CS 430 MidTerm Practice Problems on Text Ch 6

Not for handing in - Solutions will be posted on Friday, October 24

1. State the similarities and differences between the two review processes: **walkthroughs** and **inspections**.

Solution:

Similarities:

- Both are chaired by an SQA professional.
- Both are review processes performed by teams with the aim of finding faults.
- In both cases, the material is produced by individual team members, and then the material is reviewed by the team as a group.

Differences:

- An inspection is a formal five-step process whereas a walkthrough has only two informal steps.
- Previously acquired fault statistics play an important role in the inspection process, not in the walkthrough process.
- There is a formal component of the inspection process for ensuring that all faults noted are later corrected. In a walkthrough faults are only found, not fixed.
- If more than a certain proportion of the material is changed then it must be submitted for re-inspection.
- 2. In class, we discussed five things that should be tested for a software product. List the five things, and provide one example for each.

Solution: The five things to test are

(a) Utility ✓

Examples (any of these):

- i. Is the S/W product easy to use?
- ii. Does the S/W product perform useful functions?
- iii. Is the S/W product cost effective?
- (b) Reliability ✓

Examples (any of these):

- i. **mean time between failures** Long times \rightarrow more reliable.
- ii. **mean time to repair failures** Long times to fix \rightarrow less reliable.
 - A. Also important (often overlooked): time required to fix the effects of the failure. Long times to fix \rightarrow less reliable.
- (c) Robustness ✓

Examples (any of these):

- i. range of operating conditions (permissible by the specifications or not)
 - A. A robust product has a wide range of operating conditions, including some outside the specifications.
- ii. possibility of unacceptable results given acceptable input
 - A. A robust product produces acceptable results given acceptable input.
- iii. acceptability of results given unacceptable input
 - A. A robust product produces acceptable results (e.g. a helpful error message

instead of a crash) even given unacceptable input.

(d) **Performance** ✓

Examples (any of these):

- i. It is crucial to verify that a S/W product meets its constraints with respect to response times or time/space requirements.
- ii. Space constraints can be critical in miniature applications, e.g.
 - A. missile guidance systems as in the text, or
 - B. smart phone apps.
- iii. Time constraints can be critical in **real time** applications, e.g.
 - A. measuring core temperature in a nuclear reactor as in the text, or
 - B. controlling signals on a railroad network.

(e) Correctness ✓

<u>Example:</u> Does the S/W product satisfy its output specifications, without regard for the computing resources used, when operated under permissible (pre-)conditions?

3. In class, we discussed one particular situation in which correctness proving can be justified via cost-benefit analysis. What was it?

Solution: In class, we discussed the fact that it is easy to justify correctness proving via cost-benefit analysis, when human lives depend on software correctness (e.g. the software to control autonomous vehicles).