence fault-

finding.
4. rework document author corrects all faults noted in the written report

from step 3.
5. follow-up moderator ensures that every fault identified has been fixed,

and that no new faults were introduced in the process of fixing.
Roles for an Inspection (e.g. for a Design Artifact):

1. moderator (from SQA)
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2. analyst (i.e. stakeholder, previous workflow)
3. designer (i.e. document author; stakeholder, current workflow)
4. implementer (i.e. stakeholder, next workflow)
5. tester (SQA, a different person than the moderator)

11.2.5 Comparison of Walkthroughs and Inspections

Remarks:
1. Although inspections are more costly, there is evidence (see text §6.2.3)

that they are more effective at finding faults.

11.2.6 Strengths and Weaknesses of Reviews

Strengths:
1. effective at detecting faults, especially
2. early in the life-cycle, when they are cheaper to fix.

Weaknesses:
1. A large S/W product’s artifacts are hard to review, unless they consist

of smaller, independent components. Using OO helps to mitigate this.
2. Effectiveness of review team is hampered if not all documentation from

the previous workflow is completed yet.

11.2.7 Metrics for Inspections

Examples:
1. inspection rate:

(a) requirements/designs: # of pages / hour
(b) code: # of lines of code / hour

2. fault density
(a) requirements/designs: # of faults (major/minor) / page
(b) code: # of faults (major/minor) / 1000 lines of code

3. fault detection rate: # of faults (major/minor) detected / hour
4. fault detection efficiency: # of faults (major/minor) detected /

person-hour
Remarks:

1. The metrics attempt to measure our effectiveness at finding faults.
2. A spike in any of these metrics might indicate that the quality of the

S/W development work has suddenly decreased, and not that fault
detection has suddenly improved.
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12 Lecture 12 - Testing II - Execution Based

Testing

Outline
1. Execution-Based Testing
2. What Should Be Tested?

(a) Utility
(b) Reliability
(c) Robustness
(d) Performance
(e) Correctness

12.1 Execution-Based Testing

Testing is a crucial part of any software development life-cycle. However we
must keep in mind that (as Dijkstra points out), testing can demonstrate the
presence of faults in a software product, not their absence.
One reason: Test cases are only as good as the tester selecting them. Things
can get missed.

12.2 What Should Be Tested?

Definition 12.2.1. Execution-Based Testing is a process of inferring
certain behavioural properties of a software product based, in part, on the
results of running the software product in a known environment with selected
inputs.

Three Troubling Details About Definition 12.2.1:
1. Testing is an inferential process. There is no algorithm for determining

whether faults are present! A test run with correct results may simply
fail to expose a fault.

2. What do we mean by known environment? We can never fully know
our environment. The text gives the example that an intermittent
hardware fault in the computer’s memory system could cause failures,
even if the code is perfect.

3. What do we mean by selected inputs? With a real-time system, no
control over the inputs is possible, e.g.
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(a) an avionics system in an aircraft, for which the inputs describing
the current state of the aircraft’s flight cannot be controlled (a
partial solution to this problem is provided by a simulator), and

(b) a system for controlling trains.
Remarks:

1. Despite these problems, Definition 12.2.1 is the best one available.

12.2.1 Utility

Definition 12.2.2. The utility of a software product is the extent to which
the software product meets the user’s needs when operated under conditions
permitted by its specification.

Elements:
1. Is the software product easy to use?
2. Does the software product perform useful functions?
3. Is the software product cost effective?

Remarks:
1. If a software product fails a test of its utility, then testing should pro-

ceed no further!

12.2.2 Reliability

Definition 12.2.3. The reliability of a software product measures the fre-
quency and severity of its failures.

Elements:
1. mean time between failures (Recall Definition 11.1.1.) Long times

→ more reliable.
2. mean time to repair failures Long times → less reliable.

(a) Also important (often overlooked): time required to fix the
effects of the failure (e.g. correcting corrupted data). Long times
→ less reliable.

12.2.3 Robustness

Elements:
1. range of operating conditions (permissible by the specifications, or not)

(a) A robust product has a wide range of operating conditions, in-
cluding some outside its specification.
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2. possibility of unacceptable output given acceptable input
(a) A robust product produces acceptable output, given acceptable

input.
3. acceptability of output given unacceptable input

(a) A robust product produces acceptable output (e.g. a helpful error
message instead of a crash), even given unacceptable input.

12.2.4 Performance

1. It is crucial to verify that a software product meets its constraints with
respect to:
(a) Space constraints which can be critical in miniature applications,

e.g.
i. missile guidance systems as in the text, or
ii. smart phone apps.

(b) Time constraints which can be critical in real time applications,
e.g.
i. measuring core temperature in a nuclear reactor as in the text,

or
ii. controlling signals on a railroad network.

12.2.5 Correctness

Definition 12.2.4. A software product is correct if it satisfies its output
specification, without regard for the computing resources consumed, when op-
erated under permissible (pre-)conditions.

Remarks:
1. This definition is partial correctness. It tacitly assumes that the

program terminates.
Problems with Definition 12.2.4:

1. Specifications can be wrong.
(a) Then a software product can be correct, but not be acceptable.

i. Cute text example: a sort program whose specification omits
the requirement that the sorted list be a permutation of the
original list - clearly not acceptable!

2. (a) A software product can be acceptable, but not be correct.
i. Cute text example: a compiler, faster than its predecessor,

but which prints a spurious error message (which is easily
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ignored) in one rare situation. This compiler is acceptable.
However it is not correct since producing the spurious error
message is not part of its specification.

13 Lecture 13 - Testing III - Proving Pro-

gram Correctness

Outline
1. Testing Versus Correctness Proofs

(a) Example of a Correctness Proof
(b) Correctness Proof Mini Example
(c) Correctness Proofs and Software Engineering

2. Who Should Perform Execution-Based Testing?
3. When Testing Stops

13.1 Testing Versus Correctness Proofs

Definition 13.1.1. A correctness proof is a mathematical technique for
demonstrating that a program is correct (see Definition 12.2.4).

Remarks:
1. The text shows a technique which uses flowcharts to argue the correct-

ness of a program. This technique is cute, but is not used in industry.
So we will not spend time learning this technique.

2. My lecture notes/slides show an example (directly stolen from CS 245)
which uses the technique of Hoare triples (assertions inserted into
the code, which assemble into a proof of program correctness). This
technique is used in industry, but requires mathematical machinery
(Predicate logic, a.k.a. first-order logic) which we do not have
as a pre-requisite for CS 430. So we will not spend time learning this
technique in detail either.

3. It is enough for us to know that the Hoare triple technique can be
carried out, with enough mathematical background, and patience.

13.1.1 Example of a Correctness Proof

Prove the total correctness of the program below, which computes a facto-
rial.

73



Lx ≥ 0M
y = 1 ;

z = 0 ;

while (z != x) {
z = z + 1 ;

y = y * z ;

}
Ly = x!M

At the while statement:

x y z z ̸= x
5 1 0 true
5 1 1 true
5 2 2 true
5 6 3 true
5 24 4 true
5 120 5 false

From the trace and the post-condition, a candidate loop invariant is y = z!
Here is the annotated program.

Lx ≥ 0M
L1 = 0!M assignment
y = 1 ;

Ly = 0!M assignment
z = 0 ;

Ly = z!M assignment
while (z != x) {

L(y = z! ∧ z ̸= x)M partial-while
Ly(z + 1) = (z + 1)!M implied (b)
z = z + 1 ;

Lyz = z!M assignment
y = y * z ;

Ly = z!M assignment
}
L(y = z! ∧ z = x)M partial-while

74



Ly = x!M implied (b)

Proof of implied (a): {x ≥ 0} ⊢ 1 = 0!.
This result is obvious, by definition of factorial.
Proof of implied (b): {(y = z! ∧ z ̸= x)} ⊢ y(z + 1) = (z + 1)!.
This result is obvious.
Proof of implied (c): {(y = z! ∧ z = x)} ⊢ y = x!.
This result is also obvious.
This completes the proof of partial correctness.
Proof of Termination: The factorial code from earlier has a loop guard
of z ̸= x, which is equivalent to x− z ̸= 0.
What happens to the value of x− z during execution?

Lx ≥ 0M
y = 1 ;

z = 0 ; At start of loop: x− z = x ≥ 0✓
while (z != x) {

z = z + 1 ; x− z decreases by 1 ✓
y = y * z ; x− z unchanged

}
Ly = x!M

The value of x − z will eventually reach 0. The loop then exits and the
program terminates. ✓
This completes the proof of total correctness.

13.1.2 Correctness Proof Mini Example

See the Example document.
Moral: Even if a proof of a program’s correctness has been found, the
program must still be tested thoroughly.

13.1.3 Correctness Proofs and Software Engineering

1. Proposed reasons why correctness proving should not be a standard
software engineering technique:
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(a) S/W Engineers lack the mathematical training to write correct-
ness proofs. Partial Refutation:
i. This may have been true in the past.
ii. However many CS graduates today (including all from uWa-

terloo) do have the required mathematical background.
(b) Correctness proving is too time consuming and hence too expen-

sive. Partial Refutation:
i. Costs can be assessed using a cost-benefit analysis, on a project-

by-project basis.
ii. The benefit is weighted higher the more that correctness mat-

ters, e.g. where human lives depend on program correctness.
(c) Correctness proving is too difficult. Partial Refutation:

i. Some non-trivial S/W products have successfully been proven
correct.

ii. There exists theorem-proving software to save manual work
in some situations.

iii. However proving program correctness in general is an un-
decidable problem, so no theorem-prover can handle every
possible situation.

Morals:
1. Correctness proving is a useful tool, when human lives are at stake, or

when the cost-benefit analysis justifies doing it for other reasons.
2. However correctness proving alone is not enough. Testing is still a

crucial need for a S/W product.
3. Languages like Java and C++ support variations of an assert state-

ment, which permits a programmer to embed assertions directly into
the code. A switch then controls whether assertion checking is enabled
(slower) or not (faster) at run time.

4. Model checking is a new technology that may eventually replace
correctness proving. It is describe in Chapter 18 of the text, which
unfortunately will be beyond the scope of CS 430.

13.2 Who Should Perform Execution-Based Testing?

1. Programmers should not have the ultimate responsibility to test their
own code. Reasons:
(a) Fundamental conflict of motivations

i. Coding is constructive.
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ii. Testing’s goal (exposing faults) is destructive.
iii. Programmers feel protective of their own code, hence they

have an incentive not to expose faults in the code.
(b) The programmer may have misunderstood the specification.

i. An SQA professional has a better chance to understand the
specification correctly, and to test accordingly.

2. After the programmer completes and hands off the code artifact, SQA
should perform systematic testing:

Definition 13.2.1. Systematic testing is described by the following
procedure:
(a) Select test cases to exercise all parts of the specification.
(b) For each test case, determine its expected output before execu-

tion starts.
(c) Execute the program on each test case, and record the actual

results.
(d) Compare the actual results to the expected results. Document all

differences.
(e) Correct faults (either in the specification or in the code or possibly

both) which explain each difference, and repeat the execution.
(f) Archive all test results electronically, for purposes of regression

testing during future projects and post-delivery maintenance.

(a) Ambiguity about the term desk checking in the text:
i. first mention (description of testing workflow): Here desk check-

ing meant the testing that a programmer does during develop-
ment. This is the meaning with which I was already familiar
from my time in industry.

ii. second mention (description of who should perform execution-based testing):
Here desk checking means the checking of the design artifact
that the programmer does before starting to code.

3. As outlined earlier, the SQA group must have managerial independence
from the development team.

13.3 When Testing Stops

1. Only when the S/W product is decommissioned and removed from
service, should testing stop.

Questions from the Class:
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1. Will we have to write correctness proofs like the one in the notes for
this lecture?
Answer: No.
(a) I will include a small example of the Hoare Triple technique for

the next assignment, which can be done “with bare hands” (i.e.
you will not need the machinery that the example uses).

(b) There will be no correctness proving on the Final Exam.

14 Lecture 14 - The OO Paradigm - Cohesion

and Coupling

Outline
1. What is a Module?
2. Cohesion (§7.2)
3. Coupling (§7.3)
4. Cohesion / Coupling Example

14.1 What is a Module?

Remarks:
1. Chapter 7 does a poor job of explaining the object-oriented paradigm.

So we will use more industry-standard definitions than the text does.
Use our definitions instead of the text’s, where they disagree.

2. All of Chapter 7 is “white-box”, not “black-box”. We cannot assess
cohesion / coupling unless we can see all of the code.

3. However, soon (i.e. after discussing encapsulation (Definition 15.1.1)
and information hiding (Definition 16.2.1), we will see that it is a
best practice not to expose all of the code to the outside world.

Key Quotation: When a large S/W product consists of a single monolithic
block of code, maintenance is a nightmare.
A working definition for us:

Definition 14.1.1. A module is a lexically contiguous sequence of program
statements, bounded by boundary elements and having an aggregate identifier.

Remarks About Definition 14.1.1:
1. Every function/procedure of the classical paradigm is a module.
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2. In the OO paradigm, every class and every method within a class is a
module.
(a) The main idea of OO is to keep data, and operations on that data,

together.
(b) We need to be clear about the difference between the program

statements that define the properties (a.k.a. attributes) of a class,
and some instantiation of that class. Only an instantiation of a
class can actually contain data.

Definition 14.1.2. C/SD is an acronym for composite/structured de-
sign.

Remarks:
1. The aim of C/SD is to apply common sense to make S/W product

designs “make sense”. (E.g. see Figures 7.1 to 7.3 in the text for
designs that do, and do not, make sense.)

2. C/SD done well achieves separation of concerns (Definition 9.4.1).

14.2 Cohesion (§7.2)

Definition 14.2.1. Cohesion of a module is the degree of interaction within
that module.

Remarks:
1. The text defines many levels of cohesion. Do not memorize these!
2. For us, it will be enough to distinguish between high and low cohesion.

high = good; low = bad.

14.3 Coupling (§7.3)

Definition 14.3.1. Coupling of a pair of modules is the degree of interac-
tion between the two modules.

Remarks:
1. The text defines many levels of coupling. Do not memorize these!
2. For us, it will be enough to distinguish between loose and tight cou-

pling. loose = good; tight = bad.
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14.4 Cohesion & Coupling Example

Remarks on Assessing Cohesion and Coupling:
1. Suppose that we are given two pairs of modules and it is our job to

assess which pair’s modules have
(a) high versus low cohesion, and
(b) loose versus tight coupling.

2. Because we have dispensed with the detailed levels of cohesion and cou-
pling from the textbook, therefore making both judgments is relative,
not absolute.

3. We can decide
(a) which pair’s modules have higher cohesion than the modules of

the other pair, and
(b) which pair’s modules have looser coupling than the modules of the

other pair.
4. In past offerings of CS 430, cohesion and coupling has caused some

confusion. Keep our definitions, plus the above remarks in mind, and
work out your comparisons carefully.

Cohesion / Coupling Example Refer to the Examples document.
Results:

1. low cohesion, tight coupling (bad)
2. high cohesion, loose coupling (good)

Why Coupling is Important
1. Tight coupling means a higher probability of regression faults.
2. Suppose modules p and q are tightly coupled.
3. Then it is likely that making a change to p requires a change to q.
4. Making the change to q adds time, and hence cost, to the project (which

would not be required with looser coupling).
5. Not making the change to q likely causes a fault later on.
6. The stronger the coupling with some other module, the more fault-

prone a module is.
7. This in turn makes the module the more difficult and costly to maintain.
8. As mentioned above, our goal is high cohesion and loose coupling. The

rest of Ch7 is about refining the techniques to achieve this goal. Ch14
of the text goes into more detail; unfortunately this will be beyond the
scope of CS 430.

9. Also note that separation of concerns (in general terms) means high
cohesion and loose coupling (in OO terms).
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15 Lecture 15 - The OO Paradigm - Encap-

sulation and Abstraction

Outline
1. Encapsulation (§7.4)

(a) Encapsulation and Development (§7.4.1)
(b) Encapsulation and Maintenance (§7.4.2)

15.1 Encapsulation (§7.4)

1. We briefly studied modules having high cohesion and loose coupling
from §7.2 and §7.3.

2. These are key ingredients in understanding the OO paradigm.
3. We introduce another key ingredient now.

Definition 15.1.1. In OO programming, encapsulation refers to one of
two related but distinct notions, and sometimes to the combination thereof:

1. A language construct for restricting direct access to some parts of a
module.

2. A language construct for bundling data with the methods (or other
functions) operating on that data.

We will adopt Definition # 2.

Remarks:
1. Why we adopt Definition # 2: In many OO languages, hiding of com-

ponents is not automatic or can be overridden; thus, information
hiding (Definition 16.2.1) is defined as a separate notion.

2. Encapsulation plus information hiding (Definition 16.2.1) is used to
hide the values of a structured data module, preventing unauthorized
parties’ direct access to them.

3. Publicly accessible methods are provided (so-called getters and set-
ters) to access the values; other client modules call these methods to
retrieve/modify the values within the module.

4. Hiding the internals of the module protects its integrity by preventing
users from setting the internal data of the module into an invalid /
inconsistent state.

5. A benefit of encapsulation is that it can reduce system complexity, and
thus increase reliability, by allowing the developer to limit the inter-
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dependencies between S/W components (i.e. this provides a technique
for achieving separation of concerns).

6. The features of encapsulation are supported by using classes (Defini-
tion 16.3.1) in OO programming languages.

7. Encapsulation is not unique to OO programming. Implementations
of abstract data types (Definition 16.1.1) offer a similar form of
encapsulation.

8. See the Example (text pp 199-201) of refining a S/W product from an
initial design having low cohesion into a better design having encapsu-
lation.

9. In the first solution to the Cohesion/Coupling example (last lecture), we
could have achieved high cohesion and loose coupling by simply copying
all the needed code into both modules. But this would indicate a failure
to abstract effectively (Definition 15.1.2). We would have duplicated
code in the two modules.

10. Moral: Doing OO effectively requires doing a good job on all of its
ingredients.

15.1.1 Encapsulation and Development (§7.4.1)

Remarks:
1. Abstraction is a way of simplifying things so that they become easier

to understand. E.g. representing the motion of the objects in the solar
system by abstracting planets to points.

2. Effective abstraction helps us to see how things which appear different
at first glance are actually the same in all relevant ways.

3. In S/W development, abstraction lets us focus on what a module does
and not on how the module does it.

Definition 15.1.2. Abstraction is suppressing irrelevant details and ac-
centuating relevant details.

Definition 15.1.3. A data abstraction is an abstraction done on data.

Definition 15.1.4. A procedural abstraction is an abstraction done on
code.

Remarks:
1. Abstraction is a means of achieving stepwise refinement (Defini-

tion 9.1.1).
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2. As a recommendation to the programmer, the abstraction principle
reads

Each significant piece of functionality in a program should be
implemented in just one place in the source code. Where
similar functions are carried out by distinct pieces of code,
combine them into one, abstracting out the varying parts.

In short, “Don’t repeat yourself.”
3. Effective abstraction guides us to good choices of what to encapsulate

when we design and develop our S/W.
4. Abstraction and encapsulation are different, but go hand-in-hand in

OO design and development.
5. Abstraction permits a designer to temporarily ignore the details of the

levels above and below the level currently being worked on, both in
terms of data and procedures. An example of a data abstraction
(Definition 15.1.3) is:
(a) A database designer focuses on designing a table, temporarily ig-

noring the details of
i. the whole database (the level above), and
ii. the other tables having foreign key relationships to the current

table (the level below).

15.1.2 Encapsulation and Maintenance (§7.4.2)

Idea: Design a S/W product to encapsulate the parts that are most likely
to change in the future. Doing this effectively will minimize the impact of
inevitable changes, on the other components. N.B. There is no algorithm for
deciding how to do this. Human intuition and experience are required.

1. Data structures tend not to change very frequently (but data abstrac-
tion helps if they do).

2. Business rules tend to change more frequently (and procedural ab-
straction helps when they do).
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16 Lecture 16 - The OO Paradigm - Abstract

Data Types, Information Hiding and Ob-

jects

Outline
1. Abstract Data Types (§7.5)
2. Information Hiding (§7.6)
3. Objects (§7.7)

16.1 Abstract Data Types (§7.5)

Definition 16.1.1. An abstract data type is a mathematical model of
1. the data objects comprising a data type, and
2. the functions that operate on these data objects.

Examples:
1. The integers are an ADT, defined as the values {. . . ,−2,−1, 0, 1, 2, . . .},

and by the operations of +, −, ∗, and sometimes /, etc., which behave
according to the familiar rules of arithmetic (e.g. associativity, com-
mutativity, distributive laws, no dividing by 0, etc).
Typically integers are represented in a data structure as binary num-
bers, but there are many representations.
The user is abstracted from the concrete choice of representation, and
can simply use the data objects and operations according to the familiar
rules.

2. a stack (i.e. a last-in, first-out data structure).
Remarks:

1. An abstract data type (ADT) need not be an arithmetic object it-
self; however each of its operation must be defined by some algorithm.

2. In CS, an abstract data type (ADT) is a mathematical model,
where a data type is defined by its behaviour (“what it does”, not
“how it does it”) from the point of view of a user (not an implementer),
specifically:
(a) possible values,
(b) possible operations on data of this type, and
(c) the behaviour of these operations.
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3. This contrasts with data structures, which are concrete representa-
tions of data, from the point of view of an implementer, not a user.

4. Using abstract data types supports abstraction of both kinds, data and
procedural.

5. Hence abstract data types are desirable from the viewpoints of both
development and maintenance.

16.2 Information Hiding (§7.6)

This is the last key ingredient in understanding the OO paradigm.

Definition 16.2.1. Information hiding means hiding the implementation
details of a module (data + code) from the outside world.

How Information Hiding is Useful at Design Time:
1. Make a list of implementation decisions which are likely to change in

the future.
2. Design the resulting modules such that these implementation details

are hidden from other modules.
3. This practice protects other parts of the software product from the im-

pact of extensive changes if the implementation decisions are changed.
Remarks:

1. A module affords this protection by
(a) encapsulating the data/operations to be hidden together,
(b) hiding the details using a language construct like private, and
(c) providing a stable interface.

2. A class (Definition 16.3.1) may be implemented
(a) without information hiding (bad), or
(b) with information hiding (good).

16.3 Objects (§7.7)

Remarks:
1. The text attempts to exhibit a “straight line” path from modules to

objects. In my humble opinion this does not tell the OO story correctly.
2. All ingredients need to be (independently) done well for effective OO

development, which will realize the benefits of:
(a) fewer regression faults,
(b) cheaper maintenance and

85



(c) re-use.
3. Reminder: Use our definitions from the Lectures Notes instead of the

definitions from the text, where there are any conflicts.

Definition 16.3.1. A class is an abstract data type (Definition 16.1.1)
that supports inheritance (Definition 16.3.2).

Definition 16.3.2. Inheritance allows a new data type to be defined as an
extension of a previously defined type, rather than having to be defined from
scratch.

Examples (Remark: the text example, in which Person is the parent class
of the Parent class, is needlessly confusing!)

1. Start with a Person class, having
(a) Properties (/ Attributes)

i. LastName,
ii. FirstName,
iii. DateOfBirth
and

(b) Methods
i. createFullName,
ii. createEmail and
iii. computeAge.

2. Then define a Student class, having all the Properties/Methods of
Person, plus
(a) Properties

i. StudentNumber
ii. CumulativeAverage (in reality we would compute this from

individual grades rather than storing it; we make it a property
here for simplicity).

3. Then define a Professor class, having all the Properties/Methods
of Person, plus
(a) Properties

i. EmployeeNumber
ii. NSERCAccountNumber.

4. Then each of Student, Professor
(a) inherits from Person,
(b) isA Person, and
(c) is a specialization of Person.
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5. Here is a diagram of the relationships between these classes.

Person

LastName : string
FirstName : string
DateOfBirth : date

createFullName()
createEmail()
computeAge()

Student

StudentNumber : string
CumulativeAverage : double

Professor

EmployeeNumber : string
NSERCAccountNumber : integer

Definition 16.3.3. An object is an instantiation of a class (Definition
16.3.1).

Examples:
1. CollinRoberts could be an instantiation of the Professor class.

Definition 16.3.4. Aggregation/Composition refers to the component
classes of a larger class (i.e. grouping related classes creates a larger class).

Example (Aggregation):

PersonalComputer

CPU Monitor Keyboard Printer

Definition 16.3.5. Association refers to a relationship (of some kind)
between two apparently unrelated classes.
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Example (Association):

consults
Radiologist Lawyer

The diagram indicates that Radiologist consults Lawyer.

17 Lecture 17 - The OO Paradigm - Inheri-

tance, Polymorphism, and Dynamic Bind-

ing

Outline
1. Inheritance, Polymorphism, and Dynamic Binding (§7.8)
2. The Object-Oriented Paradigm (§7.9)

17.1 Inheritance, Polymorphism, and Dynamic Bind-
ing (§7.8)

Example:
1. Consider a File class, with an Open method.
2. An instantiation of a File might be stored on

(a) hard disk,
(b) flash drive or
(c) tape,
so the code inside the Open method must be different in each situation.

3. The File base class has derived classes
(a) HardDiskFile,
(b) FlashDriveFile and
(c) TapeFile,
each having an Open method specific to its medium.

4. The File class has a dummy Open method.
5.

Definition 17.1.1. At run time, the system decides which Open method
to invoke. This is called dynamic binding.

6.
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Definition 17.1.2. The Open method is called polymorphic, because
it applies to different sub-classes, differently.

7. Problems with Dynamic Binding/Polymorphism
(a) We cannot determine at compile time which version of a polymor-

phic method will be called at run time. This can make failures
hard to diagnose.

(b) Similarly a S/W product that makes heavy use of polymorphism
can be hard to understand and hence hard to maintain/enhance.

17.2 The Object-Oriented Paradigm (§7.9)

17.2.1 Summary of Reasons Why OO is Better than Classical

1. OO treats data and operations on that data together, with equal im-
portance.

2. So a well-designed class does a good job of modelling some real-world
entity.

3. A well-designed class also fosters re-use.
4. High cohesion + loose coupling → fewer regression faults.
5. Postdelivery maintenance is also improved.

17.2.2 The History that Led Us to the Current State of S/W
Engineering.

1. In the 1960s and early 1970s, S/W Engineering was non-existent.
2. The Code-And-Fix model was the norm.
3. Hence the Classical model was most developers’ first experience with

S/W Engineering practices.
4. Adopting the Classical life-cycle model yielded major improvements in

productivity and S/W quality at the time.
5. However as S/W products grew larger and more complex, the weak-

nesses of the Classical paradigm (which we have already discussed)
became more pronounced, and the OO paradigm was proposed as a
better alternative.

17.2.3 Problems With OO

Problem: There is a learning curve associated with adopting the OO paradigm
for the first time. The first project done with OO takes longer than doing the
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same project with the Classical paradigm. This is particularly pronounced
if the project has a large GUI component. But after the initial project,

1. the re-use of classes in subsequent projects usually pays back the initial
investment (again, this is more pronounced with a large GUI compo-
nent) and

2. post-delivery maintenance costs are reduced.

17.2.4 Problems With inheritance

Definition 17.2.1. Any change to the base class affects all of its descen-
dants. This phenomenon is known as the fragile base class problem.

1. In the best case, all descendants need to be recompiled after the base
class is changed.

2. In the worst case, all descendants have to be re-coded then re-compiled.
This is bad!

To mitigate this, meticulously design all classes, especially parent classes in
an inheritance tree.

17.2.5 Cavalier use of inheritance

1. Unless explicitly prevented, every subclass inherits all the Proper-
ties/Methods of its parent. The reason to create a subclass is to add
Properties/Methods. Hence objects lower in the inheritance tree can
quickly become large, leading to storage problems.

2. Recommendation: change our philosophy from “use inheritance when-
ever possible” to “use inheritance whenever appropriate”.

3. Also explicitly exclude Properties/Methods from being inherited, where
this makes sense.

17.2.6 One Can Code Badly in Any Language

1. This is especially true of programming in an OO language. OO lan-
guages have constructs that add unnecessary complexity to the S/W
product when they are misused.

2. We must endeavour to produce high-quality code when working with
the OO paradigm.
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17.2.7 OO Will Be Replaced In The Future

1. As mentioned earlier, the OO paradigm is certain to be superseded by
some superior methodology in the future.

2. Aspect Oriented Programming (AOP) (covered in §18.1 in the
text) is one possible candidate to replace the OO paradigm.

18 Lecture 18 - Reusability

Outline
1. Re-Use Concepts
2. Impediments to Re-Use
3. Types of Re-Use

(a) Accidental (Opportunistic)
(b) Deliberate (Systematic)

4. Objects and Re-Use
5. Re-Use During Design and Implementation

(a) Library (toolkit)
(b) Application Framework
(c) Software Architecture
(d) Component-Based Software Engineering

18.1 Re-Use Concepts

Importance of Re-usability
1. Advantages of Re-Use

(a) Save time/resources during development/testing. “Don’t re-invent
the wheel”.

(b) Maintenance becomes cheaper.
(c) Library subroutines are tested, (supposedly) well–documented

2. Pitfalls of Re-Use
(a) Depending too heavily on re-use can make us averse to writing

new code, even where this is needed.
(b) Suppose that we need to extend/enhance an existing module be-

fore we can re-use it. This risks introducing regression faults for
existing consumers of the module.

(c) Old modules might not be as “good” (efficient, secure, having
good style, etc.) as new modules.
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(d) If we view the re-used module as black-box, then we may struggle
to confirm that our S/W product will actually match the spec; if
a failure occurs in the re-used module after deployment, then we
may be slow to diagnose the cause.

(e) Compatibility Issues:
i. S/W versions, or
ii. the provided interface (the Adapter design pattern can some-

times solve this problem).
(f) Writing a module to handle multiple situations can make the mod-

ule less efficient than if a separate module was written for each
individual situation - but this would not be effective abstraction.

(g) If performance of the re-used module is not optimized, then all
re-users will suffer a performance hit.

(h) Undetected faults get propagated.
(i) Documentation is often poor in practice.

3. Other Aspects
(a) On average, 15% of any S/W product is written to serve a unique

purpose.
(b) In theory, remaining 85% could be standardized and reused.
(c) In practice, only 40% reuse is achieved.

4. Re-use refers not only to code, but also to
(a) documents (e.g. design, manuals, SPMP, etc.)
(b) duration/cost estimates
(c) test data
(d) architecture
(e) etc.

18.2 Impediments to Re-Use

1. Sometimes, what is a candidate for being re-used is not obvious.
(a) Poor documentation (external, or internal, e.g. lack of comments

in code) can contribute to this problem.
(b) If we abstract effectively during analysis/design workflows, then

what to re-use becomes clearer.
2. SQA test cases: too outdated to use (if business rules change)
3. Ego: unwillingness to use someone else’s code (“Not Written Here”

syndrome)
4. Quality Concerns: sometimes justified, as above.
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5. Re-use can be expensive. It is costly to:
(a) develop reusable modules, and
(b) search the libraries and re-use the right module.

6. Legal issues with contract developers (possible intellectual property
problems)

7. Commercial Of The Shelf (COTS): Developers do not provide the
source code, so there is limited to no ability to modify and to re-use.

8. Etc.

18.3 Types of Re-Use

18.3.1 Accidental (Opportunistic)

Idea: Developer of a new S/W product realizes that a previously developed
module can be re-used as a subroutine in the new S/W product (e.g. re-use
previously developed Mean function).

18.3.2 Deliberate (Systematic)

Idea: S/W modules are specially designed and constructed to be used in
multiple S/W products.

18.4 Objects and Re-Use

Key Fact: OO classes are the best type of module that we know about so
far for fostering re-use.

18.5 Re-Use During Design and Implementation

Remarks on Notation:
1. The diagrams for each type of re-use have

(a) shaded areas for the parts that are re-used, and
(b) whitespace for the parts that the re-user must supply.

We consider the following types of re-use.

18.5.1 Library (toolkit)

Assumes either the Classical or the OO paradigm.
Details:
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1. What is Re-Used: There is a library, a set of related re-usable
operations e.g.
(a) A Matrix library contains many operations - +, *, determinant,

invert, etc.
(b) GUI library contains different GUI classes - window, menu, radio

button, etc.
The re-user calls modules from the library.

2. What is New: The re-user must
(a) supply control logic of S/W product as a whole, and
(b) call library routines at the right moment using the control logic
(c) See Figure 8.2a in the text.

18.5.2 Application Framework

Assumes either the Classical or the OO paradigm.
Details:

1. What is Re-Used: Opposite to library approach: Control logic is
re-used

2. What is New: The re-user must
(a) design application-specific sub-routines fitting inside the control

logic.
(b) See Fig 8.2b in the text.

3. If the goal is to improve S/W development speed, then reusing a frame-
work will be more effective than using libraries/toolkits WHY? It takes
(a) more effort to design control logic, and
(b) less effort to develop application-specific sub-routines, but
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i. in my experience, Library re-use is much more common than
Application Framework re-use.
Reason: It is rare to find two different S/W products with
identical control logic.

4. Examples of Application Framework Re-Use:
(a) games
(b) Automated Teller Machines (ATMs)

i. Suppose you are managing a team to develop S/W for ATMs,
deployed by several banks.

ii. The control logic for an ATM deposit will be the same, re-
gardless of the bank (note, we are over-simplifying a tiny bit
here).

iii. However the details of how to carry out a deposit will depend
completely on the choice of bank.

iv. A side comment here is that this would be an example of
deliberate (systematic) re-use. We would design and build the
control logic with the intent to re-use it at all of the banks.

18.5.3 Software Architecture

Remarks:
1. Software architecture encompasses a wide range of design issues, in-

cluding
(a) organization of components (logical and physical)
(b) control structures
(c) communication / synchronization issues
(d) DB organization and access
(e) performance
(f) choice of design alternatives

2. Architecture can also be re-used.
3. A more detailed treatment of architecture will be beyond the scope of

CS 430.

18.5.4 Component-Based Software Engineering

Goal: construct a standard library of re-usable components (i.e. for Library
Re-Use). See §18.3 in the text if you want to read further.
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19 Lecture 19 - Design Patterns

Outline
1. Design Patterns

(a) Introduction
(b) Adapter Design Pattern (§8.6.2)
(c) Bridge Design Pattern (§8.6.3)
(d) Iterator Design Pattern (§8.6.4)
(e) Abstract Factory Design Pattern (§8.6.5)
(f) Categories of Design Patterns (§8.7)
(g) Strengths/Weaknesses of Design Patterns (§8.8)

2. Re-Use During Post-Delivery Maintenance

19.1 Design Patterns

19.1.1 Introduction

Unlike Library (Toolkit) and Application Framework from last lecture, De-
sign patterns assume the OO paradigm.

Definition 19.1.1. A design pattern is a solution to a general design
problem, in the form of a set of interacting classes that have to be customized
to create a specific design.

1. What is Re-Used: relationships among classes (usually expressed as
a class diagram)

2. What is New: details within each class (usually a new class diagram,
with the generic classes from the previous diagram replaced by classes
tailored to the specific problem to be solved)

19.1.2 Adapter Design Pattern (§8.6.2)

Motivation: FLIC Example (§8.6.1)
1. Until recently, premiums at Flintstock Life Insurance Company (FLIC)

depended on both the age and the gender of the applicant for coverage.
2. FLIC has recently decided that some policies will now be gender-

neutral. That is, the premiums for those policies will depend solely
on the age of the applicant.
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3. The old computation of premiums used this class:

Applicant

computePremium(age,gender)

4. The new computation of premiums will use this class:

Neutral Applicant

computeNeutralPremium(age)

5. However there has not been enough time to change the entire system.
The situation is displayed in the following figure (Fig 8.4 in the text).

Client

Insurance

determinePremium()
{
applicant.computePremium(age,gender);
}

Neutral Applicant

computeNeutralPremium(age)

Notation: // for “References”.

6. Note the three interface problems with the bottom reference in the
above diagram:
(a) Insurance calls the Applicant class instead of the NeutralApplicant

class.
(b) Insurance calls the computePremiummethod instead of the computeNeutralPremium

method.
(c) The parameters passed are age and gender, instead of age alone.

7. To solve these problems, we interpose the Wrapper class, as shown in
this diagram (Figure 8.5 in the text):
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Client

Insurance

determinePremium()
{
wrapper.computePremium(age,gender);
}

Wrapper

computePremium(age,gender)
{
neutralApplicant.computeNeutralPremium(age);
}

Neutral Applicant

computeNeutralPremium(age)

Notation: // for “References”.

The Adapter Design Pattern
1. Generalizing the Wrapper construction above leads to the Adapter

Design Pattern (Figure 8.6 in the text):
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Client

Abstract Target

abstract request()

Adapter

request()
{
adaptee.specificRequest();
}

Adaptee

specificRequest()

Notation: // for “References”.

Definition 19.1.2. An abstract class is a class which cannot be instanti-
ated, but which can be used as a base class for inheritance.

Example: Abstract Target in the Adapter Design Pattern is an abstract
class.

Definition 19.1.3. An abstract method is a method which has an inter-
face, but which does not have an implementation.

Example: In the Adapter Design Pattern, Abstract Target class, request()
is an abstract method. Usually abstract methods live inside of abstract
classes.

2. Abstract methods are implemented in subclasses of the abstract class.
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3. The abstract request method from Abstract Target is implemented
in the (concrete) subclass Adapter, to invoke the specificRequest

method in Adaptee.
4. This solves the interfacing problems from earlier. This is the raison

d’être for the Adpater design pattern.
5. But the pattern is more powerful than that. It provides a way for an

object to permit access to its internal implementation in such a way
that clients are not coupled to the structure of that internal implemen-
tation. In other words, it provides the benefits of information hiding
(Definition 16.2.1) without having to actually hide the implementation
details.

19.1.3 Bridge Design Pattern (§8.6.3)

1. Prototype: a device driver, e.g. a printer driver.
2. Key Idea: De-couple an abstraction from its implementation, so that

the two can be changed independently of one another.
3. Technique: Construct a bridge which separates the part of the appli-

cation which is not hardware-dependent from the part of the application
which is.

4. Below is a class diagram for the Bridge Design Pattern. This is Figure
8.7 in the text.

Client

Abstract Conceptualization

operation()
{
impl.operationImplementation();
}

Abstract Implementation

abstract operationImplementation()

Refined Conceptualization

Concrete Implementation

operationImplementation()
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Notation: // for “References”.

19.1.4 Iterator Design Pattern (§8.6.4)

Goal: Iterate through each object inside an aggregate object, and “do some-
thing” with each one.
Prototype Example: Iterate through each element of a linked list, and
process the element.
Remarks:

1. In the most general type of linked list, the elements need not all be
of the same type. Hence one advantage of the Iterator Design Pattern
lies in insulating ourselves from needing to know up front, what types
of objects might be in the list.

2. Examples of aggregate objects:
(a) linked list
(b) hash table
(c) database table (see below)

3.

Definition 19.1.4. An iterator is a programming construct that al-
lows a programmer to traverse the elements of an aggregate object with-
out exposing the implementation of the aggregate. Another name for
an iterator is a cursor, especially in a database context.

4. Two key ingredients:
(a) element traversal: first, next, isDone in the example.
(b) element access: currentItem in the example.

Below is a class diagram for the Iterator Design Pattern. This is Figure 8.9
in the text.
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Client

Abstract Aggregate

abstract createIterator() : Iterator

Abstract Iterator

abstract first()
abstract next()
abstract isDone() : Boolean
abstract currentItem(): Item

Concrete Aggregate

createIterator()
{
return new concreteIterator(this);
}

Concrete Iterator

first()
next()
isDone() : Boolean
currentItem(): Item

Notation: // for “Creates” and // for “References”.

Remarks on the Diagram:
1. A Client deals with only Abstract Aggregate and Abstract Iterator

(essentially an interface).
2. The Client object asks the Abstract Aggregate object to create an

iterator for the Concrete Aggregate object, and then uses the re-
turned Concrete Iterator object to traverse the elements of the ag-
gregate.
(a) Abstract Aggregate needs the abstract method createIterator,

as a way of returning an Iterator to the Client.
(b) The Abstract Iterator (interface) needs to define only the basic

four abstract traversal methods. These four methods are imple-
mented at the next level of abstraction, in Concrete Iterator.

3. Since implementation details of the elements are hidden from the Iterator
itself, we can use an Iterator to process each element in an aggregate,
independently of the implementation of the aggregate.

4. Hence using the pattern promotes loose coupling.
5. The pattern permits different traversal methods, since they are imple-

mented only in Concrete Iterator.
6. There will be one pair of Concrete Aggregate and Concrete Iterator

per type of concrete aggregate object.
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7. Multiple different traversal methods may be present, if there are mul-
tiple types of list elements. Because of the common interface provided
by Abstract Iterator, we do not need to know up front which types
are possible.

8. Last lecture we pointed out that some up-front investment is required
to position for future re-use.

9. We see this phenomenon in the example too: it takes more time to
create the abstract classes (interfaces), then create the concrete classes,
than it would take to write the concrete classes alone. But omitting
the abstract classes forces the client to refer to all the concrete classes
directly, frustrating our efforts to achieve re-use.

19.1.5 Abstract Factory Design Pattern (§8.6.5)

1. Example: an application with a GUI, which in particular has Menus
and Windows.

2. Key Idea: The factory can be called by different developers working
in different operating systems. Developers can re-use the set of classes
developed by the widget factory, rather than developing those classes
from scratch each time.

3. This is Fig 8.11 in the text, for the Abstract Factory Design Pat-
tern.
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Abstract Widget Factory

abstract createProductA()
abstract createProductB()

Concrete Factory 1

createProductA()
createProductB()

Concrete Factory 2

createProductA()
createProductB()

Concrete Factory 3

createProductA()
createProductB()

Abstract Product A

Client Product A1 Product A2 Product A3

Abstract Product B

Product B1 Product B2 Product B3

Notation: // for “Creates” and // for “References”.

4. This is Fig 8.10 in the text, our instance of the Abstract Factory
Design Pattern, in the case of a toolkit for a graphical user interface.
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Abstract Widget Factory

abstract createMenu()
abstract createWindow()

Linux Widget Factory

createMenu()
createWindow()

Mac OS Widget Factory

createMenu()
createWindow()

Windows Widget Factory

createMenu()
createWindow()

Abstract Menu

Client Linux Menu Mac OS Menu Windows Menu

Abstract Window

Linux Window Mac OS Window Windows Window

Notation: // for “Creates” and // for “References”.

5. In a real example, Abstract Widget Factory would contain many ab-
stract methods; we include only two here, for simplicity.

6. Each of the three (concrete) subclasses of Abstract Widget Factory

contains the methods to create widgets that run under a given operating
system.

7. For example, invoking createMenu inside Linux Widget Factory cre-
ates a menu that will run under Linux.

8. To create a window, a Client need only invoke the createWindow

method of Abstract Widget Factory, and polymorphism ensures that
a window for the correct operating system is created.
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9. The critical aspect of this pattern is that the three interfaces between
Client and the widget factory (namely Abstract Widget Factory,
Abstract Menu and Abstract Window) are all abstract classes. None
of these classes is specific to any one operating system. Consequently,
the design of Fig 8.10 has uncoupled the application program from the
operating sytem.

19.1.6 Categories of Design Patterns (§8.7)

1. Creational, e.g. Abstract Factory
2. Structural, e.g. Adapter, Bridge
3. Behavioural, e.g. Iterator, Mediator

See Figure 8.12 in the text for the complete list of 23 documented by Gamma,
Helm, Johnson and Vlissides.

19.1.7 Strengths/Weaknesses of Design Patterns (§8.8)

Strengths
1. promote re-use by solving a general design problem,
2. provide high-level documentation of the design, because patterns spec-

ify design abstractions,
3. may already have implementations written, and
4. make maintenance easier for programmers who are familiar with the

patterns.
Weaknesses

1. lack a systematic way to determine when patterns should be applied,
2. often require multiple patterns together, which is complicated, and
3. are incompatible with the Classical paradigm.

19.2 Re-Use During Post-Delivery Maintenance

1. As we have seen throughout the course, an improvement in S/Wmethod-
ology has a bigger payoff in maintenance than it does in development.
This is true for the technique of re-use also:
(a) Reusable components are well designed, thoroughly tested, well

documented and independent. These are the features of low main-
tenance S/W.

(b) Reusable components do not cause problems during maintenance.
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20 Lecture 20 - Portability

Outline
1. Portability Concepts
2. Hardware Incompatibilities
3. Operating System Incompatibilities
4. Numerical System Incompatibilities
5. Compiler Incompatibilities
6. Is Portability Really Necessary?
7. Techniques for Achieving Portability

(a) Portable Operating System Software
(b) Portable Application Software
(c) Portable Data
(d) Object-Oriented Technologies (OOT)

20.1 Portability Concepts

Definition 20.1.1. A program, P1, is portable if it is significantly cheaper
to convert it to P2 (and run it on H/W H2, with OS O2 & compiler C2) than
to re-code P2 from scratch.

Remarks:
1. Portability does not mean porting the code only:

(a) We must port documentation & manuals too.
(b) If S/W is changed, then all docs must also change.

20.2 Hardware Incompatibilities

1. Character codes:
(a) American Standard Code for Information Interchange (ASCII):

00000001
(b) Extended Binary Coded Decimal Interchange Code (EBCDIC):

10000001
(c) S/W developed on a platform with one encoding must be modified

to work on a platform with the other encoding.

20.3 Operating System Incompatibilities

1. MAC OS versus Windows.
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2. Similar problems on mainframe-scale systems.
3. JCL (Job Control Language, for specifying all the parameters needed

to run mainfrmame batch jobs)
(a) Each OS’s JCL is slightly different.

4. Virtual Memory (i.e. augmenting physical memory by allocating some
disk space as virtual memory)
(a) If S/W is developed on an O/S that supports virtual memory, then

there is no practical limit on the amount of memory available.
(b) But if that same S/W is then ported to an O/S that does not

support virtual memory, then there is a hard limit on the amount
of memory available.

20.4 Numerical System Incompatibilities

1. Word size:
(a) S/W developed on a 64-bit platform will not run on a 32-bit plat-

form.

20.5 Compiler Incompatibilities

1. Different compiler versions can enforce different syntax rules.
(a) Often newer compilers are more strict.

20.6 Is Portability Really Necessary?

Q: Does it make sense to spend time/resources to develop portable S/W?
A: Yes:

1. If your firm’s business is selling software, then portability = higher
revenue.

2. Even if not, i.e. if your organization builds software to support another
primary business (e.g. selling insurance at SLF), keep in mind that
good software lives 10-20 years or more, while hardware changes every
4-5 years. So portability saves money here too.

20.7 Techniques for Achieving Portability

20.7.1 Portable Operating System Software

1. UNIX O/S was constructed for maximum portability:
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(a) platform-independent (portable):
i. 9000 LOC written in C

(b) platform-dependent (must be re-written for each platform):
i. 1000 LOC written in Assembly
ii. 1000 LOC of C - device drivers

2. Lessons of UNIX
(a) We should emulate the techniques used to design/build UNIX as

much as possible.
(b) When we have a choice of O/S, we should choose UNIX.

20.7.2 Portable Application Software

1. Although we may not always have control over which programming
language we must use, whenever possible we should choose a high-level
language (higher-level = more insulated from the hardware level).

20.7.3 Portable Data

Porting large amounts of data can be very problematic.
1. Flat files are the most portable data format. Problems:

(a) Misunderstandings about file formats.
(b) Self-documenting file formats (e.g. XML) solve problem 1a, but

make files get big.

20.7.4 Object-Oriented Technologies (OOT)

1. Major promise of OOT:
(a) final S/W product is portable & reusable

21 Lecture 21 - Planning and Estimation I -

Function Points

Outline
1. Planning and the Software Process
2. Estimating Duration and Cost

(a) Metrics for the Size of a S/W Product
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21.1 Planning and the Software Process

1. When to estimate
(a) after requirements workflow - only an informal understanding of

what is needed
i. At this point, our ranges of estimates must be broad.
ii. Figures 9.1 & 9.2 explain somewhat why this is true.
iii. This is a summarized Figure 9.1 from the text. It displays a

model for estimating the relative range of a cost estimate for
each workflow.

Phase

Relative Range of Cost Estimate

iv. This is a summarized Figure 9.2 from the text. It displays the
range of cost estimates, in millions of dollars, for a software
product that costs $1 million to build.
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Phase

Cost Estimate

upper bound

lower bound

v. We provide a preliminary estimate here, so that the client can
decide whether to proceed to analysis or not.

(b) after analysis workflow - a more detailed understanding of what
is needed
i. For the rest of Ch 9, we assume that we are estimating at this

point.
Remarks:

1. In practice, you may find yourself getting pressured by the client to re-
duce your preliminary estimates, to ensure that the project goes ahead.
Common sense says that a client cannot dictate both the requirements
and the costs to satisfy them. If the client thinks that the preliminary
estimates are too high, then they can:
(a) reduce the scope of the requirements, to reduce the estimated cost,

or
(b) increase the total budget.
Giving in to pressure to reduce estimates at this point ALWAYS leads
to problems later on.

111



21.2 Estimating Duration and Cost

1. Estimating Cost: All Costs of Development:
(a) internal, i.e. the cost of our developers, e.g.

i. salaries of project team members
ii. costs of H/W and S/W
iii. overhead costs

(b) external, i.e. the price to the client, e.g.
i. usually internal costs plus some mark-up

2. Estimating Duration: The client will need to know when to expect
the S/W product to be delivered.

3. Obstacles to Estimating Accurately:
(a) human

i. variations in quality
ii. turnover
iii. varying levels of experience

21.2.1 Metrics for the Size of a S/W Product

1. Function Points provide a consistent basis for comparing the sizes of
different S/W products.

2. Some larger projects were counted in terms of function points (FP)
during my time at SLF.

3. Example like on pp273–275 in the text:
(a) Compute the unadjusted function points (UFP) for a soft-

ware product having the following function point counts in con-
junction with Figure 9.3 in the text (reproduced here).

Figure 9.3 - Table of Function Point Values
Level of Complexity

Component Simple Average Complex
Input item 3 4 6
Output item 4 5 7
Inquiry 3 4 6
Master file 7 10 15
Interface 5 7 10

Function Point Counts to Use
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Level of Complexity
Component Simple Average Complex
Input item 12 8 0
Output item 10 7 1
Inquiry 8 4 1
Master file 1 1 1
Interface 6 2 0

Solution:

UFP(Input item) = (12)(3) + (8)(4) + (0)(6)

= 68

UFP(Output item) = (10)(4) + (7)(5) + (1)(7)

= 82

UFP(Inquiry) = (8)(3) + (4)(4) + (1)(6)

= 46

UFP(Master file) = (1)(7) + (1)(10) + (1)(15)

= 32

UFP(Interface) = (6)(5) + (2)(7) + (0)(10)

= 44, so that the total UFP is

UFP = 68 + 82 + 46 + 32 + 44

= 272.

(b) Compute the technical complexity factor (TCF) using the
given counts for each factor in Figure 9.4 from the text (repro-
duced here).

Figure 9.4 (augmented) - Technical factors for function
point computation
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Factor Name Count to Use
1 Data communication 2
2 Distributed data processing 0
3 Performance criteria 3
4 Heavily utilized hardware 1
5 High transaction rates 3
6 Online data entry 5
7 End-user efficiency 5
8 Online updating 1
9 Complex computations 3
10 Reusability 3
11 Ease of installation 0
12 Ease of operation 5
13 Portability 3
14 Maintainability 5

Solution: Summing the counts in the above table gives us the
total degree of influence:

DI = 2 + 0 + 3 + 1 + 3 + 5 + 5 + 1 + 3 + 3 + 0 + 5 + 3 + 5

= 39,

so that the corresponding technical complexity factor (TCF)
is

TCF = 0.65 + (0.01)DI

= 0.65 + (0.01)(39)

= 1.04.

(c) Use the results of parts a) and b) to compute the function points
(FP) for the given software product.
Solution:

FP = (UFP )(TCF )

= (272)(1.04)

= 282.88,

so that we measure this software product at 283FP . (Only whole
numbers make sense here; we always round up to be conserva-
tive.)
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Remarks About Function Points
1. Observe that nowhere in the computation of UFP or FP did we ask

(a) in what language is this software product written? or
(b) how many lines of code does this software product have?
FP are designed to be independent of these factors. FP compare sizes
of different software products, regardless of their implementations.

22 Lecture 22 - Planning and Estimation II -

Intermediate COCOMO

Outline
1. Estimating Duration and Cost

(a) Techniques for Cost Estimation
(b) Intermediate COCOMO
(c) COCOMO II
(d) Tracking Duration and Cost Estimates

22.1 Estimating Duration and Cost

22.1.1 Techniques for Cost Estimation

Definition 22.1.1. KDSI stands for Thousand Delivered Source In-
structions (i.e. 1000s of Lines of Code).

Remarks:
1. There is no perfect technique for estimating the cost/duration of a

S/W project.
2. Some factors to consider:

(a) skill levels of project personnel (including familiarity with the S/W
product)

(b) complexity of project
(c) project deadlines
(d) target hardware
(e) availability of CASE tools

3. Techniques of Estimation
(a) Expert Judging by Analogy

i. experts using history of similar past projects.
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(b) Bottom-Up Approach
i. analogous to divide and conquer (Definition 9.3.1), and
ii. most common in my SLF experience.

(c) Algorithmic Cost Estimation Models (e.g. COCOMO)
i. Compute the size of the S/W product, using function points,

or some other method.
ii. Use the size of the S/W product from 3(c)i to estimate cost

& duration of the project to build it.

22.1.2 Intermediate COCOMO (COnstructive COst MOdel)

1. COCOMO comprises three models (highest level → lowest level):
(a) macroestimation
(b) intermediate (what we use here)
(c) microestimation

2. Two stages in Intermediate COCOMO: estimate each of
(a) nominal effort
(b) estimated effort

3. Example like on pp278-280 in the text:
(a) Compute the nominal effort for a software product having

i. organic development mode (with multiplier 3.2 as in the
text),

ii. exponent 1.07, (different from the 1.05 used in the text) and
iii. 12,000 LOC (i.e. 12 KDSI).
Solution:

nominal effort = 3.2(KDSI)1.07person-months

= 3.2(12)1.07

≈ 45.69555028,

and so we state the nominal effort as 46 person-months. (Only
whole numbers make sense here; we always round up to be
conservative.)

(b) Use part a) to compute the estimated effort, using the given
multipliers for each cost driver in Figure 9.6 from the text (repro-
duced here).

Figure 9.6 - Intermediate COCOMO software
development effort multipliers
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Rating
Cost Very Very Extra
Drivers Low Low Nominal High High High
Product Attributes
-Required software reliability 0.75 0.88 1.00 1.15 1.40
-Database size 0.94 1.00 1.08 1.16
-Product complexity 0.70 0.85 1.00 1.15 1.30 1.65
Computer Attributes
-Execution time constraint 1.00 1.11 1.30 1.66
-Main storage constraint 1.00 1.06 1.21 1.56
-Virtual machine volatility 0.87 1.00 1.15 1.30
-Computer turnaround time 0.87 1.00 1.07 1.15
Personnel Attributes
-Analyst capabilities 1.46 1.19 1.00 0.86 0.71
-Applications experience 1.29 1.13 1.00 0.91 0.82
-Programmer capability 1.42 1.17 1.00 0.86 0.70
-Virtual machine experience 1.21 1.10 1.00 0.90
-Programming language experience 1.14 1.07 1.00 0.95
Project Attributes
-Use of modern programming practices 1.24 1.10 1.00 0.91 0.82
-Use of software tools 1.24 1.10 1.00 0.91 0.83
-Required development schedule 1.23 1.08 1.00 1.04 1.10

multipliers to use
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Cost Rating
Drivers to Use
Product Attributes
-Required software reliability Nominal
-Database size Low
-Product complexity Low
Computer Attributes
-Execution time constraint High
-Main storage constraint Nominal
-Virtual machine volatility Low
-Computer turnaround time Nominal
Personnel Attributes
-Analyst capabilities Very High
-Applications experience Very High
-Programmer capability High
-Virtual machine experience Low
-Programming language experience High
Project Attributes
-Use of modern programming practices Nominal
-Use of software tools Nominal
-Required development schedule High

Solution: The effort multipliers for the given drivers are:

multipliers to use
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Cost Rating Multiplier
Drivers to Use to Use
Product Attributes
-Required software reliability Nominal 1.00
-Database size Low 0.94
-Product complexity Low 0.85
Computer Attributes
-Execution time constraint High 1.11
-Main storage constraint Nominal 1.00
-Virtual machine volatility Low 0.87
-Computer turnaround time Nominal 1.00
Personnel Attributes
-Analyst capabilities Very High 0.71
-Applications experience Very High 0.82
-Programmer capability High 0.86
-Virtual machine experience Low 1.10
-Programming language experience High 0.95
Project Attributes
-Use of modern programming practices Nominal 1.00
-Use of software tools Nominal 1.00
-Required development schedule High 1.04

Using the given effort multipliers gives

(1.00)(0.94)(0.85)

(1.11)(1.00)(0.87)(1.00)

(0.71)(0.82)(0.86)(1.10)(0.95)

(1.00)(1.00)(1.04)46

≈ 19.31377308,

and so we state the estimated effort as 20 person-months. (Only
whole numbers make sense here; we always round up to be
conservative.)

22.1.3 COCOMO II

1. COCOMO was introduced in 1981 (before OO was widely accepted;
most systems were mainframe-based; classical paradigm was prevalent),
and it became less reliable as time went on.
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2. COCOMO II was a major revision to address these weaknesses.
(a) COCOMO is all based on LOC (equivalently KDSI)
(b) 3 applications of COCOMO II:

i. application composition model
ii. early design model
iii. post architecture model

(c) Where COCOMO outputs a single estimate, COCOMO II outputs
a range of estimates for each model.

(d) When I have taught CS 430 in the past, I have made a note to
myself to present COCOMO II instead of Intermediate COCOMO,
because we make the case throughout the course that we should
adopt the OO paradigm.

(e) However I found that doing this was not practical. I have posted
a .pdf detailing COCOMO II on LEARN. Please peruse it at your
leisure.

(f) You may also find the following web pages about COCOMO II
interesting:
i. Overview: http://sunset.usc.edu/csse/research/cocomoii/

cocomo_main.html

ii. Calculator: http://csse.usc.edu/tools/COCOMOII.php
3. We don’t have time to go into the details of COCOMO II in CS 430.

See the text for references for additional reading if interested.

22.1.4 Tracking Duration and Cost Estimates

Key Ideas:
1. It is extremely rare for a S/W project to be completed ahead of schedule

and under budget. Deviations from estimates usually make the project
late and over budget.

2. Hence it is critical to detect deviations from our estimates ASAP, so
that we can take immediate corrective action.

23 Lecture 23 - Planning and Estimation III

- Project Management

Outline
1. Components of a SPMP
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2. SPMP Framework
3. IEEE SPMP
4. Planning Testing
5. Planning OO Projects
6. Training Requirements
7. Documentation Standards
8. CASE Tools for Planning and Estimating
9. Testing the SPMP

23.1 Components of a SPMP

1. Three main components:
(a) the work to be done

i. project functions continue throughout the project, not re-
lated to any workflow (e.g. project management).

ii. activities/tasks are related to a particular workflow.
A. Activities: major units of work.
B. Tasks: minor units of work.

(b) the resources with which to do the work, e.g.
i. people
ii. hardware
iii. software
Include the timing of when those resources should be consumed.

This is a summarized Figure 9.8 from the text. It is a Raleigh
curve, showing typical resource consumption with respect to time.
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Time

Resource consumption

While this is cute, it will not appear on the final exam. In my
experience, I have never seen the Raleigh distribution used in re-
ality.

(c) money to pay for it all
i. Detail the money to be spent, and when it will be spent.

23.2 SPMP Framework

1. SPMPs come in many forms. Each organization has a template that
it prefers to use (level of detail depends on the organization’s size and
culture).

2. §9.5 of the text gives full details of the IEEE version, which could be
used in the rare case where an organization needed to create its own
template.

3. This plan covers projects of all sizes, so some of its pieces do not apply
to smaller projects.

23.3 IEEE SPMP

The following template would be appropriate for a large project. For a small
or medium-sized project, some parts could be omitted to make it suitable to
the project.
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1. Overview.
(a) Project summary.

i. Purpose, scope and objectives. A brief description is
given of the purpose and scope of the software product to be
delivered, as well as project objectives. Business needs are
included in this subsection.

ii. Assumptions and constraints. Any assumptions under-
lying the project are stated here, together with constraints,
such as the delivery date, budget, resources, and artifacts to
be reused.

iii. Project deliverables. All the items to be delivered to the
client are listed here, together with the delivery dates.

iv. Schedule and budget summary. The overall schedule is
presented here, together with the overall budget.

(b) Evolution of the project management plan. No plan can
be cast in concrete. The project management plan, like any other
plan, requires continual updating in the light of experience and
change within both the client organization and the software de-
velopment organization. In this section, the formal procedures
and mechanisms for changing the plan are described, including
the mechanism for placing the project management plan itself un-
der configuration control.

2. Reference materials. All documents referenced in the project man-
agement plan are listed here.

3. Definitions and acronyms. This information ensures that the project
management plan will be understood the same way by everyone.

4. Project organization.
(a) External interfaces. No project is constructed in a vacuum.

The project members have to interact with the client organiza-
tion and other members of their own organization. In addition,
subcontractors may be involved in a large project. Administrative
and managerial boundaries between the project and these other
entities must be laid down.

(b) Internal structure. In this section, the structure of the de-
velopment organization itself is described. For example, many
software development organizations are divided into two types of
groups: development groups that work on a single project and
support groups that provide support functions, such as config-
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uration management and quality assurance, on an organization-
wide basis. Administrative and managerial boundaries between
the project group and the support group also must be defined
clearly.

(c) Roles and responsibilities. For each project function, such as
quality assurance, and for each activity, such as product testing,
the individual responsible must be identified.

5. Managerial process plans.
(a) Start-up plan.

i. Estimation plan. The techniques used to estimate project
duration and cost are listed here, as well as the way these
estimates are tracked and, if necessary, modified while the
project is in progress.

ii. Staffing plan. The numbers and types of personnel required
are listed, together with the durations for which they are
needed.

iii. Resource acquisition plan. The way of acquiring the nec-
essary resources, including hardware, software, service con-
tracts, and administrative services, is given here.

iv. Project staff training plan. All training needed for suc-
cessful completion of the project is listed in this subsection.

(b) Work plan.
i. Work activities. In this subsection, the work activities are

specified, down to the task level if appropriate.
ii. Schedule allocation. In general, the work packages are in-

terdependent and further dependent on external events. For
example, the implementation workflow follows the design work-
flow and precedes product testing. In this subsection, the
relevant dependencies are specified.

iii. Resource allocation. The various resources previously listed
are allocated to the appropriate project functions, activities,
and tasks.

iv. Budget allocation. In this subsection, the overall budget is
broken down at the project function, activity, and task levels.

(c) Control plan.
i. Requirements control plan. As described in Part B of the

text, while a software product is being developed, the require-
ments frequently change. The mechanisms used to monitor
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and control the changes to the requirements are given in this
section.

ii. Schedule control plan. In this subsection, mechanisms for
measuring progress are listed, together with a description of
the actions to be taken if actual progress lags behind planned
progress.

iii. Budget control plan. It is important that spending should
not exceed the budgeted amount. Control mechanisms for
monitoring when actual cost exceeds budgeted cost, as well
as the actions to be taken should this happen, are described
in this subsection.

iv. Quality control plan. The ways in which quality is mea-
sured and controlled are described in this subsection.

v. Reporting plan. To monitor the requirements, schedule,
budget, and quality, reporting mechanisms need to be in place.
These mechanisms are described in this subsection.

vi. Metrics collection plan. As explained in text §5.5, it is not
possible to manage the development process without measur-
ing relevant metrics. The metrics to be collected are listed in
this subsection.

(d) Risk management plan. Risks have to be identified, priori-
tized, mitigated, and tracked. All aspects of risk management are
described in this section.

(e) Project close-out plan. The actions to be taken once the
project is completed, including reassignment of staff and archiving
of artifacts, are presented here.

6. Technical process plans.
(a) Process model. In this section, a detailed description is given

of the life-cycle model to be used.
(b) Methods, tools and techniques. The development method-

ologies and programming languages to be used are described here.
(c) Infrastructure plan. Technical aspects of hardware and soft-

ware are described in detail in this section. Items that should
be covered include the computing systems (hardware, operating
systems, network, and software) to be used for developing the soft-
ware product, as well as the target computing systems on which
the software product will be run and CASE tools to be employed.

(d) Product acceptance plan. To ensure that the completed soft-
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ware product passes its acceptance test, acceptance criteria must
be drawn up, the client must agree to the criteria in writing, and
the developers must then ensure that these criteria are indeed met.
The way that these three stages of the acceptance process will be
carried out is described in this section.

7. Supporting process plans.
(a) Configuration management plan. In this section, a detailed

description is given of the means by which all artifacts are put
under configuration management.

(b) Testing plan. Testing, like all other aspects of software develop-
ment, needs careful planning.

(c) Documentation plan. A description of documentation of all
kinds, whether or not to be delivered to the client at the end of
the project, is included in this section.

(d) Quality assurance plan. All aspects of quality assurance, in-
cluding testing, standards, and reviews, are encompassed by this
section.

(e) Reviews and audits plan. Details as to how reviews are con-
ducted are presented in this section.

(f) Problem resolution plan. In the course of developing a software
product, problems are all but certain to arise. For example, a
design review may bring to light a critical fault in the analysis
workflow that requires major changes to almost all the artifacts
already completed. In this section, the way such problems are
handled is described.

(g) Subcontractor management plan. This section is applicable
when subcontractors are to supply certain work products. The
approach to selecting and managing subcontractors then appears
here.

(h) Process improvement plan. Process improvement strategies
are included in this section.

8. Additional plans. For certain projects, additional components may
need to appear in the plan. In terms of the IEEE framework, the appear
at the end of the plan. Additional components may include security
plans, safety plans, data conversion plans, installation plans, and the
software project postdelivery maintenance plan.
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23.4 Planning Testing

1. Include a detailed schedule for what testing must be done during each
workflow. Potential problems if this is not done:
(a) Capturing traceability between workflows (which is required to

test effectively) may not be done correctly.
(b) Missed opportunities to follow-up on later artifacts as suggested by

unusually high numbers of faults in early artifacts of the project.
(c) Black-box test cases should be selected at the end of the analysis

workflow (while details are fresh in developers’/SQA members’
minds). If not, then black box test cases may be hurriedly thrown
together later on (less effective).

(d) Etc.

23.5 Planning OO Projects

1. Planning / estimation tools (function points, intermediate COCOMO)
work as well for OO as they do for classical, assuming no re-use.

2. To date there is little data on how re-use affects estimation.
3. We expect that in the long run, re-use will save effort, hence reduce

estimates.
4. COCOMO II is better than COCOMO for OO, but it is much more

complicated.

23.6 Training Requirements

1. Training requirements should be carefully considered for all staff, not
just for the client. Reasons:
(a) Developers may need training in project management (e.g. plan-

ning and estimating)
(b) New development / testing techniques may necessitate training

for all project staff.
(c) New H/W may necessitate training for all operators.
(d) Etc.

2. Training requirements must be documented in the SPMP.
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23.7 Documentation Standards

1. Documentation is an integral part of any S/W project.
2. Hence it is crucial that standards be established (in the SPMP if

nowhere else), understood and followed by all team members. Rea-
sons:
(a) fewer misunderstandings between team members
(b) aids the SQA group
(c) after initial training, no additional training will be needed when

staff change teams internally,
(d) etc.

23.8 CASE Tools for Planning and Estimating

1. There are many commercially available CASE tools for project man-
agement.

2. In all likelihood the organization that employs you will already have a
project management suite in place for you to use.

23.9 Testing the SPMP

1. As pointed out earlier, it is crucial to neither underestimate nor over-
estimate the cost/duration of our S/W projects.

2. Hence SQA must test the SPMP before communicating any estimates
to the client.

3. This must be non-execution based testing. Best technique: inspec-
tion.

24 Lecture 24 - Review and Wrap-Up

Outline
1. Course Review - Key Topics
2. Course Evaluations

24.1 Course Review - Key Topics

1. The Scope of Software Engineering
(a) Historic / Economic Aspects
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(b) Maintenance (esp Post-Delivery)
(c) Why There Is No Phase for

i. Planning
ii. Testing
iii. Documentation

(d) The OO Paradigm
2. S/W Life-Cycle Models

(a) Change is Inevitable
(b) Iteration and Incrementation (which drives the remainder of the

items in the list)
(c) Other Life-Cycle Models

i. Code-And-Fix
A. This was the prevailing model pre-Waterfall / Classical.
B. Under this model there was no change management at all!

ii. Waterfall / Classical
iii. Rapid Prototyping
iv. Open Source
v. Agile Processes
vi. Synchronize and Stabilize
vii. Spiral

(d) No One Life-Cycle Model dictated by SW-CMM
3. The S/W Process

(a)
(b) Postdelivery Maintenance
(c) One- and Two-Dimensional Life-Cycle Models
(d) Capability Maturity Models (SW-CMM specifically)

4. Teams
(a) Democratic
(b) Classical Chief Programmer
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(c) Modified Chief Programmer
(d) Teams for Life-Cycle Models

i. Synchronize and Stabilize
ii. Agile Processes
iii. Open Source

(e) No One Team Organization dictated by P-CMM
5. The Tools of the Trade

(a) Stepwise Refinement
(b) Cost-Benefit Analysis
(c) Divide and Conquer
(d) Separation of Concerns
(e) S/W Metrics
(f) CASE tools
(g) Version/Configuration Control

6. Testing
(a) Quality Issues

i. SQA
ii. Managerial Independence

(b) Non-Execution-Based Testing (Reviews)
i. Walkthroughs
ii. Inspections

(c) Execution-Based Testing
i. Best Practice: Determine expected results before you execute

your first test.
(d) What to Test

i. Utility
ii. Reliability
iii. Robustness
iv. Performance
v. Correctness

(e) Testing versus Correctness Proofs
i. There will be no correctness-proving on the final exam.
ii. When correctness-proving can be justified is fair game for the

final exam.
(f) Who Should Perform Execution-Based Testing? Answer: SQA!

7. From Modules to Objects (N.B. Use our definitions from the Lecture
Notes, NOT the text definitions here)
(a) Cohesion
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(b) Coupling
(c) Encapsulation
(d) Abstract Data Types
(e) Information Hiding
(f) Objects
(g) Inheritance, Polymorphism, Dynamic Binding

8. Reusability and Portability
(a) Reusability

i. Impediments to Reusability
ii. Objects and Reusability
iii. Types of Re-use

A. Library (toolkit)
B. Application Framework
C. Design Patterns

(b) Portability
i. Impediments to Portability

A. Hardware Incompatibilities
B. Operating System Incompatibilities
C. Numerical System Incompatibilities
D. Compiler Incompatibilities

ii. Objects and Portability
9. Planning and Estimating

(a) Estimation
i. Metrics for Size of a S/W product - Function Points
ii. Estimating Duration - Intermediate COCOMO

(b) Project Management
i. Testing
ii. Training
iii. Documentation
iv. CASE Tools
v. Testing the SPMP

24.2 Course Evaluations

� Please fill out your course evaluations at
http://perceptions.uwaterloo.ca

� All the best on your final exams before ours!
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interface, 84
iterator, 100

KDSI, 114

library, 92

metric, 57
Miller’s Law, 20, 54
model, 34
model checking, 75
module, 77
moving target problem, 19, 38

nominal effort, 115
non-execution based testing, 66

object, 86

pair programming, 28, 50
partial correctness, 71
polymorphic, 87
portable, 106
positive testing, 37
post-delivery maintenance, 76
Predicate logic, 72
procedural abstraction, 81, 82
project function, 120
proof of concept prototype, 18
proof-of-concept prototype, 29, 39

quality, 65

rapid prototype, 24
rapid prototypes, 29
re-use, 57, 88
real time, 71
regression fault, 20

regression test, 20
regression testing, 76
reliability, 80
replaced, 37
report generator, 59
retirement, 37
review, 36, 54, 66
revision, 60

screen generator, 59
Scrum Method, 26
separation of concerns, 56, 78, 80
severity of failures, 70
simulator, 69
software crisis, 8, 32
software depression, 8
software engineering, 8
software process, 32
SQA, 23
stepwise refinement, 21, 34, 54
systematic testing, 76

task, 120
technical complexity factor (TCF), 112,

113
total degree of influence, 113
traceability:, 36

UML, 34
unadjusted function points (UFP), 111
undecidable, 75
Unified Process, 32, 33
utility, 70

variation, 61
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