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“Programming languages should be designed not by piling feature on top of feature, but by removing
the weaknesses and restrictions that make additional features appear necessary.”

— The Revised5 Report on the Algorithmic Language Scheme [1]

When studying programming languages, language theorists need an underlying model, to give a structure on
which to prove or demonstrate concepts. Such models are usually defined in mathematical logic for a few reasons:

• A mathematical logic provides a succinct and precise representation of the core mechanics, hence we do not
need to worry about particular differences and similarities while reasoning about a class of programming
languages.

• Using a mathematical logic gives us a framework to prove certain properties about a programming language.

A good model should be as simple as possible, yet powerful enough that we can use it to model a large class
of programming languages. One such model is the λ-calculus (Lambda calculus), and it is frequently used as a
mathematical model for functional languages.

Aside: This is why many functional languages incorporate a λ in their logos.

Our goal in this chapter is to define the λ-calculus and demonstrate its utility in expressing different entities
you should already be very familiar with while working with programming languages, e.g. booleans, lists, and
natural numbers. λ-calculus itself is actually quite simple, and it uses the power of abstraction to represent all
these features. We will look at the semantics of λ-calculus informally in this module. The following module will
revisit concepts in this chapter and introduce formal semantics. The module after that will discuss adding types to
λ-calculus.

What we will show is that even though λ-calculus has a paucity of concepts, it can nonetheless express all
interesting computations. This fact gives programming language designers a baseline understanding for when
features of their language are computationally powerful.

1 Introduction and Concepts

This short section will prepare you for the concepts that are to come, because the λ-calculus can seem extremely
foreign. Basically, think of this as warning and mental preparation!

The λ-calculus is a mathematical language. In mathematical languages, we generally think of expressions as
equivalent if they have the same value. For instance, in arithmetic, 2+2 is equivalent to 4; you can substitute 2+2
for 4, or vice-versa, and always result in the same value (so long as you’re careful about precedence). However, in
the λ-calculus and other computational languages, there’s a further wrinkle: computation. Since the λ-calculus will
be used to represent computation, equivalences can be complex. Thus, we tend not to think of equivalence, but
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of computation, with precise “from” and “to” states. In a mathematical sense, 2 + 2 is equivalent to 4, but also, if
you’re actually performing the computation, you would replace 2 + 2 with 4, but never replace 4 with 2 + 2.

In the λ-calculus, instead of traditional mathematical operators (like +), we only have functions and function
calls. More precisely, we have abstractions and applications. Abstractions are written with a λ, the name of the
parameter, a dot (.), then the body. Applications work by substitution, so if we “call” the “function” λx. x+ 2 with
the argument 2, we get 2 + 2, by substituting x for 2. However, we have no + or 2 in the λ-calculus; you’ll see in
the rest of this module how the lack of such basics doesn’t limit what we can do.

2 Definitions

The syntax of the λ-calculus is as follows, presented in Backus Normal Form (BNF):

⟨Expr⟩ ::= ⟨V ar⟩ | ⟨Abs⟩ | ⟨App⟩ | (⟨Expr⟩)
⟨V ar⟩ ::= a | b | c | · · ·
⟨Abs⟩ ::= λ ⟨V ar⟩ . ⟨Expr⟩
⟨App⟩ ::= ⟨Expr⟩ ⟨Expr⟩

The four rules define the four elements of the syntax of λ-calculus: expressions, variables, abstractions, and
application.

• An expression—more precisely, a λ-expression or λ-term—is either a variable, an abstraction, an application,
or an expression surrounded by parentheses (i.e., all other elements are expressions);

• A variable is generally a single letter, although we might occasionally use longer identifier names for clarity;

• An abstraction is indicated by the leading character λ (Greek lower case letter lambda), and has two parts:
the variable (or parameter) and an expression (the body), separated by a dot (.);

• An application is simply a concatenation of two expressions. The first is called the rator and the second is
called the rand1.

To bridge these concepts with terms you may be more familiar with, “abstractions” are essentially functions, and
“applications” are essentially function calls. But, don’t take this equivalence too far: the behavior of abstractions
and applications may not match your expectations if you assume they behave exactly as in a programming language
you’re familiar with.

Since applications are simply expressions concatenated together, we need precedence and associativity rules to
understand how to read them. λ-terms are parsed as follows if without parentheses to indicate precedence:

• Abstractions extend as far to the right as possible. For example, λx. xy is parsed as λx. (xy) and not as
(λx. x)y;

• Applications are left-to-right associative. For example, abc is (ab)c, and not a(bc).

Example 1. Here are a few more examples to illustrate the precedence of λ-expressions:

λ-term Equivalent λ-term, with least parenthesis necessary
λx. ((xy)λz. z) λx. xyλz. z

((λx. x)y) (λx. x)y
((xw)(zy)) xw(zy)
((xy)λx. z) xyλx. z

1Short for “operator” and “operand”.
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Exercise 1. Verify that the meaning of the expression will change when parentheses are removed for the terms in
the right column.

We’ve now described the syntax of the λ-calculus, but syntax alone doesn’t tell us an expression’s meaning. We
will now discuss the meaning of λ-expressions; more specifically, how to “compute” in the λ-calculus. Intuitively,
we can see that a λ-expression consists of functions and calls, but more precisely:

• An abstraction λx.E denotes the function that takes an argument for the parameter x and returns the
expression E.

• An application MN denotes the function M applied to the argument N .

Note that all abstractions have exactly one parameter. We’ll see soon that this does not limit the expressibility
of the λ-calculus.

The only “type” in the λ-calculus is a function. So, all expressions are understood to be functions, and thus
expressions like xy are always legal; in this case, the expression denotes the application of the function x to the
argument y.

Aside: Note that we generally don’t give the functions defined in lambda calculus a name. That’s why many
languages use the term “lambda” or “lambda functions” to refer to anonymous (nameless) functions.

For the following sections, we will be talking about the operational semantics of λ-calculus in an informal way.
The formal introduction of operational semantics will be seen in the next module.

3 Free and Bound Variables

First we will start by discussing the simplest entity: variables. To be specific, we shall determine where variables
obtain their meaning, and whether two occurrences of the same name refer to the same variable.

Consider the identity function: the simplest function, that just returns its only parameter. In the λ-calculus, it
is denoted as λx. x. The x inside the body of the abstraction must refer to the same x in the variable position (the
argument) of the abstraction. In formal terms, the latter is a binding occurrence of the former, and x is a bound
variable. An occurrence of a variable that is not involved in a binding occurrence is called free.

In many programming languages, a free variable would be a semantic or runtime error. In the λ-calculus, it is
valid, but just as meaningless; there simply are no per se errors in the λ-calculus.

Here are a few more examples to help build your intuition:

Example 2. In the λ-expression λx. x(λz. x)y, both occurrences of x are bound to the abstraction having variable
x, and y is free.

Example 3. In the λ-expression (λx. x)(λz. x)y, the first occurrence is x is bound to the abstraction (λx. x). The
second x and y are free variables.

Example 4. In the λ-expression abc, all variables are free.

Informally, we can see the set of bound variables for an expression E contains all variables which appear inside
an abstractions that define them. This informal definition is fine for our understanding, but we will also define this
property formally, as a formal definition can be used as a basis for proofs. Formal definitions tend to leverage the
structural and recursive nature of the syntax; specifically, such definition will structurally and recursively define the
property on every kind of expression. In this case, we need to have one definition each for abstraction, application
and variable. Now let’s formally define the notions of free and bound:
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Definition 1. The set of bound variables of an expression E, denoted by BV [E], is defined as follows:

BV [x] = ∅
BV [λx. L] = BV [L] ∪ {x}
BV [MN ] = BV [M ] ∪BV [N ]

Variable x is bound in expression E if x ∈ BV [E].

We can then define the set of free variables in a similar way:

Definition 2. The set of free variables of an expression E, denoted by FV [E], is defined as follows:

FV [x] = {x}
FV [λx. L] = FV [L] \ {x}
FV [MN ] = FV [M ] ∪ FV [N ]

Variable x is free in expression E if x ∈ FV [E]. An expression E is closed if FV [E] = ∅; that is, an expression is
closed if it has no free variables. A closed expression is called a combinator.

Note that it is possible for a variable to be both free and bound. However, each occurrence of a variable in an
expression is either free or bound, but not both. This is why our definition of “closed” depends on FV instead of
BV .

Example 5. In the expression xλx. x, x is both free and bound. the first occurrence of x is free, and the second
one is bound.

Example 6. Figure 1 is a λ-expression in which arrows are drawn from each bound variable occurrence to its
binding occurrence. Variable occurrences with no corresponding arrow are free.

Figure 1: Binding occurrences.

Exercise 2. Provide a modified definition of bound variables, so one can track which expression a bound variable
is bound to. Note: a variable can be bound to multiple expressions!

Bound variables get their meaning from the binding occurrences; on the other hand, free variables do not have a
meaning within an expression. For free variables to be meaningful, we would have to rely on an external definition,
and of course, if we included that external definition as part of the expression, then the variable would now be
bound. Thus, an expression being a combinator means that the computation can proceed without any additional
information.

Example 7. For analogy, consider the following C function:

int f(int x){
return x + y;

}

In the function f, x is bound to the only parameter and y is free. While f is valid in C, the computation can
only proceed if y is defined externally.
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4 Substitution and Reduction

Computation in the λ-calculus is based on the notion of reduction. An expression is reduced until no further
reductions are possible, or some other stopping condition is reached. We will discuss these stopping conditions in
detail in the next section. The primary reduction mechanism in the λ-calculus is known as the β-reduction (beta
reduction) and is the subject of this section.

First, we identify which expression can be reduced.

Definition 3. An expression of the form (λx.M)N is known as a (β−)redex.

Note that redex is short for reducible expressions, and the plural of redex is redices.

Consider the redex (λx.M)N in the definition. Following our usual analogy, λx.M is a function with parameter
x and argument N . The expectation here is that this evaluates to M with every occurrence of x substituted for N .
In fact, since there could be another abstraction in M which defines x again, we only replace each occurrence of x
which is bound to outermost x in λx.M . This is the same as the free occurrences of x inside M .

Note that this substitution style is not how most programming languages are evaluated. Instead, languages
have stacks or stores which contain the values of variables, and a variable’s value is looked up when the variable
is encountered. Substitution is sufficient, and clearer, for the λ-calculus, but we’ll see when and why we need to
actually store variables in later modules.

Since this process involves substitution, we need to have a formal notation for substitution: Let M [N/x] be the
substitution of N for all free occurrences of x in M . That is, M [N/x] is the expression M , with all occurrences of
the variable x replaced with the expression N . Using this notation, we define β-reduction as follows:

Definition 4. (β-reduction) Let M and N be λ-expressions, x a variable. The relation →β (β-reduction) is
defined by the rule

(λx.M)N →β M [N/x]

Further, if C[(λx.M)N ] denotes an expression C in which (λx.M)N appears as a subterm, then

C[(λx.M)N ]→β C[M [N/x]]

We can describe these processes as “(λx.M)N β-reduces to M [N/x]” and “in C, (λx.M)N β-reduces to M [N/x]”,
respectively.

There are a few things that are worth noting in this definition:

• The notation C[M ] refers to a specific occurrence of subterm M in C, not to all occurrences of the subterm.
Thus, if E →β E′, then C[E] →β C[E′] means the reduction of a single occurrences of E in C, even if E
happens to appear multiple times.

• This definition does not specify which redex to take for reduction; any valid redex inside an expression can
be chosen to be reduced. We will discuss later how we choose which redex to reduce.

We will also introduce the following notations:

• →n
β denotes the application of exactly n steps of β-reduction;

• →∗
β denotes the application of 0 or more steps of β-reduction;

• →+
β denotes the application of 1 or more steps of β-reduction;

• ←β denotes β-expansion: A←β B if and only if B →β A;

• =β denotes β-equivalence: A =β B if and only if A can be converted to B by some (possibly empty) sequence
of applications of →β and ←β .
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Repeated application of β reduction (→n
β ,→∗

β ,→+
β ) is, in essence, our computation. The concepts of β-expansion

and β-equivalence will give us a starting place to discuss whether two computations are equivalent, even if they’re
not equivalently written.

Now, we need to take a step back and look at substitution. The intuition here is to just replace every free
occurrence of a variable, say x, with an expression, say T , in an expression E. Remember that every expression is
a variable, an abstraction, or an application, the latter two of which can contain subexpressions. So, we need to
describe the process of substitution for each of these cases:

• If E is a variable and the variable is x, replace the variable;

• If E is a variable and the variable is not x, E does not change;

• If E is an application, perform substitution on the rator and rand;

• If E is an abstraction and the variable for it is x, E does not change since occurrences of x must not be free;

• If E is an abstraction and the variable for it is not x, perform the substitution on the body of the abstraction.

As usual, we want a formal definition:

Definition 5. (Substitution, provisional) Let E and T be λ-expression and x be a variable, Denote E[T/x] the
substitution of T for x in E, defined below:

x[T/x] = T

y[T/x] = y (if y ̸= x)

(MN)[T/x] = M [T/x]N [T/x]

(λx.M)[T/x] = λx.M

(λy.M)[T/x] = λy.M [T/x]

Here are a few examples of β-reduction and substitution in action:

Example 8.

(λx. x)a→β x[a/x]

= a

Example 9.

(λx. λy. x)ab→β (λy. x)[a/x]b

= (λy. x[a/x])b

= (λy. a)b

→β a[b/y]

= a

Example 10.

(λx. λy. y)ab→β (λy. y)[a/x]b

= (λy. y[a/x])b

= (λy. y)b

→β y[b/y]

= b

Earlier, we said that defining abstractions so they only take one parameter will not hinder expressibility. The
last two examples illustrate this point: λx. λy. x is an abstraction which can be used like a function which takes two
expressions as arguments and produces the first one; similarly, λx. λy. y is an abstraction that takes two expressions
as arguments and produces the second one. The difference between those two functions is that (λx. λy. x)a reduces
to λy. a, which produces the first argument passed to it when any second argument is passed, while the second
function produces an identity function (λy. y), regardless of what the argument for parameter x is. This style of
reduction-by-substitution allows us to build multi-parameter functions as just a special case of single-parameter
functions.

Aside: You might have heard the term currying, named after Haskell Curry, which is the process that converts
a function taking multiple arguments into nested one-parameter functions which return functions accepting
the remaining arguments. In λ-calculus, this is the most natural style of passing multiple arguments.
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Also earlier, we said that the identity function is (λx. x), and now it is (λy. y). Similar to functions, if we replace
the identifier in the variable part of an abstraction and their bounded occurrences with another identifier, the
behavior of the abstraction should be the same. We express this observation with a principle known as α-conversion
(alpha conversion):

Definition 6. (α-conversion) Let E be a λ-expression. We define the relation =α (α-equivalence) by the rule:

λx.E =α λy.E[y/x]

given that y ̸∈ FV [E]. If C[M ] is an expression C containing M as a subterm, and M =α N , then C[M ] =α

C[N ]. Further, =α is an equivalence relation. Finally, α-conversion is the replacement of a term with an α-equivalent
term.

Applying α-conversions to an expression should not change its behavior; therefore, α-equivalent expressions
should have the same meaning... or do they? Consider the following pairs of reductions:

(λx. λy. x)ab→β (λy. x)[a/x]b

= (λy. x[a/x])b

= (λy. a)b

→β a[b/y]

= a

(λx. λy. x)yz →β (λy. x)[y/x]z

= (λy. x[y/x])z

= (λy. y)z

→β y[z/y]

= z

As noted earlier, the expectation was λx. λy. x to behave like a function that given two arguments will produce
the first one, yet for the second example we have seen the opposite behavior! The difference between the two
examples is:

• On the left, a is a free variable and remains free after the first β-reduction and substitution.

• On the right, the first argument is y (and yes, this is intentionally chosen), which is a free variable. After the
first β-reduction and substitution, y becomes bound to the abstraction λy. y.

Of course, if we were to replace λx. λy. x with some α-equivalent expression such as λc. λd. c, then the two reductions
would behaving correctly again.... but what about (λc. λd. c)dc?

What actually happened is that the binding occurrence of x in the right example is changing. Before reduction,
x is bound to the x in the outer abstraction. However, after the reduction against y, the binding occurrence for x,
which is now a y, changed, so that this x is now bound to the inner abstraction. We call this behavior dynamic
binding. More specifically, dynamic binding refers to systems where its binding occurrence could change in the
middle of a reduction. While dynamic binding is useful in some cases, it is undesirable for now. We want static
binding instead: binding occurrences should never change throughout the computation. Thus, a change in the
definition of substitution is required:

Definition 7. (Substitution, corrected) Let E and T be λ-expression and x be a variable, Denote E[T/x] the
substitution of T for x in E, defined below:

x[T/x] = T

y[T/x] = y (if y ̸= x)

(MN)[T/x] = M [T/x]N [T/x]

(λx.M)[T/x] = λx.M

(λy.M)[T/x] = λy.M [T/x] (if y ̸= x, y ̸∈ FV [T ])

(λy.M)[T/x] = λz.M [z/y][T/x] (if y ̸= x, y ∈ FV [T ]; z is a “new” variable)
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This definition is mostly the same as the previous one, except for one part: instead of letting the abstraction
capture the variable, we rename the variable in the abstraction and the bounded occurrences beforehand to some
name that was never used before. Of course, a new variable would never have free occurrences in T above, so the
capturing behavior will never occur.

We will demonstrate our new, now correct, substitution, by recomputing the β-reduction of (λx. λy. x)yz above:

Example 11.

(λx. λy. x)yz →β (λy. x)[y/x]z

= (λa. x[a/y][y/x])z

= (λa. x[y/x])z

= (λa. y)z

→β y[z/a]

= y

5 Reduction and Normal Forms

We will now take a closer look at how computation proceeds in the λ-calculus. Essentially, computation in the
λ-calculus is a series of reductions. But, we have not yet decided what to reduce and what not to reduce. Let’s
start with an obvious option: reduce everything. If the expression contains a β-redex, we β-reduce it, and repeat
the process until no β-redex is found in the expression.

Definition 8. (β-normal form) A λ-expression with no β-redex is in β-normal form (β-NF).

However, this process may not terminate. It is possible for reduction of a β-redex to produce a β-redex ad
infinitum. Thus, not all terms have a β-normal form:

Example 12.
(λx. xx)(λx. xx)→β xx[(λx. xx)/x] = (λx. xx)(λx. xx)

This expression has no β-normal form since reduction by taking the only β-redex yields the original expression.

For that reason, it is worthwhile to consider other kinds of reduction rules, or reduce to other normal forms.
For example, recall that sometimes you might be tempted to write this in Racket:

1 (map (lambda (x) (f x)) lst)

While it is always recommended to do this instead:
1 (map f lst)

Here is an intuition: if two functions accept the same set of values S as argument and produce the same value
when supplied the same argument, then these two functions are equal. Clearly, (lambda (x) (f x)) and f are the
same function by this intuition, since the expression (equal? ((lambda (x) (f x)) a) (f a)) would be true for any
given valid input a. Put in λ-calculus, (λx. fx)y = fy, since all we’re doing is passing through the y as x, and thus,
λx. fx = f .

Aside: This intuition is called function extensionality.

We will formalize this intuition in λ-calculus by defining another kind of reduction, called η-reduction (eta
reduction):

Definition 9. (η-reduction) η-reduction is denoted by the following rule:

λx.Mx→η M (if x ̸∈ FV [M ])

If C[M ] denotes an expression in which M occurs as a subterm, and M →η M ′ then C[M ]→η C[M ′].
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Analogously to the definition of β-expansion and β-conversion, we can define an η-expansion relation, ←η and
η-conversion relation, =η. Note that η-redices are not reduced during β-reduction, and β-redices are not reduced
during η-reduction. A reduction in which both reductions may occur is called βη-reduction.

Our goal is to reach some stopping condition, and we wish to define that stopping condition syntactically. These
conditions are, in general, referred as normal forms. The normal form which we will spend most of the time talking
about is β-normal form; however, other normal forms exists as well. We can speak, for example, of η-normal form
and of βη-normal form.

Exercise 3. Formally define η-normal form and βη-normal form.

Among the various alternative definitions of normal form that have been studied, the most important for our
purpose in known as weak normal form (WNF), defined below:

Definition 10. An expression E is in weak normal form (WNF) if every β-redex in E lies within the body of some
abstraction.

The intuition behind WNF is that, in real programming languages, computation does not occur inside a function
until it is called. Hence, we do not consider redices that occur inside an abstraction as candidates for reduction until
the abstraction itself has been supplied with an argument and reduced, at which point the redices inside become
exposed.

Example 13. The term λx. (λy. y)(λz. (λw.w)z) is in WNF but not in β-normal form. The term contains two
β-redices: (λy. y)(λz. (λw.w)z) and (λw.w)z, but the former lies within the “ λx ” abstraction, and the latter lies
within the “ λz ” abstraction.

Every term in β-normal form is also in WNF, as WNF is a strictly weaker criteria.

Whenever we speak of “normal form” without qualification, we are referring to β-normal form.

6 Order of Evaluation

6.1 The Church-Rosser Theorem

So far, we have not specified which redex to choose at any given time. For example, we have two choices of β-redex
to reduce in the expression (λy. y)((λx. x)b).

(λy. y)((λx. x)b)→β (λy. y)(x[b/x])

= (λy. y)b

→β y[b/y]

= b

(λy. y)((λx. x)b)→β y[(λx. x)b/y]

= (λx. x)b

→β x[b/x]

= b

In this case, the two reductions taking different paths have reduced to the same expression. Is this true for all
of λ-expressions which have a normal form? Luckily, the answer is yes! This theorem was proved by Alonzo Church
and J.Barkley Rosser [2].

Theorem 1. (Church-Rosser, 1936) For λ-expression E1, E2, and E3, if E1 →∗
β E2 and E1 →∗

β E3, then there
exists an expression E4 such that E2 →∗

β E4 and E3 →∗
β E4 (up to α-equivalence).

The proof is provided in a separate document, but you don’t have to be familiar with it:
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Aside: Proof of Church-Rosser Theorem (https://student.cs.uwaterloo.ca/~cs442/W25/extras/c-r-thm-proof.pdf)

E1

E2 E3

E4

* *

* *

Figure 2: The Church-Rosser Theorem. Solid Arrow in-
dicate the hypotheses, and dashed arrows indicate the re-
ductions whose existence the theorem guarantees.

The Church-Rosser Theorem is one of the funda-
mental theoretical results about λ-calculus. As illus-
trated in Figure 2, it guarantees that when faced with
a choice of redex, it is always possible to arrive at the
same final expression regardless of your choice. More
precisely, if an expression E1 can be reduced by zero or
more reduction steps to either expression E2 and E3,
then there exists some other expression E4 to which
both E2 and E3 can be reduced.

This idea implies that there is a unique normal form
for any expression. The theorem says that E2 and E3

can be reduced to some other expression, and normal
forms are irreducible by definition. One important thing
to note is that the Church-Rosser Theorem does not
guarantee the existence of β-normal form; the theorem
just indicates that if the reduction terminates, it will reach a unique normal form. We summarize this idea in the
following corollary:

Corollary 1. A λ-expression can reduce to at most one β-normal form (up to α-equivalence).

Proof. Let E1 be an expression that reduces to normal forms E2 and E3. By the Church-Rosser Theorem, there is
an expression E4 such that E2 →∗

β E4 and E3 →∗
β E4 (up to α-equivalence). However, E2 and E3 are both normal

forms, hence irreducible. Therefore, the only possible reduction to E4 from E2 and E3 must take zero steps, so we
have E2 =α E3 =α E4.

Although the Church-Rosser Theorem guarantees a unique β-normal form, a λ-expression may have several
different instances of other kinds of normal forms.

Exercise 4. Prove or disprove the following statement:

For λ-expression E1, E2, and E3, if E1 →β E2 and E1 →β E3, then there exists an expression E4 such that
E2 →β E4 and E3 →β E4 (up to α-equivalence).

Note the absence of asterisk as superscript for all →β operators.

6.2 Reduction Strategies

Although the Church-Rosser Theorem guarantees that no matter how we choose redices to reduce, we can never
reach an expression from which we can’t reach the unique β-normal form given that one exists. However, most real-
world programming languages have much more clearly defined policies regarding the order in which computation
proceeds, because order of evaluation can affect the meaning of programs in most languages. We are going to
see that even in λ-calculus, the policy for choice of redex can matter when dealing with expressions that could
have possibly infinite reduction paths. We will examine two such policies, known as reduction strategies, for the
λ-calculus. A reduction strategy is a policy which, given a λ-term, decides which redex to reduce next. We will see
that even in the presence of the Church-Rosser Theorem, the two strategies have quite different properties.

We first consider the reduction strategy you commonly see in “mainstream” programming languages called
Applicative Order Reduction(AOR): we will always choose the leftmost, innermost redex at a step. A redex is
innermost if it contains no other redices.
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Example 14.

(λx. fx)((λy. gy)z)

→β (λx. fx)((gy)[z/y])

= (λx. fx)(gz)

→β (fx)[gz/x]

= f(gz)

In this example we can see why AOR is similar to the programming languages you have seen2: the argument
to an abstraction is reduced to normal form before it is substituted. For this reason, AOR is sometimes dubbed as
call-by-value, and demostrates a semantic property called eager evaluation.

Here is another example with AOR:

Example 15.

(λx. y)((λx. xx)(λx. xx))

→β (λx. y)((xx)[(λx. xx)/x])

= (λx. y)((λx. xx)(λx. xx))

This example does, in fact, have a normal form: y. Yet we cannot reach it using the AOR strategy. The primary
goal for reductions is to reach the normal form, but AOR fails to do so in this particular case.

Let us consider another reduction strategy, known as Normal Order Reduction(NOR). This time, we always
choose the leftmost, outermost redex at each step. A redex is outermost if it is not contained in any other redex.
Here is (λx. fx)((λy. gy)z) reduced in NOR:

Example 16.

(λx. fx)((λy. gy)z)

→β (fx)[(λy. gy)z/x]

= f((λy. gy)z)

→β f((gy)[z/y])

= f(gz)

One of the properties of NOR is that arguments to a function are not evaluated until they are needed. Above,
at each reduction step, the formal parameter is replaced verbatim with the argument—that is, without simplifying
the argument further before substitution. NOR is sometimes called call-by-name, and demonstrates a semantic
property called lazy evaluation, which we will explore later.

Under NOR, (λx. y)((λx. xx)(λx. xx)) reduces to the normal form correctly:

Example 17.

(λx. y)((λx. xx)(λx. xx))

→β y[(λx. xx)(λx. xx)/x]

= y

As demonstrated, while NOR reduces this expression immediately to y, AOR immediately gets caught in an
infinite reduction of the argument, and makes no progress.

2Actually, these languages do not completely follow AOR. You’ll see how when we discuss conditionals.
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In general, our goal in reducing an expression is to reach the normal form, but we’ve seen at least one example
in which one obvious reduction strategy fails to do so. One might therefore ask whether there is always a reduction
strategy that will reach a normal form. Luckily, there is. NOR always reaches the normal form, if one exists:

Theorem 2. (Standardization, 1958) If an expression has a normal form, then Normal Order Reduction is
guaranteed to reach it.

The proof of the Standardization Theorem was due to Curry and Feys [3]. We do not present it here.

Thus, even though the Church-Rosser Theorem guarantees that no choice of redex puts the β-normal form (if
it exists) out of reach, our choice of reduction strategy is nonetheless important.

Aside: In a purely functional setting, the Church-Rosser Theorem guarantees that the reduction will lead to
the unique normal form. However, in any programming languages with state, such as mutable variables or
fields of objects or I/O, a difference in the order of evaluation could cause completely different behaviors.

A notorious example in C and C++ is the order of evaluation for arguments of functions and operators.
Consider the following C++ code snippet:

1 int f(){ cout << 'f'; return 1; }
2 int g(){ cout << 'g'; return 2; }
3 int add(int x, int y){ return x + y; }
4

5 int main(){
6 int i = add(f(),g());
7 cout << endl;
8 return i;
9 }

What will be the order of the characters printed? The answer is “depends on the implementation”, since all
possible permutations of the output are allowed according the C++ standard. The C++ standard does not
specify the order of evaluation for arguments of functions and operators. Hence, the choice of which argument
to evaluate first is completely up to the particular compiler. For example, if a particular compiler chooses to
always evaluate the rightmost argument first, the output would be gf.

7 Programming With λ-Calculus

So far, we’ve introduced λ-calculus as a model of computation. However, we haven’t discussed how expressive it
is compared to the programming languages you use. Alonzo Church, the inventor of λ-calculus, intended to use
λ-calculus to provide a foundation for all of mathematics, but it was shown to be inconsistent for this purpose by
Kleene and Rosser in 1935. Nonetheless, Church and Turing had proved that their models of computation, the
λ-calculus and the Turing Machine, are equivalent in terms of expressive power. While computation in the Turing
Machine is rather cumbersome to manipulate and analyze due to the stateful nature of it, programs in λ-calculus
are stateless, making them much easier to perform formal analysis on.

But, it’s not obvious in λ-calculus alone whether such analysis would be useful. To prove that λ-calculus is
useful, we need to show that it is expressive enough to represent the kinds of computation we might want in real
languages.

In this section, we are going to discuss how to imitate real-world programming using λ-calculus, by showing how
to implement different (functional) programming constructs. More specifically, we are going to introduce

• How to represent and manipulate values you typically see in programming languages, such as booleans, natural
numbers and lists;

• how to implement recursive functions; and

• how to add primitives and associated reduction rules.
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Before we start our discussion, it would be nice to have some kind of shorthand notation for “the λ-calculus
representation of x” where x is some entity you would see in modern programming languages. We are going to use
the double square brackets (J, K) to denote this correspondence. For example, we show the λ-calculus representation
for the identity function (id for short) here:

Example 18. The shorthand for “the λ-calculus representation for the identity function is λx. x” is:

JidK := λx. x

Note that this shorthand notation is not a part or extension of the language of λ-calculus; an expression only
becomes a λ-expression after we expend all the shorthand notations into their corresponding λ-expression.

It is sometimes also useful to denote some arbitrary expressions; we will use upper case letters for them.

7.1 Booleans and Conditionals

Before we introduce the primitive for Booleans, we should note that Booleans are often used in conditional expres-
sions. Thus, it would be helpful if we picture how to represent conditional expressions before we designate what
true and false are. The simplest conditional expression would look like this:

Jif B then T else F K

where B is the Boolean value, T and F are the expressions to take if B is true or false, respectively. As every
expression is a function in λ-calculus, we can imagine it’s a function that takes three arguments: the boolean value
and the two expressions. Since the boolean values are also functions, we can let those values be a selector which
given two values as arguments, and produce one of them.

JifK := (λb. λt. λf. btf)

Alternatively, with the arguments applied:

Jif B then T else F K := (λb. λt. λf. btf) JBK JT K JF K

Then it follows that our JtrueK and JfalseK would be, respectively, functions that given two values as
arguments, produce the first or the second value.

JtrueK := λx. λy. x

JfalseK := λx. λy. y

These should look familiar!

To simplify it a bit further, we can just apply β-reduction three times and obtain a representation which is just
a concatenation of B, T and F :

Jif B then T else F K := JBK JT K JF K

We are going to use this concatenation-based representation to cut down our number of reductions needed.

Modelling conditionals in this way might seem strange, but we can show that it works by tracing the reduction
with B being true or false.

Jif true then T else F K := JtrueK JT K JF K
= (λx. λy. x) JT K JF K
→β (λy. JT K ) JF K
→β JT K
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Jif false then T else F K := JfalseK JT K JF K
= (λx. λy. y) JT K JF K
→β (λy. y) JF K
→β JF K

Using the construction of boolean values and primitives, we can then build boolean operators as follows:

Jand p qK = Jif p then q else falseK
JandK = λp. λq. pq(λx. λy. y)

Jor p qK = Jif p then true else qK
JorK = λp. λq. p(λx. λy. x)q

Jnot pK = Jif p then false else trueK
JnotK = λp. p(λx. λy. y)(λx. λy. x)

We will show that our JnotK is correct by showing that Jnot trueK and Jnot falseK behave correctly.
Ideally, we want them to evaluate to JfalseK and JtrueK , respectively.

Example 19. Reductions of Jnot trueK and Jnot falseK .

Jnot trueK = JnotK JtrueK
= (λb. (b JfalseK JtrueK )) JtrueK
→β JtrueK JfalseK JtrueK
= (λx. λy. x)(λx. λy. y) JtrueK
=α (λx. λy. x)(λx. λz. z) JtrueK
→β (λy. (λx. λz. z)) JtrueK
→β (λx. λz. z)

= JfalseK

Jnot falseK = JnotK JfalseK
= (λb. (b JfalseK JtrueK )) JfalseK
→β JfalseK JfalseK JtrueK
= (λx. λy. y)(λx. λy. y) JtrueK
→β (λy. y) JtrueK
→β JtrueK

Exercise 5. Show that JandK and JorK work as expected.

Here is a question: what is the difference between the if you see here and the one you see in real-life programming
languages? Consider the AOR strategy. Our Jif true then T else F K will actually reduce both the true and
false branches before returning to the one we want. Similarly, our and and or constructions don’t perform short-
circuit evaluation either. While this isn’t what a mainstream programming language would do, the Church-Rosser
theorem provides us with the guarantee that as long as there are no infinite reductions on either branch, we will
be able to reach the desired expression. Considering the absence of side effects in λ-calculus, the only downside of
evaluating both branches would be the decrease in efficiency. We will discuss implementing short-circuit evaluation
later.
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Aside: The fact that booleans are represented by their behavior should also look familiar if you’ve read
through the Smalltalk module. In a way, Smalltalk’s booleans are a lot like λ-calculus booleans!

Video 2.1 (https://student.cs.uwaterloo.ca/~cs442/W25/videos/2.1/): Lambda calculus booleans

7.2 Pairs and Lists

Programs generally require storage facilities in order to compute their results. As you saw in your first-year Racket
course (if you’re a Waterloo undergrad), the simplest expandable storage facility is the list. However, we will start
by talking about the fundamental data structure, pair, which is just a combination of two data values. Like in
Racket, by nesting pairs within each other, we can create lists with arbitrary length, as well as trees. We’ll refer to
the two elements of a pair as its head and its tail3, respectively.

The intuition here is that we’re trying to select either head or tail, given a pair. Hence, a pair is basically a
function that has the head and tail stored in it. In order to access the individual elements, the pair must accept
some function, which is called a selector, as a parameter. The selectors will be functions that, given two parameters,
produce the former (i.e. the head) or the latter (i.e. the tail). Hey, doesn’t that sound familiar? That’s what our
true and false are doing!

J⟨h, t⟩K := λs. Jif s then h else tK
= λs. sht

Therefore, the function head and tail, which actually extract the values from a list, should pass true or
false into the list given as parameter.

JheadK := λl. l JtrueK = λl. lλx. λy. x

JtailK := λl. l JfalseK = λl. lλx. λy. y

We then implement a function cons (from constructor) that takes two arguments (the head and the tail) and
returns the pair containing them:

JconsK := λh. λt. J⟨h, t⟩K
= λh. λt. λs. sht

3These are also referred as car and cdr, which originates from the implementation of Lisp on the IBM 704. car stands for “Contents
of Address part of the Register”, and cdr (pronounced “could-er”), stands for “Contents of the Decrement part of Register”, referring to
particular register properties of the IBM 704.

CS442: Module 2: Untyped λ-calculus 15

https://student.cs.uwaterloo.ca/~cs442/W25/videos/2.1/
https://student.cs.uwaterloo.ca/~cs442/W25/videos/2.1/


We will show that the pairs exhibit the correct behaviour, namely:

Jhead (cons A B)K = JAK and Jtail (cons A B)K = JBK

Jhead (cons A B)K
= JheadK ( JconsK JAK JBK )
= JheadK ((λh. λt. λs. sht) JAK JBK )

→2
β JheadK (λs. s JAK JBK )

= (λl. lλx. λy. x)(λs. s JAK JBK )
→β (λs. s JAK JBK )λx. λy. x
→β (λx. λy. x) JAK JBK

→2
β JAK

Jtail (cons A B)K
= JtailK ( JconsK JAK JBK )
= JtailK ((λh. λt. λs. sht) JAK JBK )

→2
β JtailK (λs. s JAK JBK )

= (λl. lλx. λy. y)(λs. s JAK JBK )
→β (λs. s JAK JBK )λx. λy. y
→β (λx. λy. y) JAK JBK

→2
β JBK

Finally, we need a way to denote the empty list ( JnilK ). In fact, we’re going to work with what we have first:
how can we tell that a list is not empty? Well, the selectors used in a pair can choose to produce other expressions
than the head or the tail; in this case, the selector will produce JfalseK when given the head and the tail as
parameters:

Jnull?K := λl. lλh. λt. JfalseK

This guarantees when given a non-empty list (i.e. a pair), it will always produce false (we are going to show
that soon). Then it follows that we can just let JnilK be something that makes Jnull?K return true. As a
reminder, a pair is a function that accepts a selector and passes the two parts of the pair into the selector, in the
hope that the selector returns one of the parts. In this case, the empty list is just going to ignore the selector (i.e.,
not use it) and just produce true.

JnilK := λs. JtrueK

Again, as verification, we wish our constructions to behave correctly:

Jnull? nilK = JtrueK and Jnull? (cons A B)K = JfalseK

Jnull? nilK
= λl. lλh. λt. JfalseK (λs. JtrueK )
→β (λs. JtrueK )λh. λt. JfalseK
→β JtrueK

Jnull? (cons A B)K
= Jnull?K ( JconsK JAK JBK )

→2
β Jnull?K λs. s JAK JBK

= (λl. lλh. λt. JfalseK )λs. s JAK JBK
→β (λs. s JAK JBK )λh. λt. JfalseK
→β (λh. λt. JfalseK ) JAK JBK

→2
β JfalseK

Similar to what you have seen in Racket, a nested construction would allow us to construct lists of arbitrary
length. Here is an example:
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Example 20. Construction of a list (list a b c):

J(list a b c)K = J(cons a (cons b (cons c nil)))K
= JconsK a( JconsK b( JconsK c JnilK ))
= (λh. λt. λs. sht)a((λh. λt. λs. sht)b((λh. λt. λs. sht)c JnilK ))

→6
β λs. saλs. sbλs. sc JnilK

= λs. saλs. sbλs. scλx. λx. λy. x

Video 2.2 (https://student.cs.uwaterloo.ca/~cs442/W25/videos/2.2/): Lambda calculus pairs and lists

Exercise 6. Define the function JsecondK 4, which gets the second element from the list.

7.3 Numbers

After introducing lists, it’s easy to represent numbers: just represent them using lists! An empty list would be 0, a
list of one element would be 1, etc.

Exercise 7. Define the following entities using this idiom: J0K , J1K , JpredK , JsuccK , JisZero?K , where
Jpred nK and Jsucc nK are functions that produce the number that’s one less or one more than n respectively.
Verify that your solution works by showing that

Jpred (succ n)K = JnK (if n ̸= 0)

However, there is a cleverer solution introduced by Alonzo Church called Church numerals. In Church’s repre-
sentation of numbers, JnK is defined as a function that takes a function f and a value x5, and produces the result
of f applied n times to its argument x. More specifically:

J0K = λf. λx. x

J1K = λf. λx. fx

J2K = λf. λx. f(fx)

J3K = λf. λx. f(f(fx))

We will consider how to perform basic arithmetic with the Church numerals (except division, which is rather
complicated). First, let’s consider addition. Given two Church numerals m and n, we want to have

Jm+ nK = λf. λx. f · · · · · · · · · f︸ ︷︷ ︸
m + n occurrences of f

x

A way to get to this is to apply f n times on x, and then apply f m times to the result. Our addition function will
accept two arguments, m and n:

J+K := λm. λn. · · ·

Then, it must produce a number, which is a function that takes some f and some x:

J+K := λm. λn. λf. λx. · · ·
4Also called conveniently cadr, which is car of the cdr.
5Technically speaking, they are both functions. Everything in λ-calculus is a function.
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Applying f n times on x would just be nfx, since n itself is a Church numeral that takes f and x:

J+K := λm. λn. λf. λx. · · · (nfx)

At last, apply the result of nfx to f by m times:

J+K := λm. λn. λf. λx.mf(nfx)

To demonstrate that it works, we will show 2 + 3 = 5. Starting at this point, we will highlight some parts in a
few reduction steps to clearly illustrate what reduction to take.

J2 + 3K = J+K J2K J3K
= (λm. λn. λf. λx.mf(nfx)) J2K J3K

→2
β λf. λx. J2K f( J3K fx)

= λf. λx. (λf. λx. f(fx))︸ ︷︷ ︸
function

f︸︷︷︸
arg 1

( J3K fx)︸ ︷︷ ︸
arg 2

→2
β λf. λx. f(f( J3K fx))

= λf. λx. f(f((λf. λx. f(f(fx)))︸ ︷︷ ︸
function

f︸︷︷︸
arg 1

x︸︷︷︸
arg 2

))

→2
β λf. λx. f(f(f(f(fx))))

= J5K

A special case of addition is the JsuccK function, which produces the number that’s one more than a given
number (the successor):

Jsucc nK := Jn+ 1K = λn. λf. λx. nf(fx)

Video 2.3 (https://student.cs.uwaterloo.ca/~cs442/W25/videos/2.3/): Lambda calculus numbers and addition

Addition was pretty simple, but subtraction is harder. While it’s easy to take away a number in real-world
mathematics, it’s impossible to just “take away” a function application from an expression. There is no way for us
to “undo” a function application in λ-calculus. An alternative arises from the observation that succ is easy. We
can instead use a pair ⟨a, b⟩ to track a number a and its successor. For each given pair ⟨a, b⟩, we can create a new
pair ⟨a+ 1, a⟩. Start with ⟨0, 0⟩ and applying this procedure n times, we would obtain ⟨n, n− 1⟩. Taking the tail of
the resulting pair gives us the predecessor of n. Then, we “simply” need to take the predecessor the correct number
of times.

Let’s get started. A function JpredK should take one argument, the number n, and the value produced should
be a number as well. That is, the value produced should be in the form of λf. λx.:

JpredK := λn. λf. λx. · · ·

We need to get the tail of the complicated computation stated above. The result from that computation gives
us a number which takes two parameters, so we need to also pass the parameter of our newly made number into
there:

JpredK := λn. λf. λx. ( JtailK · · · )fx

We can η-reduce now and get rid of f and x.

JpredK := λn. ( JtailK · · · )
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The computation itself would repeat n times. But, repeating n times is just the number n in Church numerals:

JpredK := λn. ( JtailK (n(· · · )))

Then the computation should take a pair, and the starting pair is ⟨0, 0⟩:

JpredK := λn. ( JtailK (n(λp. · · · ) J⟨0, 0⟩K )) = λn. ( JtailK (n(λp. · · · )( JconsK J0K J0K )))

Then fill in the computation itself:

JpredK := λn. ( JtailK (n(λp. JconsK ( JsuccK Jhead pK )( Jhead pK ))( JconsK J0K J0K )))

To keep our explanation brief, we will just stop here.

Exercise 8. Verify that our definition of JpredK is correct by working through an example of your own.

Subtraction is defined in the following way: given m and n, produce m applied to pred n times.

J-K = λm. λn. n JpredK m

Video 2.4 (https://student.cs.uwaterloo.ca/~cs442/W25/videos/2.4/): Lambda calculus predecessor and subtrac-
tion

Multiplication of m and n is defined as the n-fold repetition of f , m times:

J*K = λm. λn. λf. λx.m(nf)x→η λm. λn. λf.m(nf)

Exponentiation (mn) is just the n-fold repetition of m itself:

JˆK = λm. λn. λf. λx. nmfx→2
η λm. λn. nm

7.4 Recursion

Suppose one wants to find length of a list in λ-calculus. Being an expert in recursion, they write this down:

JlenK := λl. Jif (null? l) then 0 else (succ (len (tail l)))K
= λl. ( Jnull?K l) J0K ( JsuccK ( JlenK ( JtailK l)))

It looks great, except JlenK is defined in terms of itself. There is no way for us to replace JlenK if it’s a self
definition: remember, no functions in λ-calculus have a name, so we can’t simply have JlenK refer to the name
JlenK , as that’s actually just a shorthand for the expansion of JlenK . Hence, this definition is invalid. So what
should we do now? We can try to solve the equation. We can “factor out” the JlenK on the right hand side by
β-expansion:

JlenK = λl. ( Jnull?K l) J0K ( JsuccK ( JlenK ( JtailK l)))
←β (λf. λl. ( Jnull?K l) J0K ( JsuccK (f( JtailK l)))) JlenK

Now, we have the equation JlenK = (λf. λl. ( Jnull?K l) J0K ( JsuccK (f( JtailK l)))) JlenK . If we can solve
this for JlenK , then we’ll have a definition of JlenK that does not include JlenK . Let

F = λf. λl. ( Jnull?K l) J0K ( JsuccK (f( JtailK l)))
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So our equation just becomes JlenK = F JlenK . To solve the equation, we will use the theory of fixed points.

In mathematics, a fixed point of a function is a value that, when passed to the function, yields itself. In other
words, the fixed points of a function f are the values of x such that f(x) = x. For example, for f(x) = x2 − 6,
x = 3 is a fixed point.

Consider the following expression:

X = (λx. f(xx))(λx. f(xx))

→β f((λx. f(xx))(λx. f(xx)))

= fX

Since X = fX, X is a fixed point of f , whatever f is. In this case, f is just a place holder for the function whose
fixed point we wish to find. By setting f to the desired expression, we can find a fixed point for any λ-expression!
We can construct a general fixed-point combinator6 by modifying X to accept an argument for specifying f . What
we get is the Curry’s Paradoxical Combinator (or simply the Y combinator):

Y := λf. (λx. f(xx))(λx. f(xx))

The critical property of the Y combinator is the following:

Y g = (λf. (λx. f(xx))(λx. f(xx)))g

→β (λx. g(xx))(λx. g(xx))

→β g((λx. g(xx))(λx. g(xx)))

←β g(Y g)

So for any g, we have Y g =β g(Y g). Note that this sequence can be repeated to give g(g(Y g)), g(g(g(Y g)))
and so on. This sequence of repeated applications of g does appear to capture the general character of recursive
computation. Y is in fact one of the broader class of combinators, defined below:

Definition 11. A fixed-point combinator is any combinator C such that

Cf =β f(Cf)

for every f .

Let’s go back to the list length example. Remember that we had arrived at JlenK = F JlenK , by factoring
out JlenK . We observe that solving our defining equation for len is equivalent to finding a fixed point for the
function F . According to our observation, the fixed point is just Y F . Hence the following definition:

JlenK := Y F = Y (λf. λl. ( Jnull?K l) J0K ( JsuccK (f( JtailK l))))

Let us step through an example. This example is quite long, so bear with us:

JlenK ( JconsK a( JconsK b JnilK ))
=β JlenK (λs. saλs. sb JnilK )
= Y F (λs. saλs. sb JnilK )
= (λf. (λx. f(xx))(λx. f(xx)))F (λs. saλs. sb JnilK ) (1)
· · ·

Let’s pause this example for a bit here and think about a very important question: should we use AOR or NOR
as our reduction strategy in this case? Well, the AOR redex here is (λx. f(xx))(λx. f(xx)), which does not have

6Recall that a combinator is just a λ-term with no free variables.
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a normal form; continuing to reduce it results in something that looks like f(f(f(· · · ))). AOR always chooses the
leftmost innermost redex, which means we’ll fall into this infinite reduction trap while reducing in the step labeled
(1). So, we have to use NOR here.

Let’s go back to our reduction now:

· · ·
= (λf. (λx. f(xx))(λx. f(xx)))F (λs. saλs. sb JnilK )
→β (λx. F (xx))(λx. F (xx))(λs. saλs. sb JnilK )
→β F ((λx. F (xx))(λx. F (xx)))(λs. saλs. sb JnilK ) (2)
= (λf. λl. ( Jnull?K l) J0K ( JsuccK (f( JtailK l))))((λx. F (xx))(λx. F (xx)))(λs. saλs. sb JnilK )
→β (λl. ( Jnull?K l) J0K ( JsuccK (((λx. F (xx))(λx. F (xx)))( JtailK l))))(λs. saλs. sb JnilK )
→β ( Jnull?K (λs. saλs. sb JnilK )) J0K ( JsuccK (((λx. F (xx))(λx. F (xx)))( JtailK (λs. saλs. sb JnilK ))))
→∗

β JfalseK J0K ( JsuccK (((λx. F (xx))(λx. F (xx)))( JtailK (λs. saλs. sb JnilK ))))

→2
β JsuccK (((λx. F (xx))(λx. F (xx)))( JtailK (λs. saλs. sb JnilK )))

· · ·

So far, we have completed one recursive “call”. Under NOR, we would substitute the whole expression after
JsuccK into the function succ, and this would lead us to the correct result. However, in order to illustrate the
next recursive reduction, we will choose ( JtailK (λs. saλs. sb JnilK )) and ((λx. F (xx))(λx. F (xx))) as our next
redices to reduce instead:

· · ·
→2

β JsuccK (((λx. F (xx))(λx. F (xx)))( JtailK (λs. saλs. sb JnilK )))

→∗
β JsuccK (((λx. F (xx))(λx. F (xx)))(λs. sb JnilK ))

→β JsuccK (F ((λx. F (xx))(λx. F (xx)))(λs. sb JnilK ))
= JsuccK ((λf. λl. ( Jnull?K l) J0K ( JsuccK (f( JtailK l))))((λx. F (xx))(λx. F (xx)))(λs. sb JnilK ))

→2
β JsuccK (( Jnull?K (λs. sb JnilK )) J0K ( JsuccK (((λx. F (xx))(λx. F (xx)))( JtailK (λs. sb JnilK )))))

→∗
β JsuccK ( JsuccK (((λx. F (xx))(λx. F (xx))) JnilK ))

→∗
β JsuccK ( JsuccK (( Jnull?K JnilK ) J0K ( JsuccK (((λx. F (xx))(λx. F (xx)))( JtailK JnilK )))) (3)

→∗
β JsuccK ( JsuccK ( J0K ))

→∗
β J2K

We have now seen that the Y combinator indeed works under NOR. However, we sometimes do want AOR in
λ-calculus, since it more closely resembles how many real-world programming languages are evaluated, so we need
to consider how to make recursion work with something like AOR. Here are a few observations we can make from
the above example, and how we may need to change AOR to compensate:

1. As step labeled (1) has shown, the fixed-point combinator must be the leftmost expression at some point in
the reduction. AOR will always try to reduce the innermost redex in the leftmost expression first, resulting
in infinite reduction. To still have the “eagerness” in our reduction, we need to modify AOR a bit. The
new reduction strategy is called Applicative Order Evaluation (AOE), and it will choose the redex that is
leftmost, innermost, and not inside the body of an abstraction as the one to reduce first. This can
still reach WNF, since WNF does not require reduction of redices inside the body of abstractions, which is
also true of real programming languages.

2. Even with AOE, the step labeled (2) will still have an infinite reduction, since (λx. F (xx))(λx. F (xx)) part in
(2) will be reduced to F (F (F (· · · (F ((λx. F (xx))(λx. F (xx)))) · · · )) under AOE. Therefore, we need modify
our fixed-point combinator to wrap the “repetition” part, (xx), in an abstraction7 to prevent AOE from

7More precisely, perform η-expansion. Note that Y ′ →2
η Y .
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choosing it as next redex to reduce:

Y ′ = λf. (λx. f(λy. xxy))(λx. f(λy. xxy))

3. We have mentioned that our JifK does not perform short-circuit evaluation, and it shouldn’t be a problem
as long as both branches don’t have infinitely reducing expression. But, whoops, we do have an infinitely
reducing expression in the if expression within the step labeled (3), and that branch is the one we don’t
intend to take! As a result, we do need to have a short-circuited version of JifK . As you may have guessed,
the same trick works again. Let’s wrap both branches in their respective abstractions:

Jif B then T else F K := JBK (λx. JT K )(λx. JF K )x

The short-circuiting works, as JBK (λx. JT K )(λx. JF K ) reduces to either (λx. JT K ) or (λx. JF K ) before x
is passed into either of those two functions under AOE.

With these three modifications, the reduction will work under a modified form of AOR, AOE. Note that the
same modification could be made to NOR to yield NOE, which we will come back to in Module 5.

8 deBruijn Notation

As our search for a proper definition of substitution has taught us, the names of variables can often get in the
way of the true meaning of an expression. Also, as we have seen many times, a name can have different meanings.
In the expression λy. a(λy. b(λy. cy)y)y, each y does not have the same meaning, because there are three different
bindings of y. Of course, we can α-convert all of the repeated occurrences of y to prevent accidental capture of
variables. Here, we present an alternative solution to this problem presented by deBruijn in 1972 [5], as part as his
implementation of Automath [4], a tool for automatically verifying mathematical proofs.

In the deBruijn notation, variables are replaced with integers. Thus the expression λx. λy. x in the deBruijn
notation is λ. λ. 2. The integers indicate the number of function bodies that must be escaped to locate the binding
for the variable. Note that a single binding can therefore be represented by several different integers, depending on
how many further function bodies the reference is embedded in.

Example 21. The expression λx. (λy. x)x has the deBruijn equivalent λ. ((λ. 2)1), in which x is replaced by both
2 and 1.

Free variables can be handled in a number of ways, of which the simplest is to leave them unconverted. Impor-
tantly, in the deBruijn notation, unlike in our conventional notation, all α-equivalent expressions have exactly one
representation.

The definition of β-reduction for the deBruijn notation is

(λ.N)M →β N [M/1]

We also need a new definition for substitution:

n[N/m] =


n if n < m

n− 1 if n > m

renamen,1(N) if n = m

(M1M2)[N/m] = M1[N/m]M2[N/m]

(λ.M)[N/m] = λ.M [N/m+ 1]

where

renamem,i(j) =

{
j if j < i

j +m− 1 if j ⩾ i

renamem,i(N1N2) = renamem,i(N1) renamem,i(N2)

renamem,i(λ.N) = λ. renamem,i+1(N)
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The deBruijn notation is useful for avoiding the cost of α-conversion. Substitution and β-reduction in deBruijn
notation are essentially operations on integers, which is often faster than operations on names. Furthermore,
deBruijn notation exposes the concept of a “stack frame”: the integers can be regarded as indices to a stack of
values mapping such indices to the expression those bound variables refer to after a reduction.

However, deBruijn notation is considerably harder to read and understand, and often a program evaluating
λ-calculus in deBruijn notation needs to provide facilities to convert one notation to another. Such conversions can
be costly, offsetting the performance benefit deBruijn notation itself provides.

9 Implementation Strategies

Many programming languages are based on λ-calculus to some degree, so there is a long history of implementing
λ-calculus concepts. Generally speaking, a λ-calculus expression itself can be stored as an abstract syntax tree,
in which each node is labeled with its type (variables, abstractions, applications). For instance, the λ-calculus
expression λb. λt. λf. btf (i.e., JifK ) could be represented as the following tree:

abstraction

b abstraction

t abstraction

f application

application variable (f)

variable (b) variable (t)

Figure 3: AST for JifK

To evaluate it, you simply walk the tree, following the evaluation strategy of your choice (i.e., choose whether
to enter an abstraction first), and replacing applications with their substitutions. To do this, you need to carry a
list of bindings, so you know what to substitute. This can get complicated, since a subtree may reuse a variable
name, and further complicated because you need to be able to generate a fresh name in order to avoid conflicts.

With deBruijn notation, you instead carry a stack of bindings, and a variable is simply an index into that stack.
This makes evaluation simpler, but requires an extra step, and makes debugging more difficult. Modified to use
deBruijn notation, our tree would instead look like this:
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abstraction

abstraction

abstraction

application

application variable (1)

variable (3) variable (2)

Of course, with deBruijn notation, it’s also easier to verify that a λ-calculus interpreter is correct, since you
don’t need a final α-equivalence check on the final output.

10 Fin

In the next module, we will describe the behavior of λ-calculus expressions with formal rigor, by introducing formal
semantics.
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