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In the last module, we described the syntax for a simplistic programming language, the A-calculus. We also
described how to compute using the A-calculus, and the problems that arise depending on how you choose to
compute (in particular, the reduction order). While we defined the form of A-calculus quite formally, the behavior
we described informally.

One of the major endeavors of modern programming languages research is in formalizing our understanding
of how language constructs behave, both on their own and in interaction with each other. It is not sufficient
to formalize the syntax (shape, form) of programs; we are interested in formalizing the meanings of the various
elements of a programming language, and ultimately the language itself. This discipline is called formal semantics.
In studying formal semantics, our goal is to formulate a model capable of precisely describing the behavior of every
program in a given language. Such a model provides us tools to prove program correctness, program termination,
or other critical properties. Furthermore, we can also use such a model to prove certain properties of the language
itself, such as that it’s powerful enough to express universal programs (is equivalent to a Turing machine), or to show
equivalence of programs in different programming languages. The knowledge gained could even help build compilers
and interpreters to produce more efficient implementations of the language, by proving that certain transformations
do not affect the behavior.

In Module 2, we described, for instance, the AOE strategy in plain English, as “always choosing the leftmost,
innermost redex that is not in an abstraction”. A prosaic definition like this will usually not suffice. We would
like to have a small set of (usually) syntax-directed rules that describe the behavior of the elements of a language’s
syntax in a formal, mathematical setting.

A semantic model usually comes with a set of observables, which describes the valid outputs of the model. Such
outputs could be the produced value by following a number of rules, the set of all types of the language, or simply
whether a program returns an error or not. In each case, we would choose an appropriate set of observables, and
then build a semantic model to match.

In this course’s formal semantics, we are primarily going to study the operational semantics of various program-
ming languages. Operational semantics is a system for specifying how a program executes and possibly how to
extract a result from it. More specifically, as our main goal for the course is to understand how programs interact
with data and code in various programming paradigms, we are more concerned at the small-step operational seman-
tics of such paradigms. A small-step operational semantics builds an imaginary “machine” and succinctly describes
how this machine might take individual steps, rather than describing the entire computation in one step.

The goal of this module is both to introduce formal semantics and to revisit A-calculus with formal, small-step,
operational semantics. In addition, we will demonstrate that it can be used to prove some properties, and show
ways of extending it with added primitives.

1 Semantics and Category Theory

We will be describing the reduction steps in our programming languages by formally describing an arrow (—)
operator, which maps a program state to the “next” program state. This is described within the context of category
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theory, in which our language is a category, and — is a morphism over that category. You are not expected to
have seen these terms before, so we will briefly introduce category theory here. This course will not look deeply
into category theory, but, since programming language semantics are described as categories in category theory,
knowing some of the language from category theory will help to contextualize formal semantics.

In CS courses, you have undoubtedly seen sets and set theory. Group theory extends set theory by describing
groups, which are sets that correspond to, and are described by, certain azioms (defined for given groups), and
generalizes the language of functions between and within groups. It is from group theory that words such as
isomorphic and homomorphic arise, to describe certain properties of these functions. Category theory abstracts
beyond this by describing categories which may not obviously be describable as groups or sets; in particular, one can
describe entire mathematical calculi as categories. For instance, one can describe set theory itself as a category, with
expressions in set theory as the objects described, and the functions being equivalences (or reductions, or expansions,
etc) between them; for instance, the resolution of the expression {1,2} U{3,4} to {1,2,3,4} is a function, probably
a function that more generally describes the resolution of all expressions of the form X UY. We call these functions
between objects morphisms.

In set theory, we don’t have any computation, and so there’s no ordering, so any morphism that maps {1,2} U
{3,4} to {1,2, 3,4} should be reversible. These two expressions are equivalent, and the morphism shouldn’t “prefer”
one to the other. In computing, even in languages that we don’t explicitly specify an order of computation, any
given expression is only computed in one direction (e.g., we never replace 4 with 2 + 2), and so our morphisms will
describe steps of computation.

Where category theory becomes particularly relevant is its abstraction over itself. In the language of category
theory, we can describe an entire category—which, recall, can be a mathematical calculi, a language—as an object
within the category of categories, and describe a morphism mapping that category to another category. For instance,
it is possible to reversibly map the language of sets to the language of predicate logic. By doing so, whole bodies
of mathematical literature and proofs can be mapped into other contexts, allowing for a sort of generalization of
proofs that was not possible before category theory. Mappings between categories like this are called functors, but
they’re really just morphisms given a funny name because mathematicians aren’t as accustomed to this kind of
abstraction as we are.

Aside: We introduced categories as “not obviously be describable as groups or sets”. In fact, since category
theory describes how categories can be mapped to other categories, and category theory is itself a category,
it is perfectly possible to map any category to some kind of set: for instance, we describe the set of all valid
program states. Hence “not obviously”, rather than “not”.

We describe our own languages in terms of a morphism, which maps program states to program states. At this
point we will describe program states in purely the same syntax as the language itself, but in future modules, we
will add extra syntax for additional state; in either case, the syntax is our calculus. Morphisms are usually shown
as arrows, sometimes with text to specify exactly which morphism is being described; in fact, we’ve already seen a
few morphisms, such as —g, but didn’t call them such at the time.

When describing morphisms, we are free to use other categories to do so. For instance, we could say that
(x+y — 2)if (x+y = 2), and we are now describing our language in terms of the language of arithmetic. It’s
important to be clear, in such cases, what language is being described and what language is being used; for instance,
in this case, it’s important to realize that the first + was part of the syntax of our language, and the second + was
part of the syntax of arithmetic. Usually, this sort of mapping is too narrow to be called a functor—we haven’t
actually described a complete rewriting of our language in terms of arithmetic, merely a step within our language—
but in some cases, languages are actually described in terms of functors, by describing how to rewrite one language
into another language. In fact, that’s a compiler, and proving things about compiler correctness involves proving
the functor correct.

We won’t go any more deeply than this into category theory, because we’re not usually proving more broad
things about categories. We’re only narrowly interested in proving things about our particular languages. But, you
should now have some idea of the formal underpinnings we're using to describe languages: programming language
semantics are not an ad hoc invention, they are described in the language of categories.
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2 Review: Post System

If you are already keen on theoretical computer science (or just still remember the Post system introduced in CS
245), congratulations, you may skip this section. Otherwise, please read along.

The Post system, named after Emil Post, is an example of a deductive formal system, which can be used to
reason about programming languages. There are three components to a Post system: a set of signs (which forms
the alphabet of the system), a set of variables, and a set of productions. A term is a string of signs and variables,
and a production is an expression of the form:

t1 to t3 .- tn
t

Where ¢,t1,--- ,t,(n > 0) are all terms. The ¢; are called the premises of the production, and the ¢ is the
conclusion. Thus, a production with the form

premises
conclusion

is read as “if premises are true, then the conclusion holds”. A production without premises is permitted, and simply
means that the conclusion is true by definition. Productions without premises are called azioms.

Productions are the definitions within our system, so it is outside the scope of the Post system to prove that the
productions themselves are correct. In our case, the conclusions will be our — morphism, and thus the definition of
how our programming languages are evaluated; in essence, each conclusion is a step we can take, and the premises
are the context in which we can take those steps.

Post systems are used to prove conclusions, where a proof is constructed from proofs of its premises. Proofs
based on Post systems are constructed using the following rules:

1. An instance of an axiom is a proof of its conclusion;

2. If P, P,,---, P, are proofs of t1,ts,- -+ ,t, respectively, and

51 to tS e tn
t
is an instance of a production, then
P P, Ps e P,
t

is a proof of ¢.

Thus, given a final conclusion, a proof of that conclusion can be formed by proving its premises, until no unproven
premises remain. The result of such a proof is an upside down tree with the root (final conclusion) at the bottom
and the leaves (axioms) at the top.

Example 1. As an example of a Post system, we can encode the logical operations of ‘and’, A, and ‘or’, V, using
the following three rules:

A B A B
AV B AV B ANB

Using this small system, it is possible to show that the proof of (AV B) A (A V C) follows from a proof of A
alone:

A A
AVB __AVC
(AVB)YA(AVC)

Post systems are used extensively for describing formal semantics. You will see that formal semantics of pro-
gramming languages, including type systems, are often described in Post systems.
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3 Operational Semantics for (Plain) A-calculus

We have already discussed the semantics of A-terms in Module 2, when we discussed free and bound variables,
substitution, a-conversion, and S-reduction. Assuming that we have already established the notion of binding,
substitution, and a-conversion, S-reduction seems to be a suitable candidate for operational semantics, for it
specifies a procedure for carrying out computation.

Let’s rewrite S-reduction as a formal set of rules. First of all, all expressions that have S-redex in the outermost
level can be directly reduced, with no premises:

(Ax. M)N —3 M[N/z]

This rule corresponds in the first part of the definition. However, the next part of the definition', which describes
the reduction of S-redices within an expression, cannot be simply interpreted using a single rule. We have to rely
on the structure of the A-expressions. Recall that A-expressions are either abstractions, applications, or variables.
A variable itself certainly doesn’t need any rules for S-reduction, as a variable can’t directly be reduced, but we
can have reductions happening inside abstractions and applications. The above rule is the special case where the
rator is an abstraction.

We still need to take the case where there is reduction happening inside an abstraction, or within the rator or

the rand of an application. The following rule captures the first of these cases, reduction within an abstraction:

M*)[gp
Ax. M —g Ax. P

According to this rule, in order to show that Az. M —g Az. P, we must either provide a proof of M —3 P, or there
must exist a rule that states M —5 P is an axiom.

For applications, remember that in the original description of S-reduction, we didn’t specify a reduction order.
That is, we can choose to start our reduction either in the rator and the rand. for those two cases, we need separate
rules:

M—)ﬁp N—)ﬁp
MN =5 PN MN —5 MP

We have just described how computation proceeds in A-calculus. However, because a A-calculus expression may
match more than one of these conditions, our description is non-deterministic; we haven’t describe a particular way
of computing, but all valid ways of computing. In the previous module, we made this deterministic by focusing on
the selection of redices, and we will now do the same formally.

4 Defining Evaluation Order

As we mentioned earlier, evaluation order is in fact very important, since most programming languages have a
deterministic order of execution, and even those that don’t have at least some restrictions on the order of execution.
If we were to model actual programming languages using our calculus, it is crucial to choose a reduction strategy.
In this section, we are going to discuss the operational semantics of A-calculus under Normal Order Reduction and
Applicative Order Evaluation. Let’s first consider NOR.

Definition 1. (Small-Step Operational Semantics of the Untyped A-Calculus, NOR)

Let the metavariable M range over A-expressions. Then a semantics of A-terms in NOR is given by the following
rules:

IRecall from Module 2: C[(Az. M)N] =5 C[M[N/z]]
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M — M’
Ae. M — \x. M’

()\I Ml)Mg — M1 [MQ/CC]

M1M2 — M{Mg M1M2 — MlMé

The first and the second rule stayed the same as in S-reduction. Similar to non-deterministic S-reduction, we
can reduce an expression that is either a redex, or an abstraction which contains a redex. However, in order to
enforce NOR, we have to add additional restrictions to the third and fourth reduction rules. First of all, if M; can
be reduced further, we should reduce M; instead; this is the reason we introduced the premise VM{.M; /A Mj.
We also explicitly state that the third and fourth rule do not apply if the first rule would have applied, with the
premise V.V Ms. My # Ax. M3 (that is if M, is an abstraction).

Video 3.1 (https://student.cs.uwaterloo.ca/~cs442/W25 /videos/3.1/): Formal semantics of NOR

Now let’s look at AOE:
Definition 2. (Small-Step Operational Semantics of the Untyped A-Calculus, AOE)

Let the metavariable M range over A-expressions. Then a semantics of the A-terms in AOE is given by the
following rules:

()\.’EMl)Mg —)Ml[Mz/l'} M7 M, _>M{M2

My — M, YM..M, 4 M
My My — M]_Mé

For AOE, the first rule has the added condition that the rand (i.e. the argument) can be applied only if it can’t
be reduced further. Also, the abstraction rule is removed, since we can not reduce within an abstraction; similarly,
in most programming languages, you can not evaluate inside a function you didn’t yet call. The last rule has the
premise V. My # Azx. My removed since again we want the argument to be fully reduced before substituting itself
into an abstraction first.

5 Terminal Values

In the previous section, we used the language of predicate logic (specifically, for-all) to conditionalize productions.
While this is mathematically valid, it complicates the description of the language, and makes it more difficult to
prove that a particular production is the right one to use: to show that we can use the first rule of AOE, for instance,
we need to demonstrate that the rand cannot be reduced. Formally proving this involves proving that it does not
match any existing rule, which can in turn require proving more negatives. But, the point of this for-all was simply
“use this reduction if another reduction is not possible”. The rules and conditions become much clearer and easier
to prove if we can specify when an expression cannot be reduced any further syntactically, i.e., based only on the
form of the expression. We call such irreducible expressions terminal, or final, so to make our rules simpler, we
want a syntactic description of terminal expressions.

There are a few choices that we could make for possible sets of terminal values in A-calculus: we could choose
B-normal form, weak normal form, or even head normal form (only the leftmost expression is required to be in
normal form). If we use anything other than S-normal form, we are losing the guarantee given by the Church-
Rosser Theorem. Even if we use S-normal form as the set of terminal value, we still need to be able to answer some
important questions. For example, what is the semantics of (Az. zz)(Az. zx)? The only response we can give is “no
semantics”, since it does not have a normal form. And what about (Az. Ay. y)((Az. zz)(Az. zz))? It has a terminal
value, but not all possible legal derivations will lead to it. Should this expression be given a final value of Ay.y
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since there is a possible reduction to it, or we should say that there is no meaning? In fact, the answer depends on
what one needs to achieve by designing the semantics.

For now, we focus on the steps themselves rather than the possible terminal values. As a result, we can just
let our final values be “the set of values our operational semantics would produce”. Terminal values become more
important when we introduce types, so in the next module, we will discuss terminal values in greater detail.

6 Showcase: A Simple Proof

In this section, we will show that (Az. Ay.y)((Az. zx)(Az. xx))z indeed terminates and evaluates to x under NOR.
This is not a formal proof by any means; however, we will use this example to give you an idea to how programming
language theorists work with semantics.

The formal way to specify that the former expression terminates and evaluates to the latter is going to look like
this:
Az Ay y)(Az. zzx)(Az. zx))z = (A\y.y)z = @

This example is quite short. However, what should we do if we are dealing with larger examples? The answer
is that we need a —™* operator. It might be useful to formally define the —* operator so we can show every single
step at once, instead of splitting them into separate proofs:

Definition 3. (Sequencing) Let the metavariables M range over A-expressions and — be the operator of “one
step” in any small-step operational semantics. Then —* is defined as so:

M1 —* M2 M2 — M3

M —* M
M, %*Mg

Aside: —* is the reflerive and transitive closure of —.

To keep the proof text short, we will make the following definitions:

A=Az \y.y), B=(A\z.zz)(A\z. zx)
Now we can actually start our “proof”.

ABx —* ABx ABz — (A\y.y)z
ABz —=* (Ay.y)x My.y)z — x
Az Ay y) (A, zx) (A, zx))z =* «

Although this proof is of course trivial, with proper abstraction, we can prove similar properties of entire classes
of programs. We will look at some of those properties in the next module.

Aside: There are also many, many other kinds of semantics. In this aside, we showcase two of them since
they are also used in the field of programming languages. One of the variations of operational semantics is
big-step operational semantics, which describes the terminal values every expression will evaluate to directly,
rather than as the transitive closure of smaller steps. For example, this is the big-step operational semantics
for the A-calculus under AOE:

ViV M[V1/z] § Vs
(Az. M)V1 § V3

My Wy ViMs || Va M I Wi VLW | Va
M Ms || Vo VoM |} V3
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In this example, V is the metavariable over values.

Another kind of semantics is denotational semantics. Denotational semantics are used to show the corre-
spondence from language constructs to familiar mathematical objects. Our definition of functional language
constructs in terms of A-expressions is an example of a denotational semantics, where the map between expres-
sions and observables (i.e. the A-expressions) is generally denoted by double squared brackets. A denotational
semantics is formally a functor, while an operational semantics is a morphism over the language described.

7 Semantics and Reality

Our goal is to formally model programming languages, to prove things about them mathematically. But, program-
ming languages aren’t mathematical abstractions, they’re practical tools for solving real problems. Is there anything
to guarantee that the semantics we formally model are the same as the semantics implemented in real programming
language implementations? The short answer is “usually not”.

Our formal semantics are a mathematical abstraction, not software. There are systems that make formal
semantics executable, but the resulting interpreters are usually unusably slow. The purpose of these systems is to
have a ground truth for writing test cases, not to use as practical language implementations. Even that is imperfect,
however, since it’s always possible to write formal semantics which are consistent, but not what you intended; an
inconsistency between a real implementation and a formal semantics can be a bug in the implementation, but it
can also be a bug in the semantics.

There are also aspects of real implementations which are usually intentionally ignored in formal semantics. For
instance, we won’t discuss what happens when the program state is too large to hold in memory. And, in later
modules, we won’t discuss garbage collection, even though it’s crucial to a correct implementation of many systems.

In a much later module on systems programming, we will discuss one counterexample, which successfully uses
a formally-defined version of C both as a formal semantics and as a real compiler.

In reality, it’s impossible to prove, in the mathematical sense of the word, anything about how a program will
behave on a real system. Aside from the pitfalls mentioned above, no formal system can model “a disgruntled
employee took a pickaxe to my server”. Since we’re proving things about abstract calculi, rather than a real
implementations, we can actually prove things, with all the rigor of mathematics. But, since we’re not proving
things about a real implementation, it is the job of the designer of a formal semantics to argue that the semantics
correctly reflects the design of the language, and/or of some implementation of the language.

Put differently, don’t get too dependent on formal semantics and formal proof. Although we will describe
languages formally, a language without a good implementation is useless, and the connection between the formal
system and the implementation will always be tenuous.

8 Adding Primitives

At the end of Module 2, we discussed the A-calculus implementations of commonly seen data types. While those
discussions are very useful in showcasing the power of A-calculus in representing computation, the implementations
presented are not particularly practical; furthermore, it is much more efficient to make use of the computer ar-
chitectures we have and implement those features in their terms. For instance, since all computer architectures
support integers (of some limited range) natively, it would be absurd to implement integers as Church numerals
in a real language. As a result, in the practice of modeling real programming languages, we tend to model those
as primitives. To be specific, those data types will be treated as intrinsic (i.e. built-in) values of our language. In
the A-calculus, the only real values were functions; we now extend the A-calculus by adding other kinds of values,
and the other functionality necessary to make use of them. Most formal semantics for programming languages have
some kind of primitives, so in the remainder of this module, we will describe the semantic rules required to add
common primitives. These rules will be referenced or reused in future modules.
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8.1 Booleans and Conditionals

We will first introduce the syntactic elements, in Backus Normal Form (BNF). Note that we are adding new kinds
of expressions in the definition of (Expr); We will use “- - -7 to denote the part of the definitions of expressions that
was defined in Module 2.

(Boolexp) ::= true | false
| not (Expr)
| and (Expr) (Expr)
| or (Expr) (Expr)
(Expr) @=---
| (Boolexp)
| if (Expr) then (Expr) else (Expr)

These syntactic elements are very similar to the ones you have seen from Module 2. However, they are now
actually part of the syntax of our extended language; that is, rather than describing how to convert them to A-
calculus, we extend A-calculus with a new type of expression. Programs in the A-calculus with Boolean primitives
are simply A-calculus expressions with additional syntax for Boolean expressions, like so:

Az. Ay. if z then y else false

Aside: Our grammar is actually ambiguous, because in “and” and “or”, there’s no clean delineation between
the two subexpressions, and nested “if”s can create the same ambiguity with “else”. This problem is actually
common in real languages though, with almost all languages in the C family having an ambiguity with “if”.
We'll just sidestep this problem by only writing code that’s unambiguous; this isn’t a parsing course!

We will now describe the operational semantics for this new language. Let the metavariable E range over all
expressions. We will start with “not™

E - FE
not £ — not E’

not true — false not false — true

For “and” and “or”, we want the computation of the first parameter to happen first. In addition, like in most
programming languages, we would like short-circuiting behavior for them; i.e., the evaluation of the second operand
should not proceed if the synthesis is known from the first.

and false E — false and true false — false and true true — true
E, — E E— E
and E; Fs — and Ef Es and true £ — and true B’

The last two rules are how we describe “the first argument must be fully evaluated before the second one”. The
first rule describes the short-circuiting behavior: whether the second argument is evaluated or not, as long as the
first argument evaluates to “false”, the whole “and” evaluates to false.

Exercise 1. Write the semantic rules for “or”.

Now we add the rules for if statements:
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if true then E; else Ey — E; if false then E; else By — Ey

El — Ei
if £y then Es else E5 — if F then Es else Ej3

Assuming you’ve followed the exercise to write the semantics for “or”, our semantics are now complete, but you
may have noticed that they have a problem: there are programs that are syntactically correct but don’t match any
of our rules! For instance, if A\z.x true false. Actually, we had a similar case before—you can’t reduce a variable—
but now the problem arises for another reason: in order to reduce our new expressions, certain subexpressions need
to reduce to either true or false. For the time being, we can’t solve this problem; we’ll come back to it in the next
module.

8.2 Numbers

Note that we will restrict our definition to natural numbers. Also, we are working in an imaginary machine, so we
don’t care about overflows (i.e., we assume that we can represent numbers of an infinite range). We will make the
following definitions in our syntax, again in BNF:

(Num) = 0]1] ---
| (NumBinOps) (Expr) (Expr)
(NumBinOps) == + | — | * |/
(Bxpr) o= ---
| (Num)

We will now consider the semantics of binary operations. Let M, N range over expressions, a,b range over
natural numbers. We will start with addition:

at+b=c M — M M — M
(+ab)—c (+ M N)— (+ M' N) (+aM)—= (+aM)

Note that this set of rules forces the first argument (i.e., the left-hand side) to be evaluated before the second
argument is evaluated. Also note that we’re describing our language, the A-calculus with numbers, in terms of the
language of arithmetic, with the predicate a + b = c.

Aside: Why are we using M and N here and E elsewhere? Partially it’s because we expect these particular
expressions to evaluate to numbers, and M and N are common for that, but mostly it’s just to remind you
that none of this is set in stone. Make sure you know how any work you’re reading is using its variables!

Let’s now look at subtraction.

a—b=c ceN M — M’ M — M
(—ab)—>c (-MN)— (- M'N) (—aM)—=(—aM)

The semantics for subtraction is almost the same as with addition, but there is one difference: to actually
compute a — b, we need to make sure that a — b is a natural number. With this semantics, there is no rule to
match expressions like (— 2 3), and so such expressions cannot be reduced. We describe this phenomenon as
“getting stuck”, and in the next module, we will dive into this issue and discuss the significance of an expression
getting stuck. Another way of handling this is to actually allow such subtraction, but define the result as something
arbitrary and perhaps counter-intuitive, such as 0:
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a—b=c cgN
(—ab)—0

Although this definition is unintuitive, it is not incorrect. It’s not correct, either; it’s a definition. We are
defining how our language behaves, and if that doesn’t match perfectly with the — of arithmetic, then so be it; that
is part of the definition. Indeed, in real programming languages with integers of a limited size, no mathematical
operations match their arithmetic definitions perfectly, because of overflow, but these languages are still valid and
well defined.

This is one of the many places where real implementations tend to diverge from formal semantics. It is rare,
albeit not unheard of, for formal semantics to model integer bounds and similar constraints that arise from real
hardware.

Exercise 2. Write the semantic rules for * and / (use integer division; think about how to handle zero division.)

Exercise 3. Propose changes to the syntax rules and add new semantic rules, so we have pred and succ, which are
unary functions for getting predecessor and successor of a number, in our language. Note: pred 0 = 0.

8.3 Lists

In this section we will discuss lists. We will use the representation you should be familiar with: a list containing
1,2,3 will be
(cons 1 (cons 2 (cons 3 empty))) = [1, 2, 3]

We will use a shorthand in mathematics to make our semantic rules compact: L; + Lo will be operator to append
L to the start of Ly. For example: [1]+ [2] = [1,2]. We will also assume that + works for “empty”, the empty list.

Again, we will list the syntactic elements of lists here:

(ListExpr) ::= empty | (cons (Expr) (ListExpr))
| [(Expr) (ListRest))
(ListRest) := ¢ |, (Expr) (ListRest)
(BExpr) w=---
| (ListExpr)
| first (ListExpr) |rest (ListExpr)

The recursive definition of lists is essentially identical to the recursive data definition of the Racket list you saw
in first-year courses.

Here are the semantic rules. Let the metavariables L, E range over list expressions and A-expression respectively:

Lo=[E|+Li VE.EAE Ly = [E] + Ly Ly = [E] + Ly
(cons E L) — Lo (first L) - E (rest Ly) — Lo

Note that the premises in the form Ly = [E] + Lo implies that L; is not empty.

Last, don’t forget that we want expressions to reduce inside those built-in functions:

E1 — Ei VE3.E1 7L> E3 E2 — Eé
(cons Ey E3) — (cons E} Es) (cons Ey F3) — (cons By Eb)
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FEi— Ei Ei— Ei
(first E1) — (first EY) (rest Ep) — (rest EY)

Note that our definition of lists has been slightly less formal than our previous definitions, as we relied on an
informally described mathematical language of lists for our predicates. It is not uncommon for formal semantics
to have some quasi-formal “holes” like this, though obviously it is preferable to define everything as precisely as
possible.

8.4 Sets

A set is a mathematical collection of distinct objects. In real programming languages, it is usually implemented by
a hash-map. However, when formulating a semantics for sets, we usually do not need to worry about their actual
implementation; we can just treat it as a mathematical object. So long as the implementation provides the same
observable behavior, it is correct.

The syntax of sets will be as follows:

(SetExpr) ::= empty | {(Expr) (SetRest)}
| insert (Exzpr) (SetExpr)
| remove (Expr) (SetExpr)
(SetRest) ==c¢ |, (Expr) (SetRest)
(Bxpr) w=---
| (SetExpr)
(Boolexp) ::=---
| contains? (Expr) (SetExpr)

Let metavariables S, ' range over be set expressions and all A\-expressions respectively:

VELE / B VELE £ B VELE A B EcS
(insert E empty) — {E} (remove E empty) — empty (contains? E S) — true
VE,.E A E, S =SU{E} VE\.E A E S =8\{E)} VE\.EAE  EdS
(insert £ S) — 5’ (remove E S) — 5 (contains? E S) — false

Exercise 4. Write the semantic rules for set where at least one argument is not fully reduced.

Note that again, we have described our own sets in terms of the language of set theory.

9 Fin

In the next module, we will introduce types, which allow us to prove certain properties of languages, including that
the semantics do not “get stuck”, by categorizing the kinds of values that may undergo certain operations.
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