
Assignment 4: Topics in Functional Programming

CS 442/642

Due March 12th in class

Part A—The ML Module System

Pages 165–167 of your course notes give an implementation of an interpreter for deterministic finite automata
(DFAs) using ML functors. For this portion of the assignment, your first task is to design a similar interpreter
for nondeterministic finite automata (NFAs).

1. An NFA interpreter

Recall that nondeterministic finite automata differ from their deterministic counterparts by offering a choice
of 0 or more alternative next states for each given (state, input) pair. Such a machine accepts if there exists
a set of choices that land the machine in an accepting state when the input is consumed.

Since ML is not a nondeterministic language, we will simulate the action of the NFA by keeping track of
the set of states the automaton could be in after having read a given sequence of characters. If, after having
consumed the input, at least one of the machine’s possible configurations is an accepting state, the machine
accepts.

For this task, you will modify the DFA signature in the course notes so that it now specifies the charac-
teristics of an NFA. You will then write a functor NFA with the following interface:

functor NFA (Spec : NFASIG) : sig

val run : Spec.Sigma list -> bool

end

This functor accepts a specification for an NFA and outputs a structure that provides a single function run

that determines whether a given input is in the language specified by the NFA.

2. DFAs are NFAs

Since every DFA is implicitly an NFA, it would be useful if your NFA functor could accept and interpret DFA
specifications. To make this possible, you will write a functor called DFAtoNFA that takes a DFA specification
and outputs an equivalent NFA specification. (Note: since every DFA is implicitly an NFA, this functor
should be very simple.)

3. Building Blocks

One of the nice features of regular languages is that they are closed under many operations. As a result,
we have many tools at our disposal for creating new regular languages from old ones. In particular, we
may specify a regular language as the intersection of two other regular languages. For this task, you will
use closure under intersection as the basis for a tool to build new DFAs from old ones. In particular, you
will write a functor called Intersection, parameterized by two structures called Spec1 and Spec2, with
signature DFASIG, and returning a structure with signature DFASIG that recognizes the intersection of the
langauges of the two input automata.

1

4. Discussion

1. What problem would we run into if we tried to write a functor to compute a DFA that recognizes the
union of the languages of two input automata? How could we modify DFASIG to fix the problem?

Notes

1. The purpose of this portion of the assignment is to explore a useful application of the ML module
system, and not to examine how much you remember from automata theory. Therefore, if you need a
refresher, feel free to come to office hours to discuss some of the necessary constructions. You are also
permitted to discuss DFA constructions on Piazza.

Part B—Lazy Programming

The function lazymap takes a function and a stream as parameters and returns the stream that results from
applying the function to every item in the stream.

a) Implement lazymap in Scheme. Use delay and force.

b) Implement lazymap in ML. Use thunking.

c) Implement lazymap in Haskell.

Part C—Haskell and Type Classes

Start-up code for this question can be found at http://www.student.cs.uwaterloo.ca/~cs442/secd.hs

Landin’s SECD Machine

A popular way to specify the semantics of a programming language is to describe an abstract “machine”
that performs the computation specified by a program in the language. Several abstract machines exist for
interpreting terms in the untyped λ-calculus. Of these, the most famous is Peter Landin’s SECD machine.

The SECD machine consists of four stacks: S, E, C, and D. These are called, respectively, the Stack, the
Environment, the Control, and the Dump. The purpose of each is roughly as follows:

� the stack holds the results of computations already performed;

� the environment is a map from program variables to the terms to be substituted for them;

� the control holds the current and remaining computations to be performed—its contents “direct” the
actions of the machine;

� the dump is a store for surrounding context when evaluating nested expressions.

We will use the notation 〈S,E,C,D〉 (denoting the contents of each of the four stacks) to represent a
configuration of the machine. Initially, S, E, and D are empty, and C contains the expression to be reduced.

The behaviour of the SECD machine is defined by the following state transitions:

� 〈S,E, x : C ′, D〉 → 〈lookup(x,E) : S,E,C ′, D〉—look up a variable in the environment and place it on
the stack

� 〈S,E, λx.M : C ′, D〉 → 〈〈x,M,E〉 : S,E,C ′, D〉—convert an abstraction into a closure, containing the
variable and body of the abstraction, and the current environment; place the closure on the stack

2

� 〈S,E, (MN) : C ′, D〉 → 〈S,E,N : M : @ : C ′, D〉—split up the components of an application and put
them on the control separately in reverse order (so that N is evaluated first), followed by a special
directive, @, meaning “apply”

� 〈S,E, prim : C ′, D〉 → 〈prim : S,E,C ′, D〉—if a primitive value is on the control, then transfer the
primitive to the stack unchanged

� 〈prim : N : S′, E,@ : C ′, D〉 → 〈S′, E, prim(N) : C ′, D〉—if a primitive function is on top of the stack
and an “apply” directive is on the control, then apply the primitive function to the next item on the
stack, and put the result on the control in place of them

� 〈〈x,M,E1〉 : N : S′, E,@ : C ′, D〉 → 〈(), 〈x,N〉 : E1,M, 〈S′, E, C ′〉 : D〉—if a closure is on top of the
stack and an “apply” directive is on the control, then push a triple consisting of the current stack
(minus the top two elements), environment, and remaining control, onto the dump

� 〈M : (), E, (), 〈S′, E′, C ′〉 : D′〉 → 〈M : S′, E′, C ′, D′〉—when a computation is exhausted (control is
empty and stack has a single element on it), restore the previous context from the dump, and push
the current result onto the top of the restored stack

� 〈M : (), E, (), ()〉 → done: return M—if the dump is empty when the computation is exhausted, then
the machine halts

� all other configurations are erroneous

1. Representing λ-terms

You will represent λ-terms using the following data declaration:

data Term = Var String | Abs String Term | App Term Term | Prim Primitive | INT Int

This divides the set of all terms into five classes, with the obvious meanings (for the meaning of Prim see
the section on Primitives). Unfortunately, when we type, for example, Abs "x" (Var "x") at the Haskell
prompt, Haskell returns an error, as it does not know how to display λ-terms on the screen. To remedy this
problem, we need to make Term an instance of the class Show. To do this, you must provide an implementation
of the function show, which maps λ-terms into strings. For example, typing the following at the Haskell
prompt:

App (Abs "x" (App (Var "x") (Var "x"))) (Abs "x" (App (Var "x") (Var "x")))

should cause Haskell to return:

((\x.(x x)) (\x.(x x)))

BONUS: Arrange for the term to be printed with minimal parenthesization. If you attempt this, be sure
to get it right, because if you leave out a pair of parentheses that are actually needed, you risk losing marks
on the main question.

2. Representing stack contents

Take a close look at the kinds of information that are stored on each of the machine’s four stacks. Come up
with four data declarations:

data SContents = ...

data EContents = ...

data CContents = ...

data DContents = ...

3

Each data declaration above indicates the type of the data that its respective stack can store. At the same
time, implement a function lookUp that performs lookups in your environment stack. Note: do not be
surprised if your data declarations are not quite right on your first attempt.

Also include the following data declaration for configurations of the entire machine:

data SECDConfig = SECD ([SContents], [EContents], [CContents], [DContents])

3. Implementing the machine

Code the state transitions of the SECD machine in Haskell, by writing a function secdOneStep that maps
an SECD configuration (of type SECDConfig) to the one that immediately follows it, according to the rules
given to you. Then write a function reduce that takes a λ-term as a parameter, and passes it through
secdOneStep repeatedly until a final answer is produced, which it returns to the caller.

You will notice that the value returned by the machine is not quite a λ-expression of type Term. For
example, if we feed λx.x into the machine, we get back 〈x, x, 〈〉〉, which is a closure of the function λx.x (the
first x is the variable of the abstraction, and the second x is the body) in an empty environment. Thus, you
will need to implement functionality to translate closures back into λ-expressions. In general, the closure
〈x,M,E〉 is translated back to λx.Mσ where σ is the set of substitutions {[N/y]|〈y,N〉 ∈ E}. (Note that
the N ’s themselves may be closures, so this process may have to be iterated.)

To aid debugging and testing, make the type SECDConfig a member of class Show. When an SECD
configuration is displayed on the screen, it should have a four-line representation, as follows:

S = 〈suitable representation of S 〉
E = 〈suitable representation of E 〉
C = 〈suitable representation of C 〉
D = 〈suitable representation of D 〉

4. Primitives

The way it is designed, the SECD machine is difficult to test unless we add some primitives to the λ-calculus.
Therefore, we augment the λ-calculus to include integers and some primitive integer operations.

When the SECD machine encounters an integer or a primitive on the control, it simply transfers the
integer or primitive, unchanged, onto the stack.

The only primitives you are required to support are Succ, which computes the successor of its argument,
and IsZero, which tests whether its argument is the integer 0. You may support other primitives to provide
additional functionality if you like, but this is not required. Supporting binary primitives is particularly
difficult, but not impossible (and not required).

If you look at the data declaration for terms, you will see a type Primitive. You will need to define
this type. Make it an enumeration over the primitives your implementation will support. To implement
application of primitives to data, write a function applyPrim of type Primitive -> Term -> Term (this
technique of implementing function application is known as defunctionalization), and use applyPrim when
the SECD machine needs to apply a primitive.

Notes

1. The tasks in this portion of the assignment are not algorithmically difficult; your main difficulty is
likely to be getting your expressions to type-check. Seek assistance from course staff as necessary.

2. It is indicated, in the description of the SECD machine’s state transitions, that there exist erroneous
states from which no transition is possible. Given well-formed input, it is not possible, assuming your
machine is implemented correctly, to reach such states. Haskell does not have exceptions; therefore, if
we wanted to catch these error states, we would need to use some other mechanism, e.g. Maybe types.
However, you are encouraged to simply leave these cases unhandled. Then, if Haskell reaches such a
configuration, you will get a runtime error, with reasonably useful debugging information.

4

3. To save you some time, you are not being asked to demonstrate any portion of this assignment.
However, be sure to test your code thoroughly and carefully. If you are having difficulty devising
suitable test cases, contact course staff and we can assist you.

Submission

Submit the code portion of your solutions to parts A, B, and C as three separate source files. You should
submit your source code on paper and electronically, via the MFCF submit command. The distribution of
the marks for this assignment is 25% each for parts A and B, and 50% for part C. The assignment is due by
the beginning of class on the due date.
As always, you are encouraged to seek help from course staff as needed.

5

