
CS442
Assignment 2

University of Waterloo

Winter 2025

This assignment tests your understanding of the content of Modules 2 and 3. You will implement a λ-calculus
reducer in GNU Smalltalk. The assignment is divided into four parts, but you should submit only one file: a2.st.

In this and all assignments, any behavior which we do not explicitly define will not be tested, so you may define
it however you wish, or allow your program to fail. Make sure though that it actually is undefined; ask on Piazza
if you’re unsure.

Submit all code via UWaterloo submit, e.g.:

submit cs442 a2 .

This assignment is due on Friday, February 28th, by 12PM NOON, NOT MIDNIGHT, Eastern time.

The λ-Calculus in Smalltalk

You are provided with lambda.st, an implementation of the types for the syntax tree of the λ-calculus in GNU
Smalltalk. It implements the following classes:
Object subclass: LambdaExpr [

isVar.
isAbs.
isApp.
ifVar: varBlock ifAbs: absBlock ifApp: appBlock.
reduceWith: block steps: steps.
freeVars.
printString.

]

LambdaExpr subclass: LambdaVar [
| name |
LambdaVar class >> withName: name.
dup.
isVar.
name.
freeVars: map.
displayString.

]

CS442: A2 1

LambdaExpr subclass: LambdaAbs [
| var body |
LambdaAbs class >> withVar: var body: body.
dup.
isAbs.
var.
body.
freeVars: map.
displayString.

]

LambdaExpr subclass: LambdaApp [
| rator rand |
LambdaApp class >> withRator: rator rand: rand.
dup.
isApp.
rator.
rand.
freeVars: map.
displayString.

]

Object subclass: LambdaParser [
| text index tok |
LambdaParser class >> new: text.
LambdaParser class >> parse: text.
parse.

]

The LambdaExpr class serves as a superclass for all λ-calculus expressions. Each of its methods are only meant
to be used on subclasses (that is, in C++ or Java terms, its methods are all abstract, though Smalltalk has no
abstract methods). Its isVar, isAbs, and isApp methods each return true if the expression is of the named type,
or false otherwise. The ifVar:ifAbs:ifApp: method lets you easily “switch” based on the type; each block will be
evaluated only if the value is of the given type. The freeVars method returns the free variables of the expression, as
a Dictionary mapping the name of the free variable to the LambdaVar that uses it in the expression; generally, all that
you will need from this dictionary is the presence of a free variable, i.e., includesKey:. printString is overridden to
fall through to displayString, and displayString is overridden in all child types to return a λ-calculus expression
as a string, with λ replaced by the caret or circumflex symbol, ^.

The reduceWith:steps: method is a simple method to reduce the expression using the block given as the first
argument, maximally as many steps as is given as the second argument. Its purpose will become clearer in the
assignment parts on reduction.

We will not repeat the behavior of the shared methods, only the unique methods per each subclass of LambdaExpr.

Every subclass of LambdaExpr includes a dup method, which duplicates the expression, including all children.

The LambdaVar class represents a variable. A LambdaVar is constructed by LambdaVar class >> withName:, which
expects the variable name as an argument. The variable name should be a string starting with an alphabetical
character, unless this expression is using deBruijn indices and the variable is bound, in which case it should be a
number (not as a string). The name method returns this name.

The LambdaAbs class represents an abstraction. A LambdaAbs is constructed by LambdaAbs class >> withVar:
body:, which expects a string variable name (not a LambdaVar) and a LambdaExpr (the body) as arguments. var
returns the variable, and body returns the body. If using deBruijn indices, the variable should be nil.

The LambdaApp class represents an application. A LambdaApp is constructed by LambdaApp class >> withRator:
rand:, which expects the rator and rand as LambdaExprs. rator and rand return the rator and rand, respectively.

Finally, the LambdaParser class is a parser for λ-calculus strings, which converts such strings into LambdaExprs.
The λ-calculus strings accepted by this parser should have λ replaced by ^. It can be used in one of two ways: either
by constructing an instance of LambdaParser and calling parse on it, or by using LambdaParser class >> parse:
directly.

CS442: A2 2

For instance, to parse the string '^f.^x.f (f x)', you can use either
(LambdaParser new: '^f.^x.f (f x)') parse

or
LambdaParser parse: '^f.^x.f (f x)'

The latter is, of course, implemented in terms of the former. Note that since this implementation of the λ-calculus
allows multi-character variable names, f x is not the same as fx. The first is an application of a variable to a
variable, and the second is a variable. Be careful to separate variables with spaces for this reason.

Several examples are included in the “demonstration” section of this document.

1 de Bruijn

Write a file, a2.st, which defines at least the following class:
Object subclass: Lambda [

Lambda class >> new: exp.
toDeBruijn.

]

You may (and should!) include more methods and/or classes to help your implementation.

A Lambda will eventually be a λ-calculus reducer. For the time being, it’s just a de-Bruijn-translator. A Lambda
is created with a LambdaExpr (exp), which we will call “the internal expression”, which should be stored and updated
by all methods.

The toDeBruijn method converts a non-de-Bruijn-indexed expression to a de-Bruijn-indexed one, and both
returns the de-Bruijn-indexed expression and sets the internal expression to it. All abstractions should be replaced
with abstractions that have nil as the variable (not the string 'nil'), and all variables should be replaced with
numbers at the appropriate depth. Remember than de Bruijn indices are one-indexed, so λx. x translates as λ. 1,
not λ. 0.

Any free variables in the expression should be left unchanged. Note that as a consequence of this fact, deBruijn
can be safely repeated (i.e., it’s idempotent): if de Bruijn indices are interpreted as non-de-Bruijn variable names,
they will always be free, and so won’t be replaced.

toDeBruijn may mutate the expression and any of its child objects, or it may create a new expression, or any
combination thereof.

Because of how substitution is performed in the λ-calculus, toDeBruijn will be used in testing all of the methods
defined in the rest of this assignment, so make sure you get it right!

Hints

It would be difficult to implement this with toDeBruijn alone. You will need to implement something that carries
the list of currently-defined variables, so that you can look up a variable in that list and replace it.

You may want to implement that as a method on LambdaExpr’s children. If so, don’t modify lambda.st, as
you will not be submitting that file. You can extend an existing class using GNU Smalltalk’s extend syntax, e.g.:
LambdaVar extend [

toDeBruijn: map [
...

]
]

You would be wise not to replace any existing methods in LambdaVar, since our tests could use any of them, but you
may safely add any methods you please. In fact, you can add methods to any class you want, even internal classes!

CS442: A2 3

2 Applicative Order Evaluation

Extend a2.st, adding at least the following methods to Lambda:
Object subclass: Lambda [

...
aoe.
aoe: steps.

]

The aoe method performs a single reduction step using applicative order evaluation on the expression, returns
the reduced expression, and updates the internal expression to match the returned expression. Since the internal
expression is updated, if aoe is called repeatedly, multiple steps of reduction are taken. If there is no reduction
step for AOE (i.e., reduction is complete), then it should return nil, and set the Lambda’s internal expression to nil
(which should cause any further calls to aoe to fail).

The aoe: method performs a specified number of steps of AOE, and returns the result. If fewer than the specified
number of steps ends the reduction, then the final reduced expression should be returned, not nil. The internal
expression should be updated to the same result. Note that this means the internal expression should never be
updated to nil by aoe:, even if aoe would have updated it to nil!

The aoe: method is best implemented by reduceWith:steps:, perhaps indirectly. The reduceWith:steps: method
calls the one-argument block passed to reduceWith: the number of times specified by steps:. The argument to the
block on its first evaluation is the LambdaExpr that reduceWith:steps: was called on, and each subsequent evaluation
of the block takes the previous return from the block as its argument, so that it can be used to iteratively reduce an
expression. If the block returns nil, then reduceWith:steps: stops, returning the previous value. Read lambda.st
for more details. When using reduceWith:steps:, the block passed to reduceWith: should perform a single step
of reduction on its argument and return the reduced version. You will probably want to create an internal helper
method, used by both aoe and aoe:, so that their different returns can be accounted for.

You may perform reduction directly on a λ-calculus expression, or you may perform de Bruijn rewriting first.
The result of aoe may or may not use de Bruijn indices, by your preference. However, the input to new: will never
use de Bruijn indices, so if you wish to use de Bruijn indices, you should probably modify new: (or an init: method
it uses) to perform this step. There is no method to directly extract the expression, so it’s safe to keep your internal
expression in either form. You are recommended not to use de Bruijn indices, because the complication they avoid
during substitution (renaming) is replaced by more subtle complications (renumbering).

aoe and aoe: may mutate the expression and any of its children, or may create a new expression, or any
combination thereof. If you use mutation, make sure to use dup during substitution; having two references to the
same subexpression will cause some extremely confusing behavior!

Hints

Be very careful about reduction steps: aoe should represent a single application of AOE’s →, not two or three!
Order is also important, and you will be tested on whether you’ve reduced the correct part of the expression. Note
that in future assignments, we will usually not ask for individual steps in this way; we are asking for this only for
the λ-calculus.

Reduction requires substitution, so you will presumably want to implement a substitution method. Substitution
requires the ability to create a “new” variable name. Our version of the λ-calculus in this assignment is more
forgiving in variable names than in Module 2; in particular, they may be of any length. One simple technique to
generate fresh variable names is to carry a counter, and increment it every time you generate a new name. An even
simpler technique uses a Smalltalk-specific trick: every object has a hash, and the hash is unique to that object.
So, if you need a new name, you can use the hash method to get a unique number, so long as you’re calling it on an
adequately unique object. For instance, the canonical implementation of substitution on LambdaAbs includes these
statements:
nvar := var , (self hash asString).
body := body substitute: var for: (LambdaVar withName: nvar).
var := nvar.

CS442: A2 4

As with toDeBruijn, you may find reduction easier to do by extending the children of LambdaExpr.

Remember when testing that most demonstrations of the λ-calculus use shorthand, e.g. JtrueK , which
isn’t truly part of the λ-calculus, and so isn’t supported by our reducer. If you have an expression E that
uses the shorthand x = M , you can rewrite E as (λx.E)M . For example, we can rewrite λl. l JtrueK as
(λtrue. λl. l true)(λx. λy. x). See the “demonstration” section for some larger examples.

3 Normal Order Reduction

Extend a2.st, adding at least the following methods to Lambda:
Object subclass: Lambda [

...
nor.
nor: steps.

]

The nor and nor: methods behave like aoe and aoe:, but using normal order reduction instead of applicative
order evaluation. Like aoe and aoe:, they may mutate the expression, or create a new one.

Note that although it may be strange to do so, mixing and matching aoe and nor steps is perfectly valid. You
must assure that nothing prevents this.

Hints

You must reduce the outermost reducible expression. To know whether to reduce the current expression or recurse
deeper, you need only to check some types. Remember, an expression is a redex if it’s an application and its rator
is an abstraction. The isAbs method is there for exactly this check!

4 η-Reduction

Extend a2.st, adding at least the following methods to Lambda:
Object subclass: Lambda [

...
eta.
eta: steps.

]

The eta and eta: methods behave like aoe and aoe: or nor and nor:, but using η-reduction instead of β-reduction.
Reduce the leftmost, innermost η-reducible expression.

Demonstration

The following demonstrates a possible interaction with Lambda. Note that exact variable names within λ-expressions
may differ between your implementation and this demonstration, but the result of toDeBruijn should always be the
same.
st> | x s l |
st> x := LambdaParser parse: '(^mul.^two.mul two two) (^m.^n.^f.m(n f)) (^f.^x.f (f x))'.
(((^mul.(^two.((mul two) two))) (^m.(^n.(^f.(m (n f)))))) (^f.(^x.(f (f x)))))
st> l := Lambda new: x.
a Lambda
st> l aoe.
((^two.(((^m.(^n.(^f.(m (n f))))) two) two)) (^f.(^x.(f (f x)))))
st> l aoe.
(((^m.(^n.(^f.(m (n f))))) (^f.(^x.(f (f x))))) (^f.(^x.(f (f x)))))
st> l aoe.
((^n.(^f.((^f.(^x.(f (f x)))) (n f)))) (^f.(^x.(f (f x)))))

CS442: A2 5

st> x := l aoe dup.
(^f.((^f.(^x.(f (f x)))) ((^f.(^x.(f (f x)))) f)))
st> l toDeBruijn.
(^.((^.(^.(2 (2 1)))) ((^.(^.(2 (2 1)))) 1)))
st> l := Lambda new: x.
a Lambda
st> l aoe.
nil
st> x := LambdaParser parse: '(^mul.^two.mul two two) (^m.^n.^f.m(n f)) (^f.^x.f (f x))'.
(((^mul.(^two.((mul two) two))) (^m.(^n.(^f.(m (n f)))))) (^f.(^x.(f (f x)))))
st> l := Lambda new: x.
a Lambda
st> x := l aoe: 1000.
(^f.((^f.(^x.(f (f x)))) ((^f.(^x.(f (f x)))) f)))
st> s := x displayString.
'(^f.((^f.(^x.(f (f x)))) ((^f.(^x.(f (f x)))) f)))'
st> l toDeBruijn.
(^.((^.(^.(2 (2 1)))) ((^.(^.(2 (2 1)))) 1)))
st> x := LambdaParser parse: s , 'f x'.
(((^f.((^f.(^x.(f (f x)))) ((^f.(^x.(f (f x)))) f))) f) x)
st> l := Lambda new: x.
a Lambda
st> l aoe.
(((^f.(^x.(f (f x)))) ((^f.(^x.(f (f x)))) f)) x)
st> l aoe.
(((^f.(^x.(f (f x)))) (^x.(f (f x)))) x)
st> l aoe.
((^x.((^x.(f (f x))) ((^x.(f (f x))) x))) x)
st> l aoe.
((^x.(f (f x))) ((^x.(f (f x))) x))
st> l aoe.
((^x.(f (f x))) (f (f x)))
st> l aoe.
(f (f (f (f x))))
st> x := LambdaParser parse: '(^head.^tail.^cons.^zero.^two.(^succ.(^pred.(pred two)) (^n.(tail(n(^p.cons(succ(head p))

(head p))(cons zero zero))))) (^n.^f.^x.n f(f x))) (^l.l^x.^y.x) (^l.l^x.^y.y) (^h.^t.^s.s h t) (^f.^x.x) (^f.^x.f
(f x)) f x'.

((((((((^head.(^tail.(^cons.(^zero.(^two.((^succ.((^pred.(pred two)) (^n.(tail ((n (^p.((cons (succ (head p))) (head
p)))) ((cons zero) zero)))))) (^n.(^f.(^x.((n f) (f x))))))))))) (^l.(l (^x.(^y.x))))) (^l.(l (^x.(^y.y))))) (^
h.(^t.(^s.((s h) t))))) (^f.(^x.x))) (^f.(^x.(f (f x))))) f) x)

st> l := Lambda new: x.
a Lambda
st> x := l aoe: 1000.
(f x)
st> l toDeBruijn.
(f x)
st> x := LambdaParser parse: '(^mul.^two.mul two two) (^m.^n.^f.m(n f)) (^f.^x.f (f x))'.
(((^mul.(^two.((mul two) two))) (^m.(^n.(^f.(m (n f)))))) (^f.(^x.(f (f x)))))
st> l := Lambda new: x.
a Lambda
st> l nor.
((^two.(((^m.(^n.(^f.(m (n f))))) two) two)) (^f.(^x.(f (f x)))))
st> l nor.
(((^m.(^n.(^f.(m (n f))))) (^f.(^x.(f (f x))))) (^f.(^x.(f (f x)))))
st> l nor.
((^n.(^f.((^f.(^x.(f (f x)))) (n f)))) (^f.(^x.(f (f x)))))
st> l nor.
(^f.((^f.(^x.(f (f x)))) ((^f.(^x.(f (f x)))) f)))
st> l nor.
(^f.(^x.(((^f.(^x.(f (f x)))) f) (((^f.(^x.(f (f x)))) f) x))))
st> l nor.
(^f.(^x.((^x.(f (f x))) (((^f.(^x.(f (f x)))) f) x))))
st> l nor.
(^f.(^x.(f (f (((^f.(^x.(f (f x)))) f) x)))))
st> l nor.
(^f.(^x.(f (f ((^x.(f (f x))) x)))))
st> x := l nor dup.
(^f.(^x.(f (f (f (f x))))))
st> l toDeBruijn.
(^.(^.(2 (2 (2 (2 1))))))
st> l := Lambda new: x.
a Lambda
st> l nor.
nil
st> x := LambdaParser parse: '(^mul.^two.mul two two) (^m.^n.^f.m(n f)) (^f.^x.f (f x))'.
(((^mul.(^two.((mul two) two))) (^m.(^n.(^f.(m (n f)))))) (^f.(^x.(f (f x)))))
st> l := Lambda new: x.
a Lambda
st> x := l nor: 1000.
(^f.(^x.(f (f (f (f x))))))
st> s := x displayString.
'(^f.(^x.(f (f (f (f x))))))'
st> l toDeBruijn.
(^.(^.(2 (2 (2 (2 1))))))

CS442: A2 6

st> x := LambdaParser parse: s , 'f x'.
(((^f.(^x.(f (f (f (f x)))))) f) x)
st> l := Lambda new: x.
a Lambda
st> l nor: 1000.
(f (f (f (f x))))
st> x := LambdaParser parse: '(^head.^tail.^cons.^zero.^two.(^succ.(^pred.(pred two)) (^n.(tail(n(^p.cons(succ(head p))

(head p))(cons zero zero))))) (^n.^f.^x.n f(f x))) (^l.l^x.^y.x) (^l.l^x.^y.y) (^h.^t.^s.s h t) (^f.^x.x) (^f.^x.f
(f x)) f x'.

((((((((^head.(^tail.(^cons.(^zero.(^two.((^succ.((^pred.(pred two)) (^n.(tail ((n (^p.((cons (succ (head p))) (head
p)))) ((cons zero) zero)))))) (^n.(^f.(^x.((n f) (f x))))))))))) (^l.(l (^x.(^y.x))))) (^l.(l (^x.(^y.y))))) (^
h.(^t.(^s.((s h) t))))) (^f.(^x.x))) (^f.(^x.(f (f x))))) f) x)

st> l := Lambda new: x.
a Lambda
st> x := l nor: 1000.
(f x)
st> l toDeBruijn.
(f x)
st> x := LambdaParser parse: '(^head.^tail.^cons.^isNull.^nil.^zero.^succ.(^Y.^F.(^len.(len (cons zero (cons zero nil))

)) (Y F)) (^f.(^x.f(x x))(^x.f(x x))) (^f.^l.(isNull l) zero (succ (f(tail l))))) (^l.l(^x.^y.x)) (^l.l(^x.^y.y))
(^h.^t.^s.s h t) (^l.l^h.^t.^x.^y.y) (^s.^x.^y.x) (^f.^x.x) (^n.^f.^x.n f(f x))'.

((((((((^head.(^tail.(^cons.(^isNull.(^nil.(^zero.(^succ.(((^Y.(^F.((^len.(len ((cons zero) ((cons zero) nil)))) (Y F)
))) (^f.((^x.(f (x x))) (^x.(f (x x)))))) (^f.(^l.(((isNull l) zero) (succ (f (tail l)))))))))))))) (^l.(l (^x.(^
y.x))))) (^l.(l (^x.(^y.y))))) (^h.(^t.(^s.((s h) t))))) (^l.(l (^h.(^t.(^x.(^y.y))))))) (^s.(^x.(^y.x)))) (^f.(^
x.x))) (^n.(^f.(^x.((n f) (f x))))))

st> l := Lambda new: x.
a Lambda
st> l nor: 1000.
(^f.(^x.(f (f x))))
st> x := LambdaParser parse: '^m.^n.^f.^x.m(n f)x'.
(^m.(^n.(^f.(^x.((m (n f)) x)))))
st> l := Lambda new: x.
a Lambda
st> l eta.
(^m.(^n.(^f.(m (n f)))))
st> l eta.
nil
st> x := LambdaParser parse: '^m.^n.^f.^x.n m f x'.
(^m.(^n.(^f.(^x.(((n m) f) x)))))
st> l := Lambda new: x.
a Lambda
st> l eta.
(^m.(^n.(^f.((n m) f))))
st> l eta.
(^m.(^n.(n m)))
st> l eta.
nil
st>

A Note on Testing

Because substitution creates fresh variables names, there are multiple (in fact, infinite) correct values for the result
of any step of reduction which includes bound variables. You are not required to keep any bound variable names,
even if they are unambiguous. You may choose to use de Bruijn indices for all reduction, but you may also rename
any bound variable if you wish to. As such, testing will require toDeBruijn, as that’s the only way of assuring that
all names are consistent (in that there aren’t any names). If your toDeBruijn method doesn’t work, your grade on
aoe, nor, and eta may suffer, simply because we cannot reach a baseline for testing; assignments are hand graded
in this course, but we still need the ability to run tests. Make sure toDeBruijn works!

Rights

Copyright © 2020–2025 University of Waterloo.
This assignment is intended for CS442 at University of Waterloo.
Any other use requires permission from the above named copyright holder(s).

CS442: A2 7

	de Bruijn
	Applicative Order Evaluation
	Normal Order Reduction
	-Reduction

