Assignment 6: Prolog

CS 442/642

Due April 8"

You will complete this assignment in Prolog.

The Unlambda Programming Language

Not all programming languages are a pleasure to use. If you search the Web, you will find many examples of
programming languages (Intercal, for example) that were designed to be as difficult to use as possible, while
(hopefully) remaining Turing-complete. These are sometimes called obfuscated programming languages.

In this assignment, we focus our attention on a particular obfuscated language that enjoys the dis-
tinction of also being a functional language. This language is called Unlambda. We consider only a
(Turing-complete) subset of Unlambda here; for information on the full language, see the creator’s web
site: http://www.madore.org/ david/programs/unlambda/

At its core, an Unlambda program consists of a string made entirely of the characters s, k, and ‘. s and
k are functions (or combinators). The symbol ¢ is an “apply” operator. It is a prefix operator, and since
all functions in Unlambda are curried, it eliminates the need for parentheses. For example, we represent
(ab)c as ¢ ‘abc, and a(bc) as ‘a‘be. s is a ternary combinator with the property that, for any a, b, and c,
¢ ¢ “sabc evaluates to ¢ ‘ac‘bc (that is, (ac) (bc)). k is a binary combinator with the property that, for any
a and b, ¢ ‘kab evaluates to a. For example, consider the evaluation of the following Unlambda program:

“¢fskkk — ‘‘kk‘kk
— k

Unlambda is an applicative-order language—to reduce ‘ab, we reduce a first, then b, and finally, we apply
the reduced a to the reduced b.

The core language, consisting of s, k, and ¢, are enough to guarantee Turing-completeness. However,
Unlambda supports a number of other interesting primitives, outlined below:

e i—the identity function. i is a unary function, and ‘ix returns x for all x.
e v—the “voracious” combinator. v is a unary function, and ‘vx returns v for all x.

e .x—display function. This is actually a family of functions. .x is literally the function that prints the
character x to the screen, but x may be replaced with any character. Note that . on its own is not a
function. Also note that .x is a unary function, and does nothing until an argument is supplied. At
that point, the function prints x and returns its argument. For example, ‘.*i prints the character *
and returns 1.

e r—a special case of .x. r is a unary function that prints a newline and then returns its argument.

e d—“delay”. dis a unary function; the application ‘dF, where F is an unlambda expression representing
the argument to d, produces a “promise” to evaluate F. Note that, unlike with normal function appli-
cation, F is not evaluated before it is passed to d. Hence, for example, ‘d‘.xi produces a promise to
return ¢.xi, but nothing is printed; if the promise is applied, as in ‘ ‘d‘.xii (this reduces to the same



promise as before, applied to i), Unlambda evaluates the argument to the promise first, the contents
of the promise (‘.xi) second, and finally applies the reduced promise to the argument. For example,
€4q¢.xi‘ii reduces s follows: ‘d¢.xi‘ii — ‘(promise)‘ii — ‘(promise)i — ¢‘.xii — (prints
x) ‘4i — i.

Unlambda also supports the primitive ¢ (call-with-current-continuation), but we shall ignore this.

Part A—An “Unlambda Machine”

For part A, you are to construct an interpreter for the subset of Unlambda discussed above. To simplify
the task, the input to your interpreter will be a list consisting of a sequence of Unlambda tokens. We will
represent the s, k, i, v, and r operators in our input lists as the symbols s, k, i, v, and r, respectively.
To avoid potential compatibility issues across Prolog implementations, we will represent ¢ as the symbol
a. Finally, we will represent .x by dot(x), where x represents the character following the dot in the input
string.

The interpreter will work as follows: if the head of the input is anything other than a, then the interpreter
terminates. Otherwise, it recursively reduces the tail of the list until it is no longer reducible (i.e. it begins
with anything other than a), and then does the same with the tail of the tail of the list. At this point, the
original list consists of a, followed by two characters other than a, and we can then perform the application
requested by the initial a. Applications of the primitive operators proceed as follows:

e [a, k, x, ...] should be replaced with [k(x’), ...] after reduction of x to x’;

e [a, k(x), y, ...] should be replaced with [x, ...] after reduction of y;

e [a, s, x, ...] should be replaced with [s(x’), ...] after reduction of x to x’;

e [a, s(x), y, ...] should be replaced with [s(x,y’), ...] after reduction of y to y’;

e [a, s(x,y), z, ...] should be replaced with [a, a, x, z’, a, y, z’, ...] after reduction of z
to z’;

e [a, i, x, ...] should be replaced with [x’, ...] after reduction of x to x’;

e [a, v, x, ...] should be replaced with [v, ...] after reduction of x;

e [a, dot(x), y, ...] should be replaced with [y’>, ...] after first reducing y to y’, and then print-

ing x to the screen;

e [a, r, y, ...] should be replaced with [y’, ...] after first reducing y to y’, and then printing a
newline to the screen.

e The reduction for d is for you to determine.

The predicate that runs your interpreter should be called interpret. Its first argument should be an
Unlambda expression represented as a list; its second argument will be used for output of the reduced
expression. For example, invoking interpret([a,a,a,s,k,k,k], Y) should result in a binding of Y to [k].

1Note that the wording here is a bit imprecise, because the precise version is awkward. But in essence, when we say “after
reduction of x to x’,” we mean after reduction of (some prefix of the remainder of the list that starts with x and represents a
complete subexpression) to x’. Similar comments apply to the other bullets.



Part B—Interpreting from Text

Write a predicate interpretFromText that takes two parameters. The first will be an Unlambda expression
represented as a (double-quoted) string. The second will be the reduced Unlambda expression, represented
in the format given in part A. interpretFromText will work by translating its input into the format required
by interpret and invoking interpret. For example, invoking interpretFromText ("¢ ¢ ‘skkk", Y) should
result in a binding of Y to [k].

For a small bonus, you can arrange to have interpretFromText return the reduced term as a string,
by translating the result of the interpreter back to a string before returning it. But note the following: if
an Unlambda expression is an incomplete application (and therefore irreducible), like ‘ki or ¢ ‘skk, your
interpreter will return a closure—in this case k(i) and s(k,k), respectively. As the correct answers are
really the unreduced ‘ki and ‘°‘skk, you will need to look out for closures and translate them back into
unreduced Unlambda expressions. Keep in mind that closures may be nested, and so a recursive expansion
may be necessary. Similar comments hold for the treatment of dot(x). If the result is (or contains) a
promise, you can represent the promise in text as <promise>, or some other suitable representation.

Notes
e The “apply” character in Unlambda is a backquote (ASCII 96).

Part C—*“Unlambdafication”

The Unlambda operators s and k were not chosen arbitrarily; they are actually Moses Schonfinkel’s “Ver-
schmelzungsfunktion”, or .S combinator, and “Konstanzfunktion”, or K combinator, both of which may be
represented in the A-calculus. The S combinator is Ax.Ay.Az.(x z)(y z) and the K combinator is Az.\y.x.

Schonfinkel showed that every closed term in the A-calculus may be converted to an equivalent expression
consisting only of combinations of S and K. In this way, we may actually remove all of the (bound) variables
from an expression. This transformation, which we call “unlambdafication”, is presented below:

unlambdafz] = =z
unlambda[f] = f
unlambda[M N] = unlambda[M] unlambda[N]

unlambda[Az.E] [z](unlambda[E])

The notation [z]E denotes the bracket abstraction, and roughly means “remove the variable z from the
expression E”. The bracket abstraction is presented below:

{I ify==x

lely = Ky otherwise
[z]f = Kf
]I = KI
]K = KK
[]S = KS
@] (MN) = S([]M)(2]N)

In the definitions above, we use f to denote function symbols. These represent primitive functions, with
which we augment the bare A-calculus.

For Part C of your assignment, you will implement, in Prolog, a translator from the untyped A-calculus
to the Unlambda programming language. To do this, you will need a Prolog representation for A\-terms. The
representation you will use is as follows:



e The variable x will be represented by the structure var (x);

e the abstraction Ax.E will be represented by the structure abs(var(x), E), where E is our Prolog
representation for the expression F;

e the application M N will be represented by the structure app(M,N), where M and N are our Prolog
representations for the expressions M and IV, respectively;

e the function symbol f will be represented by the structure func(f).

For example, we would represent the A-term Ay.Az.y(y z) in Prolog as
abs(var(y), abs(var(x), app(var(y), app(var(y), var(x)))))
You will support the following function symbols:

e r—prints a newline and returns its argument. For example, the expression app(func(r),var(x))
prints a newline (after first reducing the expression var (x)—in this case there is nothing to do) and
then reduces to var(x);

e dot(x), where x is any character—prints the character x and returns its argument. For example, the
expression app (func(dot("*")),var(y)) prints the character * (after first reducing the expression
var (y)—in this case there is nothing to do) and then returns var (y);

e v consumes its argument and returns v. For example, the expression app(func(v), var(x)) reduces,
after reduction of var(x), to func(v).

e d—*“delay”. See the description in part A of this assignment. For example,
app(func(d), app(func(r), func(i))) returns a promise to evaluate app(func(r), func(i)) (and
prints nothing); app(app(func(d), app(func(r), func(i))), func(v)) prints a newline and re-
turns func(v).

Your translator will be called unlambdafy/2. Its first parameter will be A-expression to be reduced. Its
second will be used for output, and will contain the translation of the the A-expression to Unlambda. The
output parameter should have format matching the input format for your solution to part A, so that the
two predicates could be chained together, if desired.

Notes

e Take note of the spelling of unlambdafy.

Submission

Submit electronically. The distribution of marks is expected to be 40% for part A, 20% for part B, and 40%
for part C.



