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“Any sufficiently complicated C or Fortran program contains an ad hoc, informally-specified, bug-ridden,
slow implementation of half of Common Lisp.”

— Philip Greenspun’s tenth rule

“Greenspun’s tenth rule is just an arrogant way to say ‘programs sometimes use abstraction’.”

— Gregor Richards

1 Introduction to Functional Programming

You may have learned Racket in your first year (if you are an undergraduate student at Waterloo and followed a
normal curriculum), and you have certainly used OCaml for this course. Congratulations, you’ve used a functional
programming language! In fact, OCaml’s second antecedent, ML, was considered for this course as an exemplar of
functional programming, but Haskell will be used instead, for reasons which will become clear soon.

First, let’s clear one thing up: in common parlance, “functional” is a synonym for “in working order”. Thus,
there are many obvious jokes around the premise “if it’s not functional, then it must be dysfunctional!” Functional
in this context, of course, means “of or relating to functions”.

Functional languages are based on the construction and evaluation of expressions, and the mathematical equiva-
lence between parameterized expressions and functions. Computations are encapsulated as functions, and functions
are combined with each other to express complex computational tasks. Ordering is implicit, and computations are
described in terms of the mathematical formula required to achieve their result, rather than an explicit set of steps.

Functional languages are distinguished by the absence (or reduced importance) of commands, particularly as-
signment statements. Through the elimination of commands, which alter program state, functions in the language
behave more like functions in the mathematical sense: the output of any function is completely determined by its
input, and not on the sequence of previous calls to the function, input/output, nor on any external state. In a pure
functional language, execution of a function produces no side effects—the entire state of the machine, including
the values bound to all variable names, remain unchanged after invocation of the function. Languages with this
property are said to exhibit referential transparency:

Definition 1. A language is referentially transparent if every function has the property that, whenever it is given
the same input, it always produces the same output.

More generally, we say that a language is referentially transparent if the meaning (i.e., the value) of an entity
(variable, expression, etc.) is defined independently of its external context. However, for our purposes, the above
definition will suffice.

An important consequence of referential transparency is that if two entities are declared to be equal, such as a
variable bound to a value, then either side of the equals sign should be equivalent in all contexts. For example, if
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the variable z is set to the value f(3), then throughout their collective lifetime, the expressions z and f(3) can be
used interchangeably1. Without referential transparency, we lose this property.

Because of practicality considerations, few languages completely prohibit the use of side effects. Those that do
are called “pure functional” languages, and those that don’t are called “impure”. An obvious example of a pure
functional language is the λ-calculus itself. Languages like Scheme, Racket, Lisp, Common Lisp, ML, and OCaml
are impure, because they permit side effects through assignment statements and I/O, but have a pure subset and
generally discourage the use of impure features. Other languages, such as Haskell, which will serve as the exemplar
of functional programming, prohibit assignment and I/O entirely, instead relegating all change in state to a form
of explicit specification, called monads, which we will come back to in Section 16. Such languages are generally
considered pure, and this design decision enforces programming in a functional style much more stringently than
impure functional languages do, which is why Haskell is being used as an exemplar. In impure functional languages,
z and f(3) from above will usually be equivalent, but might not be. For example, consider this f and z (akin to
the above example) written in OCaml:

Program Output

1 open Stdio
2 let x = ref 0
3 let f q =
4 x := !x + 1;
5 !x + q
6 let z = f 3
7 let () =
8 printf "%d\n" z;
9 printf "%d\n" (f 3);

10 printf "%d\n" z;
11 printf "%d\n" (f 3)

4
5
4
6

Both printed values for z are 4, but f 3 (f(3)) takes the value 4 when it’s bound to z, 5 when it’s printed on
the second line, and 6 when it’s printed on the fourth line. OCaml’s references break referential transparency.

Video 5.1 (https://student.cs.uwaterloo.ca/~cs442/W25/videos/5.1/): Referential transparency

By definition, in all functional languages, functions are first-class values. That is, variables can hold functions,
and functions can be passed as values. This is not an uncommon characteristic of non-functional programming
languages, but it is certainly a mandatory characteristic of functional languages. Moreover, in functional languages,
the difference between a function and a value is often just the presence or absence of parameters. For instance, in
OCaml, let f = 42 is a declaration of a variable, and let f x = x + 42 is a declaration of a function; and of course,
the declaration of a function is really just a declaration of a variable which happens to be bound to a function,
which is a value.

Typically, variables in functional languages aren’t, uh, variable. That’s... needlessly confusing. Actually, they’re
variable in the mathematical sense, but not the intuitive sense: what “variable” means mathematically is that in
different resolutions of an expression or function, a variable may take different values. That context is the binding of
the variable. Once bound, a variable’s value cannot change; the way that it varies is that it could be bound differently
in a different context. This property is immutability. Even impure functional languages are usually immutable by
default, and usually require some extra construct—such as OCaml’s refs and records—to gain mutability. Pure
functional languages have no way to express mutable variables per se.

In this module, we’ll look at features that are either peculiar to or common among functional languages and how
they are defined semantically. We’ll mostly do this in the context of Haskell, but we’ll need to take a mathematical
aside into new extensions of the λ-calculus, namely System F and the parametric λ-calculus, in Sections 10 and 11.

1This definition does not consider efficiency, and many—but not all!—language implementations will still require extra computational
cost to compute f(3) if it’s used in place of z.
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2 Exemplar: Haskell

“A monad is a monoid in the category of endofunctors, what’s the problem?”
— James Iry, parodying Philip Wadler, A Brief, In-

complete, and Mostly Wrong History of Program-
ming Languages[4]

Our exemplar language for functional programming is Haskell. Haskell is a lazy, pure functional language, and,
as there are as many as a dozen Haskell programmers who don’t have Ph.D.s [citation needed], is vastly more popular
than any other language in that category.

Remember, our goal is not to learn exemplars to the point that we can use them for effective programming,
merely to use them to demonstrate some concepts of each paradigm. In this module, we will describe semantics
and syntax as they relate to Haskell, so that we have something solid to relate them to; when Haskell is an outlier,
we will also informally describe how it’s done differently in other functional languages.

In the 1980s, a committee was formed to design a state-of-the-art pure functional language. The result was
Haskell, named for the logician Haskell Curry. The first report on the Haskell language was published in 1990, and
the current Haskell standard is Haskell 2010[6].

Haskell was influenced by ML, and is thus a cousin of OCaml. Some of its syntax will look familiar to what
you’ve seen in OCaml. However, Haskell differs from ML in several important ways.

We will be introducing Haskell syntax as we introduce the relevant concepts. However, most of Haskell will be
left unexplored, and this module is not intended to serve as a guide for learning Haskell. If you would like to learn
Haskell, you are recommended to use Learn You a Haskell (http://learnyouahaskell.com/).

3 Expressions

All behavior in functional programs is described by expressions. Expressions can be made up of numbers, lists,
functions, or other data. We combine expressions together to form more complex expressions.

Expressions typed into a Haskell REPL2, such as ghci, are evaluated immediately. If we type 20 into ghci, it
will respond with 20.

Expressions can be combined using built-in functions, such as + or *, to form a compound expression that
represents the application of that function. Note that + and * are functions, not operators, but they can be used
in a way that resembles operators, by placing the function between its operands. The syntax is similar to OCaml
and largely derived from normal mathematical notation. For instance:
> 100 + 20
120
> 100 * 20
2000
> 100 + 30 * 5
250
> 5 + 10 + 15 + 20
50

Functions can also be called in a way more similar to the λ-calculus, with the function followed by its arguments:
> max 5 10
10
> min (-12) 600
-12
> abs (-42)
42

2i.e., the interactive environment of Haskell. REPL stands for “read-eval-print-loop”, so it should be obvious that every expression
read is evaluated.
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Again, operators are actually functions, so they may be called in the λ-calculus style as well, merely requiring
a bit of syntactic shuffling:
> (+) 100 20
120
> (*) 100 20
2000
> (+) 100 ((*) 30 5)
250

Just like the λ-calculus, all functions actually take one argument, and multi-argument functions are just repeated
application:
> add10 = (+) 10
> add10 20
30
> add10 (-10)
0

We’ve also shown a variable binding here; variable bindings in Haskell are less akin to let bindings in OCaml, which
evaluate their expression ahead of time, and more a simple assertion of equivalence. That is, we’ve declared that
add10 is a shorthand for writing (+) 10. We’ll see in Section 14 that in Haskell, these two concepts are actually
equivalent.

Aside: The fact that every function is actually single-argument is why both λ-calculus and Haskell eschew
parentheses for arguments to functions, in spite of the fact that mathematical notation has them. There’s no
need for that extra syntax when the number of arguments is unambiguous, and it would be a lot of clutter to
add it!

All behavior is encapsulated into functions in this way, so all compound expressions either are function calls or
can be reinterpreted as function calls. There is some syntactic sugar for common data types such as lists, but even
this can be translated into nothing but function calls.

Since operators are just functions, if you’re feeling especially cruel, you can redefine them:
> x + y = x - y
> 2 + 2
0

Luckily, these redefinitions are contextual. You cannot convince all of Haskell that addition and subtraction are
the same thing; you are only allowed to shoot yourself in the foot.

Video 5.2 (https://student.cs.uwaterloo.ca/~cs442/W25/videos/5.2/): Haskell expressions

4 Functions

In functional languages, functions are first class. An entity is first class if it can be

• returned from functions,

• passed to functions as arguments, and

• stored as data.

This term is not precise, and different definitions will have different requirements. For instance, it is common to
additionally require function expressiveness, which means that functions definitions are expressions, which would
exclude C’s functions from the definition. We won’t split hairs about further restrictions on “first class” in this
course; if you want to call C’s functions first class, then by all means do, and if you don’t, then don’t. The above
restrictions are all that are required to define an entity as first class in these notes.
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The formal underpinning of a first-class function is a λ-calculus abstraction. The λ-calculus’s abstractions can
be expressed in Haskell using a relatively similar syntax, but replacing the hard-to-type λ character with a backslash
(\) and the dot with an ASCII arrow (->). For instance, we can represent Church numerals and their mathematical
operators:
> churchTwo = \f -> \x -> f (f x)
> churchThree = \f -> \x -> f (f (f x))
> churchMul = \m -> \n -> \f -> m (n f)
> churchExp = \m -> \n -> n m

Using these functions is a bit unsatisfying, only because the result is also a function, and Haskell doesn’t have a
built-in way to print a λ function:
> churchMul churchTwo churchThree

<interactive>:1:1: error:
* No instance for (Show ((t0 -> t0) -> t0 -> t0))

arising from a use of 'print'
(maybe you haven't applied a function to enough arguments?)

* In a stmt of an interactive GHCi command: print it

But, remember how Church numerals work: they are functions which take an f and an x, and apply f repeatedly
to x, n times, where n is the number that the Church numeral represents. So, we can “translate” the resulting
Church numeral into numbers that Haskell can print by making f the function to add 1, and x = 0:
> churchMul churchTwo churchThree ((+) 1) 0
6
> churchExp churchTwo churchThree ((+) 1) 0
8
> churchMul (churchMul churchTwo churchThree) (churchExp churchTwo churchThree) ((+) 1) 0
48

Or, we can recover something that looks a bit more like the λ-expression by building it as a string, with the ++
operator, which concatenates strings in Haskell:
> churchMul churchTwo churchThree (\x -> "(f " ++ x ++ ")") "x"
"(f (f (f (f (f (f x))))))"

Indeed, Haskell is based directly on the λ-calculus, with several of the additional constructs that we added in
modules 3 and 4 (and, of course, many more). Haskell is typed, and as we saw in Module 4, typed languages cannot
usually directly represent the Y combinator. Haskell is no exception:
> y = \f -> (\x -> f (x x)) (\x -> f (x x))

<interactive>:1:23: error:
* Occurs check: cannot construct the infinite type: t0 ~ t0 -> t
Expected type: t0 -> t
Actual type: (t0 -> t) -> t

* In the first argument of 'x', namely 'x'
In the first argument of 'f', namely '(x x)'
In the expression: f (x x)

* Relevant bindings include
x :: (t0 -> t) -> t (bound at <interactive>:1:13)
f :: t -> t (bound at <interactive>:1:6)
y :: (t -> t) -> t (bound at <interactive>:1:1)

Haskell messages are often arcane, but the critical part here is that it can’t find a way for the type t0 to be equivalent
to the type t0 -> t; these t types are Haskell’s τ . Recursion is possible because bindings work similarly to the
let and let rec bindings we introduced in Module 43.

Haskell also has a shorthand for multi-argument functions. For instance, \x y -> x + y is a function to add
its two arguments (η-reducible to the (+) function). This form is always equivalent to nested functions, such as
\x -> \y -> x + y, so serves the purpose only of abbreviation. However, in Section 12, we’ll see that the translation
can be more complicated than this.

3There are also other fixed-point combinators than the Y combinator, and there are fixed-point combinators that Haskell can
represent, but sensible binding is a better solution, so we won’t discuss them here.
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Video 5.3 (https://student.cs.uwaterloo.ca/~cs442/W25/videos/5.3/): Haskell functions

5 Conditionals and Predicates

Suppose we want to construct a function to compute the absolute value of a number x. The absolute value |x| of x
is defined as:

|x| =

{
x if x ≥ 0

−x if x < 0

There is, of course, a built-in absolute value function, abs, which was demonstrated above; our implementation
is unlikely to be as good as the built-in one, but will demonstrate conditions.

We can evaluate this using if conditionals. In languages in the C family, if is a statement, and the condition
affects which statements will be executed; in functional languages, if is an expression, and evaluates to either its
then or else branch. Because it’s an expression, and because Haskell is typed, we can’t just leave out the else
branch: recall how in our if syntax in Module 4, we demanded that each branch have the same type. Well, the else
branch can’t have the same type as the then branch if there is no else branch, so the else branch is mandatory.
In languages in the C family, the ?: operator—sometimes simply called “the ternary operator”, which is a dubious
name choice since it excludes the possibility of any other operators with three operands—behaves the same, and
requires an “else” branch for the same reason. Knowing this, let’s write our absolute value function:
> absButTerrible = \x -> if x >= 0 then x else -x
> absButTerrible 42
42
> absButTerrible (-42)
42

An if expression is written (if p then t else e). p is called the predicate, or simply condition, and determines which
of t and e will be evaluated. t and e are called the then expression and else expression, respectively.

Aside: You may be wondering why we’ve always put negative numbers inside of parentheses. One unfortunate
consequence of Haskell’s and OCaml’s parenthesis-light function call syntax is that the numeric - for negation
is almost always ambiguous. absButTerrible -42 may look right to our eyes, but it’s actually trying to subtract
42 from the value absButTerrible. You can’t subtract a number from a function, so this doesn’t work.

Haskell—and most typed functional languages—is picky about the type of the predicate. In C, for instance,
we’re allowed to use any number or pointer as the predicate, and it’s considered to be true if it’s not 0 or NULL. In
Haskell, the predicate must be boolean:
> if 42 then 42 else -42

<interactive>:1:4: error:
* Could not deduce (Num Bool) arising from the literal '42'

[...]

What this error is saying is that it couldn’t find a way to interpret a Num (number) as a Bool (boolean).

Of course, since Haskell is based on the λ-calculus, we could also build our own booleans and conditions, in
exactly the style that we built JtrueK and JfalseK in the λ-calculus:
> true = \x -> \y -> x
> false = \x -> \y -> y
> lambdaIf = \b -> \t -> \f -> b t f
> lambdaIf true "true is true" "true is false"
"true is true"
> lambdaIf false "false is true" "false is false"
"false is false"
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This is quite pointless, since our λ-flavored true and false don’t behave like Haskell’s own true and false, which
are named True and False:
> if true then "true is true" else "true is false"

<interactive>:1:4: error:
* Couldn't match expected type 'Bool'

with actual type 'p10 -> p20 -> p10'

Precisely what we’re doing is passing the JtrueK we defined in Module 2 to the if we defined in Module 3, which
expects its own primitive types. The flexibility of Haskell in both representing most λ-expressions and all of the
primitive extensions we’ve defined so far make it a useful platform for understanding formal semantics.

6 Guards

There is an alternative to if for conditionalizing execution: guards. Guards are little more than an abbreviation
for nested if statements, but are common in functional languages, because nested ifs can become difficult to
understand. First, let’s start by declaring our functions in a different way:
> add10 x = x + 10

Recall that previously we said this binding was actually asserting equivalence, rather than binding a variable. This
style of binding should make that very clear: we are asserting that writing the expression add10 x is equivalent to
writing the expression x + 10. As a practical matter, this declares a variable named add10 bound to a function, but
mathematically, the declaration is a statement of equivalence.

Recall now our mathematical description of absolute value:

|x| =

{
x if x ≥ 0

−x if x < 0

The form to the right of = is a description of cases, and Haskell, with a slightly different syntax, allows the same:
> :{
| absButTerrible x | x >= 0 = x
| | x < 0 = -x
| :}
>

This odd :{ ... :} syntax is just because the REPL doesn’t normally let us do definitions of this form, so let’s
turn away from the REPL and write an actual Haskell file, which can simply be written like so:
absButTerrible x | x >= 0 = x

| x < 0 = -x

This can be read as “absButTerrible x is defined conditionally like so: if x >= 0, then absButTerrible x is x; if
x < 0, then absButTerrible x is -x”.

These guards can be written as nested ifs. That brings us to the concept of syntactic sugar.

7 Syntactic Sugar

Until this point, we haven’t needed to introduce any new semantics, because everything has followed either the
semantics of the λ-calculus, or one of the additions we proposed in Module 3. But syntactically, the guards we’ve
seen don’t really fit either.

Formal semantics are almost always defined for a reduced core language. The core language is a much smaller
version of a programming language that includes the semantically interesting parts while excluding many complex
language features. Quite often, a formal semantics is trying to demonstrate only one language feature, in which case
this core language may be sufficient. But, when a formal semantics is trying to accurately model a full language,
rather than just a particular feature, it is associated with a translation—usually informal—from the full language
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into the core represented by the formal model. In this case, we can describe it using the double square brackets4
introduced in Module 2. We can thus describe patterns of the above sort as syntactic sugar like so:

Let the metavariables D range over valid function signatures (i.e., a name followed by formal arguments), C
range over case lists, and E range over expressions. Then,

JD CK = ( D = JCK )
J| E1 = E2 CK = ( if E1 then E2 else JCK )

JCK = JϵK = ( error "Non-exhaustive pattern" )

We haven’t yet mentioned error, but it does what you probably suspect it does: raises an error if it’s evaluated.
In this case, it’s there because case lists might not cover every possible case, and if they don’t, an error is raised at
run-time.

The first line in this relation states that a function declaration formed from case statements can be written as
a standard function declaration formed with =, by rewriting the case statements. The second line says that a given
case E1 = E2 can be rewritten as an if-then-else, where the else expression is the remaining cases. The last line
says that the empty case list (i.e., the end of the case list) is an error if it’s reached.

Note that this rewriting is semantically correct, but it’s likely that the actual Haskell interpreter will do something
cleverer. The important thing in semantics is that the observable behavior is the same, not that the behavior of the
compiler is described precisely.

Using this definition, we would rewrite absButTerrible as follows:
absButTerrible x = if x >= 0 then x else if x < 0 then -x else error "Non-exhaustive pattern"

We’ll use this sort of semi-formal rewriting of complex patterns into simple ones frequently to make our formal
semantics more compact. In this case, thanks to this rewrite, we’re yet to encounter anything that needs any
extension to our formal semantics at all.

Exercise 1. Note that we’ve rewritten the case patterns in terms of the abbreviated syntax we described above (e.g.
absButTerrible x = ... rather than absButTerrible = \x -> ...). Using a similar style, describe the translation
of this syntax. If you’re already familiar with Haskell and know what’s coming in Section 12, then just define the
simple case described here, not full pattern matching.

8 Name Binding and Environments

We’ve cavalierly used bindings above, without being very clear what they mean. Most languages have a global scope,
in which all declarations are equal. In Scheme, for example, a variable defined with define is usable anywhere in
the program, even in code written before the define itself, so long as the define is evaluated before the code using
the definition is evaluated. However, there is also a way to bind names contextually.

An environment is essentially a lookup table, mapping identifier names to values. An environment also associates
names with types, in which context it’s called a type environment, which we’ve already seen. The environment
forms our abstraction of the computer’s memory, so that rather than dealing with pointers and addresses, we have
names.

Environments can also nest, and nested environments don’t need to have the same definition of any given name.
This nesting causes environments to form a tree, with the global scope’s environment—if any—as the root. The tree
is a run-time phenomenon, as multiple calls to the same function create different environments, but its structure
is described by the structure of the code: code in one environment can see variables declared in that environment,
and in environments that surround it syntactically. We describe a variable in a given environment as scoped to that
environment. This is called lexical scoping, and is how all modern languages, functional or otherwise, deal with
name binding. In Haskell, an environment is declared by a let...in expression, which declares a new binding, but
only within the context of the expression after in; the new environment is a child of the surrounding environment.

4Technically speaking, this is the syntax of denotational semantics, but we will be using it far too informally to describe this as a
denotational semantics for full Haskell.
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For instance, the following two functions both use a variable named x, but x is bound to different values in each
context:

1 fun1 n =
2 let x = "A" in n ++ "x is " ++ x
3

4 fun2 n =
5 let x = "B" in n ++ "x is " ++ x

...
*Example> fun1 "In fun1, "
"In fun1, x is A"
*Example> fun2 "In fun2, "
"In fun2, x is B"

Technically, this example requires a module declaration, but we won’t be discussing modules.

Aside: Some people like to snidely deride certain modern languages, in particular JavaScript, as not having
lexical scoping, but this is a misunderstanding of lexical scoping. Lexical scoping means that the environment
in which variables are scoped can be discovered from only the syntax of the code, not that the environment
in which a variable is scoped starts exactly from the text declaring the variable. In the case of JavaScript,
variables declared with var are scoped to the environment of their surrounding function. Languages with
non-lexical scoping include Common Lisp and the Unix shell.

With the exceptions of the let bindings above, all of the declarations we’ve made so far in this module have
been in the global scope5, which is a single, shared environment for all “global” variables. Because this environment
is global and shared, recursion and even mutual recursion are easy to express:

1 badlyApproachZero x | x > 0 = badlyApproachZero (-x + 1)
2 | x < 0 = badlyApproachZeroPrime x
3 | x == 0 = x
4

5 badlyApproachZeroPrime x | x > 0 = badlyApproachZero x
6 | x < 0 = badlyApproachZeroPrime (-x - 1)
7 | x == 0 = x

In this example, badlyApproachZero and badlyApproachZeroPrime are mutually recursive, but can easily refer to
each other since they reside in the same environment, the global scope.

We already looked at formally expressing the semantics of environments, with let bindings in Module 4. But,
let’s recall the semantic and type rules for one part of let bindings, to discuss them in the context of environments:

LetBody
σ′ = σ[x 7→ V [z/x]] z is a fresh variable ⟨σ′,M⟩ → ⟨σ′,M ′⟩

⟨σ, let x = V in M⟩ → ⟨σ, let x = V in M ′⟩

T_Let
Γ ⊢ V : τ1 {⟨x, τ1⟩}+ Γ ⊢ E : τ2

Γ ⊢ let x = V in E : τ2

Our store here, σ, is part of the formal semantics encoding of our environment. The other part is Γ, our type
environment. Γ only exists in the type judgment, and σ only exists in the semantics, but they are each other’s dual.
Note how the environments are used: every expression is paired with its environment, and evaluated or judged
in that environment. Subexpressions in which new variables have been defined are evaluated or judged in a new
context, σ′ or {⟨x, τ1⟩} + Γ, which only exists in that subexpression and its descendants. It is this association
between the syntactic nesting of expressions and the nesting of environments that defines lexical scoping.

5In Haskell, it’s actually a module scope, but again, we won’t be discussing modules.
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Aside: Not all stores form environments, or at least not all stores form lexically scoped environments. “Store”
is just a general term for a variable-value map. Don’t be surprised to see things called “store” that don’t behave
exactly like the store we’re describing here. We’ll see a very different store in Module 7.

Now, let’s consider the case of the global scope. We cannot rewrite our badlyApproachZero example in terms
of lets, or even in terms of let recs6, because let rec as we described it only let us make one recursive function,
not a pair of mutually recursive functions. So, how do we express a global scope in this way?

To be honest, the usual answer is “we don’t”, or we only do so informally. Formal semantics describe the
reduction of an expression, and it’s taken as rote that we have some way of pre-populating σ with all of the
variables defined globally, rather than the empty we started with while defining the let rec semantics in Module
4. But, let’s do it formally anyway.

In most statically typed languages, even functional languages, there is actually a different syntax for the global
scope than there is for expressions. In Haskell, you cannot simply write an expression in a file and expect it to
work. In fact, in the global scope, all you can write is declarations. In a pure functional language, those declarations
do not, in and of themselves, do anything, except for defining the global environment. You then need a starting
expression to evaluate, which becomes the left part of the → in the first step of evaluation. In Haskell, in an
unusual nod to C, the starting place is main. For a Haskell file to be usable as a Haskell program, it must define
a function main, and to run the Haskell program is to evaluate main. There’s a further caveat because of monads,
which we will get to in Section 16, but for the time being, we can just assume we’ll be evaluating main as a function.

So now, we have two steps: convert our top-level syntax into σ, and then evaluate main in σ. This conversion is
the step that is rarely described formally, so there is no “usual” name for it; we will give it the simple name resolve.
Thus, the starting point for a program P is the pair σ and E such that σ = resolve(P ), E = σ(main) z, and z is
the argument to the main function, such as C’s argv and argc. We thus need a syntax for programs, and a definition
for resolve; z comes from outside.

The syntax for programs is simply a list of declarations. Haskell is indentation-sensitive, which cannot be
expressed in BNF because it does not form a context-free language. In order to make the language of our semantics
clearer, and sidestep this problem, we will separate declarations by semicolons, and make a few similar syntactic
concessions later.

⟨Program⟩ ::= ⟨DeclList⟩
⟨DeclList⟩ ::= ⟨Decl⟩; ⟨DeclList⟩

| ϵ
⟨Decl⟩ ::= ⟨V ar⟩ = ⟨Term⟩

Now, let’s define resolve in terms of a program P , where x, V , and L are metavariables ranging over variables,
terminal values, and declaration lists, respectively:

EmptyProgram resolve(ϵ) = empty Declaration
σ = resolve(L) σ′ = σ[x 7→ V ]

resolve(x = V ; L) = σ′

An empty program of course defines no variables, so resolve(ϵ) = empty. A program declaring multiple variables
can be separated into a single declaration (x = V ) and “the rest” (L), and resolve of that program simply extends
the resolution of “the rest” and adds x. Technically, this means that our definition of resolve goes right-to-left.
While a bit odd, this right-to-left resolution doesn’t actually matter so long as names aren’t repeated. It is typically
the job of type judgment to assure that a name is not multiply defined, rather than formal semantics, and if a name
is guaranteed not to be multiply defined, then a σ built left-to-right is indistinguishable from a σ built right-to-left.

A final wrinkle is that in most languages, these declarations may associate names with expressions, rather than
just terminal values, and those expressions need to be evaluated. In Haskell, names are bound to expressions, but
as we will see in Section 14, those expressions do not need to be evaluated. For the time being, we will assume
they’re just associated with values.

6OCaml has yet another special syntax for declaring mutually recursive functions like this, but it’s not relevant here.
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9 Algebraic Data Types

We imagined booleans as being built-in, primitive types in Haskell. This is true, but only because the built-in
if-then-else syntax can only work if it knows what booleans are. Without that, we could write our own Haskell
booleans like so:
data Bool = True | False

Remember that a type is just a set of values belonging to that type. Previously, we assumed that the actual
definition of types and values were external to the language: we defined a language with numbers, and then said
that “number” was a type; we defined a language with abstractions, and then said that “abstraction” was a type.
Haskell’s approach to both types and values is different.

This declaration introduces a new type to the language, and introduces two new values to the language. “True”
and “False” needn’t be keywords, built into the language; they are defined by this type declaration. This kind
of type declaration is called algebraic data types, and is common in typed functional languages. This particular
declaration enters two new names into our semantic environment, True and False, but what is the value associated
with them?

In fact, it’s not important to have an actual, concrete value. The values associated with True and False are
called symbols, which are values invented solely to be unique: what is important is that we can, at run-time, know
when we are referring to True, and know when we are referring to False, so all we need is some distinguishable
value. You can imagine this value as being a number, if you’d like, with every value declared in this way having a
unique number, but that would be a detail of the implementation, not the concept. As far as a user can tell, True
is True and False is False, and that’s all that matters. In our formal semantics, we will represent these symbol
values as one-tuples in which the only value is the name itself, in braces; that is, the value of True is {True}. This
approach is very loosely lifted from the paper A Static Semantics for Haskell[2], which I would highly advise not
reading. In an actual implementation, one could simply generate numbers to represent every symbol, or allocate a
small space and use the pointer as the symbol value; in either case, that number or pointer is never actually exposed
to the user.

Aside: Actually, there are many different ways of expressing such values in formal semantics as there are
formal semantics for languages with algebraic data types, so don’t necessarily expect to see symbols of this
form everywhere.

In Haskell, True and False are called data constructors. The reason for this will become clearer momentarily,
when we parameterize them.

Let’s look at how we might introduce symbols to resolve:

⟨Decl⟩ ::= · · · | data ⟨V ar⟩ = ⟨V alueList⟩
⟨V alueList⟩ ::= ⟨DataConstr⟩ ⟨V alueListRest⟩

⟨V alueListRest⟩ ::= “|” ⟨DataConstr⟩ ⟨V alueListRest⟩
| ϵ

⟨DataConstr⟩ ::= ⟨V ar⟩
⟨Term⟩ ::= · · · | {⟨V ar⟩}

EmptyDataDecl resolve(data n = ϵ ; L) = resolve(L)

DataDecl
σ = resolve(data n = M ; L) σ′ = σ[N 7→ {N}]

resolve(data n = N M ; L) = σ′

Note that in DataDecl, n names the type we are declaring, while N names the value we are declaring. Since
the symbol value for N is {N}, N maps to {N}. Of course, it is also necessary to remember the name n during
type checking, but we’re only looking at semantics here. Also, as it happens, Haskell requires that type and data
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constructor names are capitalized, and variable names are not; this is helpful for typing Haskell, but unnecessary
for our purposes, so we will assume that all of these can have names of the same form.

The type declaration we just saw declares a finite type. The Bool type has exactly two values: True and False.
Finite types aren’t especially useful, so let’s imagine we want a type for lists of booleans. Of course, there are
infinitely many possible lists of booleans, so there must be an infinite number of values in this type. How can we
express that with algebraic data types?

The answer is that data constructors can have parameters, and those parameters are other types. So, leaning
on our classic definition of a list—a list is either empty, or a pair of a value and a list—we can build an algebraic
data type which represents lists of booleans:
data BoolList = Empty | Pair Bool BoolList

The Empty constructor behaves exactly as True or False did: it is simply a symbol value, carrying no further
information than the fact that Empty is Empty. On the other hand, Pair is not a BoolList in and of itself; instead, it
is a two-argument function, where the first argument must be a boolean and the second argument must be another
BoolList. The result of this function is a Pair value, associated with the two argument values. That is, Pair
is a Bool → BoolList → BoolList. For instance, Pair refers to a function, but Pair True Empty refers to a
pair. All values of algebraic data types are effectively n-tuples, where n − 1 is the number of arguments to the
data constructor, and the first element in the tuple is a symbol representing the constructor itself. Therefore, our
declaration above gives us a way of making a pair of a boolean and boolean list, and “tagging” that pair so that we
can tell later that it was specifically one of our Pairs, and not some other pair.

With parameterized data constructors, we gain the ability to describe new, infinite data types. There are an
infinite number of boolean lists.

Now, let’s look at how we might introduce parameterized data constructors to resolve:

⟨DataConstr⟩ ::= · · · | ⟨V ar⟩ ⟨V ar⟩+

⟨Term⟩ ::= · · · | {⟨V ar⟩ (, ⟨Term⟩)+}

ParamDataDecl

σ = resolve(data n = M ; L) σ′ = σ[N 7→ \x1 -> \x2 -> · · · \xm -> {N, x1, x2, · · · , xm}]
resolve(data n = N T1 T2 · · ·Tm M ; L) = σ′

The use of · · · here to represent repeating expressions (in this case, twice in the second premise and once in the
conclusion) is a common abbreviation in formal semantics, to avoid needing to break it down into each of its steps.
Here, ParamDataDecl shows that an m-argument data constructor is stored in σ′ as an m-argument λ function,
curried of course, which resolves to the tuple described above. Note that this definition allows any value to occupy
each of the slots of our algebraic data type; it is the role of type checking to assure that the values are actually of
the types declared by T1 through Tm, which is why they don’t appear in σ′.

The boolean list containing True then False with this declaration is written Pair True (Pair False Empty).

Since data constructors are functions, and functions are curried, we can extract partial applications:
PrependTrue = Pair True
TrueFalseList = PrependTrue (Pair False Empty)

Video 5.4 (https://student.cs.uwaterloo.ca/~cs442/W25/videos/5.4/): ADTs

Finally, as Haskell’s pièce de résistance, algebraic type declarations themselves may be parameterized by type,
allowing for this general definition for lists of any type:
data List a = Empty | Pair a (List a)

This only affects types, and not semantics, so we won’t show our resolve extended to make it work: Pair is the
same two-argument function.
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Aside: Haskell, of course, natively supports lists, so there’s no need to explicitly declare a list type like we
just have. However, the native list syntax is nothing more than syntactic sugar for a sequence of pairs like this.

10 Parametric Polymorphism and System F

As yet, we’ve skirted around the issue of polymorphism, but remember that in Module 4, we declared polymorphism
as necessary to express even Church numerals. Virtually all typed functional languages, certainly including Haskell,
use parametric polymorphism. What makes parametric polymorphism so parametric? The fact that types may be
parameterized, like functions.

This is formalized in a calculus called System F, also known as the second-order λ-calculus, which was invented
independently by Girard[3] and Reynolds[8]. System F looks much like the simply-typed λ-calculus, but includes
syntax for abstractions and applications over types:

⟨Expr⟩ ::= ⟨V ar⟩ | ⟨Abs⟩ | ⟨App⟩ | ⟨t-Abs⟩ | ⟨t-App⟩
⟨V ar⟩ ::= a | b | c | · · ·
⟨Abs⟩ ::= λ ⟨V ar⟩ : ⟨Type⟩ . ⟨Expr⟩
⟨App⟩ ::= ⟨Expr⟩ ⟨Expr⟩

⟨t-Abs⟩ ::= Λ ⟨TyV ar⟩ . ⟨Expr⟩
⟨t-App⟩ ::= ⟨Expr⟩ {⟨Type⟩}
⟨Type⟩ ::= ⟨PrimType⟩ | ⟨TyV ar⟩ | ⟨Type⟩ → ⟨Type⟩ | ∀ ⟨TyV ar⟩ . ⟨Type⟩

⟨PrimType⟩ ::= t1 | t2 | t3 | · · ·
⟨TyV ar⟩ ::= α | β | γ | · · ·

Λ is a Greek capital lambda. In System F, Λ behaves like a second level of λ, over types, hence the name second-
order λ-calculus. To distinguish applications in the first language from applications in the second, the second-order
language uses braces ({}) for application, but furthermore, only allows applications of explicitly written types. As
a consequence, the second-order language is not Turing-complete, since it is impossible to represent recursion. This
is actually a good thing, as it means that the halting problem does not haunt our types, and we know that we can
always evaluate the second-order component of System F. Otherwise, the second-order language is just λ-calculus,
and uses the same reduction rules. For actually “running” System F, that’s all there is to it—just reduce the t-App
if you encounter a t-App, and reduce the App if you encounter an App. Everything interesting about System F
comes with types.

Since types can be substituted (by reducing t-App), the type system in the simply-typed λ-calculus is insufficient
to describe the types and type behavior of System F. In order to have a language to express the types described by
Λ, System F expands ⟨Type⟩ to include the universal quantifier. For instance, it is now possible for an expression
to have the type ∀α.α → α, which is a function which accepts any type, and returns a value of the same type.
Note that α is not a type itself, but a type variable: any particular resolution of this function will have a concrete
type, but it may be a different concrete type in different contexts.

In the previous module, we explored the difficulty in expressing Church numerals in the simply-typed λ calculus.
We attempted to give Church numerals the type (t1 → t1) → t1 → t1, but found that our definition of JˆK
didn’t work, because it tried to make t1 → t1 equal to (t1 → t1) → t1 → t1. We informally fixed this by making
the type ∀τ1.(τ1 → τ1) → τ1 → τ1, and allowing different Church numerals to have different τ1s. Now that we
can explicitly make type parameters, rather than informally talking about τs, how would we describe a Church
numeral?

A Church numeral needed only one core type, t1, so that is the type we must parameterize. We will simply
wrap the definition of a Church numeral, in this case two, in a second-order Λ which makes that a parameter:

J2K = Λα.λf : α → α. λx : α. f(fx)
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We can recover our original, half-broken Church numerals over t1 by applying t1 as our type parameter:

(Λα.λf : α → α.λx : α.f(fx)){t1}
→ λf : t1 → t1.λx : t1.f(fx)

And now, we can make a version of JˆK that is itself parameterized by type:

JˆK =

Λα.λm : (α → α) → α → α. λn : ((α → α) → α → α) → (α → α) → α → α. λf : α → α. λx : α. nmfx

The types in this expression are quite intimidating, so let’s break them down to make things easier. A Church
numeral is a function which takes two arguments. The first is a function over the second, which will be applied as
many times as the value of the church numeral. A two-argument function is a function returning a function, so it’s
some τ1 → τ2 → τ3. In this case, τ1 has to be a function over τ2, so the Church numeral is (τ2 → τ2) → τ2 → τ3.
And finally, since the Church numeral returns the result of the first argument, τ3 must equal τ2, so the Church
numeral is (τ2 → τ2) → τ2 → τ2. We thus need only one type argument, τ2, which we will name α. That explains
the type of m. Because we want to be able to choose the real type for α, we parameterize it, which is Λα. The
result is a function in the second order (Λ) which takes a type as its argument (α), and produces a Church numeral
that works with that type, whatever it is.

How about the odd type of n? In JˆK , n takes m as an argument, but n must also be a Church numeral.
So, n must be some (τ4 → τ4) → τ4 → τ4, but it also must accept an argument of m’s type, which is
(α → α) → α → α. That is, τ4 → τ4 = (α → α) → α → α. We can add some parentheses to the type of m to
get (α → α) → (α → α), at which point the relationship between α and τ4 is clear: τ4 = α → α. So, the type of
n is the rather long-winded ((α → α) → α → α) → (α → α) → α → α.

To actually use the System F variety of Church numerals, we need to fill in all the types in a compatible way,
e.g.:

JˆK {t1}( J2K {t1})( J2K {t1 → t1})

The power of System F’s second-order language is that we can instead make the above expression itself poly-
morphic, by replacing t1 with some parameterized type, such as γ (gamma):

Λγ. JˆK {γ}( J2K {γ})( J2K {γ → γ})

A second, less obvious power of System F is that the second-order language of types is erasable. Because type-
level substitutions only happen in the type language, and normal λ substitutions only happen in the λ-calculus
portion, the actual behavior of any System F expression is dictated by only its λ-calculus component. You can
remove all Λ-abstractions and Λ-applications without affecting the meaning of any program. Thus, the only purpose
of the type language is for type checking; the concerns of parametric polymorphic types and actual behavior are
separated. More precisely:

Definition 2. (Erasure) Given a term E in System F, we define the erasure of E, denoted erase(E), as follows:

erase(x) = x

erase(λx : τ.E) = λx.erase(E)

erase(MN) = erase(M) erase(N)

erase(Λα.E) = erase(E)

erase(E{τ}) = erase(E)

Theorem 1. (Erasability) If E → E′, then either erase(E) = erase(E′), or erase(E) →β erase(E′), up to
α-renaming.
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The type rules for the System F consist of the rules for the simply-typed λ-calculus, augmented with two new
rules to treat type abstractions and type applications. The rule for type abstractions is as follows:

T_TypeAbs
Γ ⊢ E : τ ∀x. ⟨x, α⟩ ̸∈ Γ

Γ ⊢ Λα.E : ∀α.τ

There are several things to note about this rule:

• All Λ-abstractions are of universal types.

• τ may contain α, and indeed, the type of Λα.E could be as simple as ∀α.α. In this example, E is directly of
the parameterized type.

• α doesn’t have a type, it is a type, so nothing is added to Γ. Γ maps variables to types; it does not map type
variables to anything.

• The second premise demands that nothing in the environment has type α already. In particular, this require-
ment prevents us from constructing ill-formed terms like Λα.λx : α.Λα.x, in which the inner “Λα” attempts
to capture the type of x (i.e., the outer α) and thereby divorce x’s type from that of α’s binding occurrence.

For type language applications, the rule is as follows:

T_TypeApp
Γ ⊢ E : ∀α.τ1

Γ ⊢ E{τ2} : τ1[τ2/α]

The expression τ1[τ2/α] is a type substitution, and behaves precisely as substitution does over the λ-calculus. In
this case, it denotes the replacement of all (free) occurrences of α in τ1 with τ2. Its formal definition is analogous
to that of substitution for λ-terms. In particular, note that type substitutions are capture-avoiding replacements,
in which α-conversions of type variables are performed as needed to prevent capture.

In fact, the type rule for type application is most similar to the semantic rule for λ-applications. But, because
recursion is syntactically disallowed in the type language of System F, type judgment is guaranteed to terminate.

Exercise 2. Using the type rules for System F, derive the type for JˆK .

In spite of the fact that System F’s type language is erasable, it nonetheless guarantees type soundness, i.e.
progress and preservation, which we won’t prove here. It is also more powerful than the simply-typed λ-calculus,
as demonstrated by the fact that it can successfully represent JˆK . However, System F still cannot represent the
Y combinator, is still strongly normalizing, and is still not Turing-complete. This isn’t a problem, since we already
had a solution to strong normalization (let rec), and this solution works just as well in System F. All we need is
an environment that allows self-recursive functions to recover Turing-completeness.

Typed functional languages, including Haskell, base their type language on System F, and this is how parame-
terized types, like List a we defined above, are possible. While Pair is a data constructor, and may be used only
in the first-level language, List is a type constructor—i.e., a Λ-abstraction—and may be used only in the type
language.

Having to explicitly write type constructors, type applications, and types more generally, is extremely tedious,
so most typed functional languages, including Haskell, use some form of type inference.

11 Type Inference

Given that the type language of System F is erasable, one might reasonably ask if this erasure can be undone. That
is, is it possible to write untyped λ-calculus, infer what its types should be, and thus gain type judgment without
having to write types? The answer is yes! ... sort of. Type inference is the reverse of type erasure:
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Definition 3. (Polymorphic Type Inference for System F) For a term E of the untyped λ-calculus, the
polymorphic type inference problem (in the context of System F) is to find a well-typed term E′ in System F, such
that erase(E′) = E.

As it turns out, in System F, type inference is undecidable. But, we can infer types if we restrict ourselves to
inferring a slight restriction of all of the types that System F can represent. Specifically, we will restrict ourselves
to inferring type expressions in which the universal quantifier may only be applied to the entire type expression,
and not to some subexpression. That is, ∀α.α → α is allowed, but t1 → ∀α.α is not, and neither is (∀α.α) → t1.
The consequence of this restriction is that we may make functions themselves polymorphic, but a function cannot
take an unresolved polymorphic function as its argument, nor can it return an unresolved polymorphic function.
This restricts the set of expressions for which we can infer types, but, as it happens, still allows virtually all useful
functions.

Let’s consider what it means to infer types. We are operating over the untyped λ-calculus, which of course has
no type judgment. We would like to find System F–like types for the λ-expressions. We have a typing judgment for
System F, and we have a function, erase, which converts System F expressions to untyped λ-calculus expressions.
A logical starting point, therefore, is to apply erase to the System F expressions in the typing rules, thereby getting
rules that are defined in terms of the untyped λ-calculus. It is then up to us to determine if those rules make sense
or help us7. This process of erasing chunks of type judgments isn’t a formal process so much as an experiment, so
we’ll represent it with a squiggly arrow (⇝). We’ll start with T_TypeAbs and T_TypeApp:

erase(T_TypeAbs)
Γ ⊢ erase(E) : τ ∀x. ⟨x, α⟩ ̸∈ Γ

Γ ⊢ erase(Λα.E) : ∀α.τ
⇝ T_Gen

Γ ⊢ E : τ ∀x. ⟨x, α⟩ ̸∈ Γ

Γ ⊢ E : ∀α.τ

erase(T_TypeApp)
Γ ⊢ erase(E) : ∀α.τ1

Γ ⊢ erase(E{τ2}) : τ1[τ2/α]
⇝ T_Spec

Γ ⊢ E : ∀α.τ1
Γ ⊢ E : τ1[τ2/α]

Note that once we erase the type language portions of the expressions, the expressions in the premises and
conclusions of these two rules become the same! The T_Spec rule, called specialization, says that if E is of a
polymorphic type ∀α.τ1, then we can substitute α for some τ2. With the goal of undoing erasure, this is certainly
true: we could rewrite E as E{τ2}, which erases to E. Note that T_Spec doesn’t actually specify τ2—it doesn’t
appear in the premises—and so this judgment is true for any τ2. Of course, E would never be of a polymorphic
type, except that we’ve also created T_Gen.

The T_Gen rule, called generalization, says that if E is of type τ , then we can instead view it as a polymorphic
type ∀α.τ . Again, with the goal of undoing erasure, this is certainly true: we could rewrite E as Λα.E, which erases
to E.

These rules allow us to generalize or specialize types, but we still need a way of getting types in the first place.
If we apply erasure to the T_Abstraction rule from Module 4, the mystery is solved:

erase(T_Abstraction)
{⟨x, τ1⟩}+ Γ ⊢ erase(E) : τ2

Γ ⊢ erase(λx : τ1. E) : τ1 → τ2
⇝ T_Ascr

{⟨x, τ1⟩}+ Γ ⊢ E : τ2

Γ ⊢ (λx.E) : τ1 → τ2

The T_Ascr rule, type ascription, allows us to “invent” a type for the variable of an abstraction; note how τ1
is not actually restricted, except insofar as E’s types work with x assigned the type τ1. Again, we could rewrite
λx.E as λx : τ1. E, which erases to λx.E.

Erased versions of the rules for T_Variable and T_Application are uninteresting, as they had no explicit
types to erase anyway. We will use them verbatim.

What we have just derived are the type rules for the polymorphic λ-calculus. Syntactically, the polymorphic
λ-calculus is the untyped λ-calculus. It is distinguished only in having types, even if they’re not written. Thus, the
polymorphic λ-calculus is an example of a statically typed language in which types are not written.

7Of course, these are course notes, so you can probably guess that this process will be fruitful.
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Our new set of type rules is odd. Our first observation is that the type rules for the simply-typed λ-calculus
possess a property that our new set of type rules lacks. This property is known as syntax-directedness. A formal
semantic system is syntax-directed if it has the following two properties:

• There is no more than one rule in the system for each expression in the language.

• The semantics of an expression is defined completely in terms of the semantics of its immediate subexpressions.

Because the type rules for the simply-typed λ-calculus are syntax-directed, they possess a useful second property:
they’re deterministic. That is, for a given expression, the type rules can only be applied in one way. Based on the
syntactic structure of an expression E, we can determine the unique rule that matches E’s structure. We apply this
rule and then recurse on the subexpressions. Thus, type derivation in the simply-typed λ-calculus is a completely
mechanical process.

The type rules for the polymorphic λ-calculus, on the other hand, are not syntax-directed. For a given expression
E, there can be as many as three rules that we can apply: the rule based on the syntactic structure of E, as well
as the rules for specialization and generalization. Worse yet, both of those rules, as well as the rule for type
ascription, can be applied in infinitely many different ways, for every possible type. Because these type rules are
not syntax-directed, using them to derive types is complicated. But, because the types have not been written into
the underlying syntax, to derive types with these rules is to infer types. Luckily, there is a well-known algorithm,
described and proved by Milner and Damas[1], that can perform type inference in the polymorphic λ-calculus,
known as Hindley-Milner type inference8. We now focus our attention on their algorithm.

11.1 Unification

Consider how we informally resolved the types for Church numerals, and more specifically, for JˆK . We derived
that m and n must be of some types (τ2 → τ2) → τ2 → τ2 and (τ3 → τ3) → τ3 → τ3, respectively. And, since
JˆK includes the expression nm, m’s type must be n’s argument type; i.e., τ3 → τ3 = (τ2 → τ2) → τ2 → τ2. This
relationship is true if τ3 = τ2 → τ2. This process of discovering the relationship between abstract types is called
unification, and is the heart of type inference.

Because the type rules for the polymorphic λ-calculus are not syntax-directed, rather than build the type of
an expression directly from the types of its immediate subexpressions, Milner’s algorithm uses type variables to
accumulate incomplete type information about the immediate subexpressions. The algorithm treats the incomplete
type information gathered from the subexpressions as a set of equations to be solved. It then solves the equations,
thus obtaining a type for the original expression.

The first step to understanding Milner’s algorithm is to consider the problem of solving type equations. To solve
type equations is to relate types, as we did with Church numerals above, and the algorithm to do so is known as
Robinson’s Unification Algorithm[9].

Our adaptation of Robinson’s unification algorithm works on type expressions with unquantified type variables.
Solutions of type equations are expressed in terms of substitutions in type expressions. We first mentioned type
substitutions in our description of System F, in the type rule for specialization. Because we consider only unquan-
tified type expressions here, the expression τ1[τ2/α] simply denotes the type τ1 with all instances of α replaced by
τ2; that is, the problem of capturing in substitution that we had in Module 2 does not occur. A substitution may
have any number of steps [τn/αm], including zero, so we represent an empty substitution as [].

The solution of the type equation τ1 = τ2 is called a unifier:

Definition 4. (Unifier) Given types τ1 and τ2, a unifier of τ1 and τ2 is a substitution S such that τ1S = τ2S.

Consider, for example, the types τ1 = α → (β → α) and τ2 = α → (nat → α), assuming we have the “nat”
primitive type. By setting both α and β to “nat”, we specialize both τ1 and τ2 to nat → (nat → nat). Thus, the
substitution [nat/α][nat/β] is a unifier of τ1 and τ2. On the other hand, if we only set β to nat, then τ1 and τ2 both
specialize to α → (nat → α). Thus, [nat/β] is also a unifier of τ1 and τ2.

8An algorithm described by Milner and Damas is called Hindley-Milner type inference because the world is cruel. It is sometimes,
but rarely, instead called Damas–Hindley–Milner type inference.
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It is likely that the latter unifier is more useful, as it leaves the type more open to further unification, by leaving
α. In general, we prefer unifiers that constrain the specialization of type variables as little as possible, and in
particular, we seek a Most General Unifier:

Definition 5. (Most General Unifier) Let τ1 and τ2 be type expressions. A substitution S is a Most General
Unifier (MGU) of τ1 and τ2 if S is a unifier of τ1 and τ2, and for every unifier S′ of τ1 and τ2, there exists a
substitution S′′ such that S′ = S′′ ◦ S.

It is a fact that if τ1 and τ2 can be unified (that is, if they possess a unifier), then they possess an MGU.
The MGUs of a given pair of expressions are equivalent to one another, up to renaming of variables. Robinson’s
unification algorithm takes two type expressions—like τ3 and τ2 → τ2—as parameters, and returns an MGU for
them, if one exists.

Before we look at the algorithm, let’s take a moment to recall the space we’re operating in. We have several
kinds of types: primitive types, arrow types, universal types, polymorphic types, and abstract types.

• Primitive types are types such as t1 and “nat”. Unification cannot change primitive types, because the code
will not function with a different type.

• Arrow types are constructed types with a → , i.e., function types. We haven’t previously called them arrow
types, but as we now have two kinds of constructed types, it is useful to distinguish them. Unification cannot
substitute an arrow type for a non-arrow type—functions will still be functions!—but may be able to substitute
one or both sides of the arrow.

• Universal types are constructed types with a ∀, i.e., universally quantified types. If an expression has type
∀α.α → α, that means that the expression is a function which takes a value of any type and returns a value
of the same type. Unification won’t actually interact with universal types; this is the restriction we made
at the beginning of this section. Instead, after unification, we will generalize using T_Gen, which produces
universal types.

• Polymorphic types—i.e., type variables—are the parameter of type abstractions, and the operand of univer-
sal types, such as α. All polymorphic types are defined by some surrounding universal quantifier such as
∀α.α → α. Our goal in unification is to discover specializations necessary to unify polymorphic types with
any of the above types.

• Abstract types are types such as τ1, and they do not actually exist in the language. Any given abstract type
is some real type in the unification algorithm, and we write the unification algorithm with an abstract type
to indicate that a step works (or fails) with any type.

Unification is defined as follows:

Definition 6. (Unification) The unification algorithm, U , takes as input type expressions τ1 and τ2, and returns
a most general unifier for them, if one exists, as follows:

U_PrimSelf U(t, t) = [] (i.e., the empty substitution)
U_PrimErr U(t1, t2) = error(t1 ̸= t2) (cannot unify different primitive types)

U_PrimArrow U(t, τ1 → τ2) = error (cannot unify non-function with function)
U_ArrowArrow U(τ1 → τ2, τ3 → τ4) = S1S2 where S1 = U(τ1, τ3), S2 = U(τ2S1, τ4S1)

U_Spec U(α, τ) =

{
error if τ is a constructed type and α appears in τ

[τ/α] otherwise

U_Comm U(τ1, τ2) = U(τ2, τ1) (U is commutative)

Unifying a primitive type with itself produces a trivial substitution (U_PrimSelf). Naturally, as t = t in the
first place, no substitution is needed to relate the two.
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A primitive type cannot be unified with a different primitive type (U_PrimErr, for example, integers and
strings cannot be unified), or with a function type (U_PrimArrow).

To unify two function types (U_ArrowArrow), we first unify their parameter types, obtaining a substitution
S1. We then apply S1 to the result types of the two expressions, and then unify the result types, obtaining a
substitution S2. The result is the composition of S1 and S2. Note that the application of S1 to τ2 and τ4 is
necessary to ensure that any type information obtained during unification of τ1 and τ3 is enforced during unification
of τ2 and τ4. This process could equivalently be done in the opposite order; it is unnecessary to unify the parameter
types before the return types, only to assure that the substitution from one is enforced in the other.

To unify a type variable α with any type expression τ (U_Spec), we simply return the substitution that replaces
α with τ , with one exception: if τ contains α, but is not equal to α, then the unification is circular and must fail
(for example, the type equation α = α → α is circular and has no solution). This safeguard against circularity
is known as the occurs-check. Note that U_Spec also implies that U(α, α), i.e., the unification of a type variable
with itself, is [α/α]. This substitution is of course pointless, so practical implementations will instead produce [].

Finally, U is commutative (U_Comm), so, for instance, U(τ1 → τ2, t) can be reversed to fit U_PrimArrow.
When taking unification as an algorithm, rather than just a mathematical description, it’s important to check each
case before swapping the arguments, to avoid an infinite recursion, of course.

11.2 Algorithm W

With unification, we may finally describe the polymorphic type inference algorithm of Milner and Damas itself:
Algorithm W .

Algorithm W , or simply W , forms the basis for the type system of Haskell and many other typed functional
languages, including OCaml. W takes as input a type environment and an expression, and returns a substitution
and the type of the expression in the context of that substitution. Note that this substitution applies to the
type environment; substitution over a type environment is simply substitution over each of the types in the type
environment.

Algorithm W for the polymorphic λ-calculus is outlined here:

Definition 7. (Algorithm W) Algorithm W takes as input a type environment Γ and an expression E, and
returns a pair of a substitution and a type expression.

W_Var W (Γ, x) = ⟨[], τ⟩ where τ = Γ(x)

W_Abs W (Γ, (λx.E)) = ⟨S, (αS) → τ⟩
where α is a new type variable,
⟨S, τ⟩ = W ({⟨x, α⟩}+ Γ, E)

W_App W (Γ, (E1E2)) = ⟨S1S2S3, αS3⟩
where ⟨S1, τ1⟩ = W (Γ, E1),

⟨S2, τ2⟩ = W (ΓS1, E2),

α is a new type variable
S3 = U(τ1S2, τ2 → α),

Once W has terminated, any type variables introduced by W that remain in the type returned by the algorithm
are then universally quantified by T_Gen.

We see that W works by decomposing the given expression according to its structure, typing the constituent
parts, and then using unification and composition to construct a type for the original expression. W is syntax-
directed: there is exactly one case for each production of abstract syntax in the polymorphic λ-calculus, and the
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type of each expression is built directly from the types of its immediate subexpressions. We can therefore examine
the operation of W case-by-case.

Finding the type of a variable is trivial (W_Var); we simply look it up in the environment Γ. As we did not
specialize any type variables, we return the empty substitution.

To find the type of an abstraction (W_Abs), we invent a new type variable α through T_Ascr, and bind the
parameter variable x to α in Γ while typing the body E of the abstraction. During the typing of E, the variable
α may be specialized to a more specific type. If it is, the specialization will form part of the substitution S that
is returned, replacing the invented α. Thus, we complete the typing of λx.E by applying S to α and using the
resulting type as the parameter component of the type we return. The result component of the type is τ , the type
returned by the typing of E. We also pass up the substitution S generated by the recursive invocation.

To find the type of an application (W_App), we first type the rator E1, obtaining a type τ1 and a substitution
S1. We then type the rand E2 using the updated environment ΓS1 (to ensure that any type information gathered
in the typing of E1 is enforced during typing of E2), obtaining the type τ2 and the substitution S2. Because we
are typing an application, E1 must be a function type, the parameter component of which must match the type of
E2. Thus, we now unify τ1S2 with τ2 → α, where α is a new type variable (we apply S2 to τ1 to ensure that both
expressions being unified reflect the information obtained during both recursive applications of W ). The type we
return is α, updated by application of S3 to reflect the type constraints enforced by the unification. The substitution
we return is the composition of S1, S2, and S3. Note that application is the only step which requires the unification
algorithm, U .

11.3 Type Inference in Practice

Real languages which use type inference, such as Haskell and OCaml, always allow types to be specified explicitly
as well. This is both for documentation and because polymorphic types sometimes do not express the user’s actual
intent; they can easily be too polymorphic.

Type inference allows programs to be fully statically typed, even if few or no types are written. However, it
is distinct from dynamic typing, because types are reasoned about from the code alone, and distinct from gradual
and optional typing (if you happen to be familiar with these concepts), because every expression is given a precise
type. Type inference does not weaken type checking, but allows sophisticated types to be used without having to
write them, or often, even work them out.

The downside of type inference is that error messages can be incomprehensible, even to those familiar with type
inference. However, knowing the concepts of type inference make reading such type errors easier. With a knowledge
of type inference, you’re recommended to go back to Section 4 and read the error message that Haskell produced
when we attempted to type the Y combinator.

Exercise 3. Extend W for let bindings as defined in Module 4.

Exercise 4. Extend W to support optional explicit type specification, i.e., simply-typed λ-calculus abstractions in
the polymorphic λ-calculus.

12 Pattern Matching

Now that we have both algebraic data types and parametric polymorphism, we can discuss one of the fundamental
features of typed functional languages: pattern matching.

Consider our List type from Section 9:
data List a = Empty | Pair a (List a)

The types are erasable9, so setting aside types, this is a definition of two data constructors, Empty and Pair, of
9Actually, Haskell lets you have, for instance, two different definitions of Pair that apply to different types, and needs types to

disambiguate them, so types are only fully erasable if all names are unique. We will discuss this problem in a different context in
Module 8, so we’ll ignore it for now and assume that all names are unique.
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which the latter takes two arguments. But, data constructors in our semantics generate symbols, and symbols
aren’t actually part of the written language, just part of our semantics. Indeed, the tuples that we generate in our
semantics don’t even have any operations to unpack them; they only exist as values. So, how would we actually
use a List in practice?

The answer is that there is a construct similar to the guards we saw in Section 6, but much more powerful:
pattern matching. All typed languages with ADTs10 support pattern matching, to avoid exposing symbols as a
construct in the language. Untyped functional languages such as Scheme/Racket usually expose symbols, but often
have pattern matching as well.

In Haskell, we can match based on a list like so:
1 sumList l =
2 case l of
3 Empty -> 0
4 Pair x y -> x + sumList y

There’s a lot to unpack in the “case” construction. Each line associates a data constructor with an expression, but
it does even more: the data constructor can have unbound variables, and implicit let bindings are built to bind
them. So, rewritten as a nested if statement, this would look something like

1 sumList = \l ->
2 if (l[0] = #Empty) then 0
3 else if (l[0] = #Pair) then
4 let x = l[1] in
5 let y = l[2] in
6 x + sumList y

But, this syntax is purely fictional. Both l[n], to extract a value from the tuple we’re using in our semantics to
represent ADTs, and #, to name symbols, don’t exist in the actual language. That being said, this is how the above
pattern would actually be implemented.

Patterns are actually far more powerful than this; in general, any expression composed of data constructors,
variables, and values is allowed. For instance, we can write a function that sums the first two elements of a list by
nesting Pair:
sumFirstTwo l =

case l of
Pair x (Pair y _) -> x + y

This example also demonstrates _, the “don’t care” pattern, which behaves like a variable (in that it matches
anything), but doesn’t actually bind a variable. Like with guards, the else branch of any pattern matching is a call
to error.

Values in patterns are an unusual case, but also give us an easy way to write base cases for recursive functions
over non-recursive data types:
sumNums x =

case x of
0 -> 0
_ -> x + sumNums (x-1)

Patterns are strictly ordered, so a more general pattern (such as _) must come after a more specific pattern (such
as 0).

Implementing patterns involves reducing the left-hand side of -> using a reduction rule specific to patterns. It
is reduced to a value which may have “holes”, labeled by variable names. The value produced by that reduction is
compared to the value passed to case, with a comparator that supports nested tuples, and matches a hole to any
value. The right-hand side of -> is then evaluated in an environment that associates the variables defined by the
holes with the values defined by the case value.

Haskell also supports a shorthand for pattern matching, in a syntax that resembles declaring a function multiple
times:
sumNums 0 = 0
sumNums x = x + sumNums (x-1)

10... that this author is aware of
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Like with case expressions, the order is critical, as this is just syntactic sugar for a case expression.

12.1 Semantics of Patterns

Since patterns are strictly ordered, the first step to defining their formal semantics is to rewrite them in a way that’s
more similar to the familiar if-then-else expression. Haskell—and most languages with pattern matching—don’t
have such a “match/else” expression, so we’ll just have to invent one. In the language of our semantics, and not the
source language, we will suppose that the expression match E1 : P then E2 else E3 evaluates E2 if the expression
E1 evaluates to a value which matches the pattern P, and E3 otherwise. E2 will be evaluated in a context in which
the variables in P have been bound.

We will also simplify the process of matching by asserting that patterns are only one level deep; that is, we may
match E1 : Pair a b then ..., but we may not match E1 : Pair a (Pair b) then .... Again, the latter may be
rewritten in terms of the former, albeit with a somewhat more complicated structure to the resulting match-then-
else expressions.

Now, let’s write the rules for match. Remember that if the expression evaluates to an ADT of any kind, the result
will be some tuple {Sym, ...}, where Sym is the symbol for the data constructor, and the rest is the arguments. To
match, we must evaluate both sides. Since we will produce let-bindings, we will evaluate with a store σ.

First, the usual rules to evaluate both sides. P here is a metavariable over patterns, which are syntactically just
expressions; the difference comes in type judgment, in that they may have unbound variables, as described above.

MatchLeft
⟨σ,E1⟩ → ⟨σ,E′

1⟩
⟨σ,match E1 : P then E2 else E3⟩ → ⟨σ,match E′

1 : P then E2 else E3⟩

MatchRight
⟨{}, P ⟩ → ⟨{}, P ′⟩

⟨σ,match E1 : P then E2 else E3⟩ → ⟨σ,match E1 : P ′ then E2 else E3⟩

Note that P is reduced without anything in the store! This is because all variables in patterns are supposed to be
unbound; they are bound by the matching.

Now, once both sides have been reduced, we can perform our match. First, we need to convert the unbound
variables in P into let-bindings:

MatchBind

P = {y,_1,_2, · · ·_n, x, z1, z2, · · · , zm}
P ′ = {y,_1,_2, · · · ,_n,_, z1, z2, · · · , zm}
V = {y,M1,M2, · · · ,Mn, N,M ′

1,M
′
2, · · · ,M ′

m}
⟨σ,match V : P then E1 else E2⟩ → ⟨σ,match V : P ′ then let x = N in E1 else E2⟩

This is a bit wordy, so let’s go part-by-part:

• The P = premise demands that the pattern have some number n (which may be 0) of throw-away _ matches,
then a variable name x, then m more variables.

• The P ′ = line specifies that after this step of matching, our pattern will have one more _, replacing x.

• The V = line associates the appropriate element—the one after n other elements—of the value we’re matching
against with the name N .

• The conclusion expands E1 into “let x = N in E1”, so that E1 will be evaluated in a context with x defined
as matched in V .

When all the binding is done, we need to actually evaluate the expression:
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MatchThen
P = {y,_1,_2, ...,_n} V = {y,M1,M2, ...,Mn}

⟨σ,match V : P then E1 else E2⟩ → ⟨σ,E1⟩

This simply demands that P and V be of the same form; in particular, their symbol, y, must be the same.

Finally, if the symbol is wrong, the match fails:

MatchElse
P = {y, · · · } V = {z, · · · } y ̸= z

⟨σ,match V : P then E1 else E2⟩ → ⟨σ,E2⟩

Note that nothing in our rules checked for the case that the pattern and value matched have different sizes, e.g.,
that P is an n-tuple and V is an m-tuple, so they would get stuck if this occurred. Our data constructors only ever
produce tuples of a fixed length, so it is the job of type judgment, and the rest of our semantic rules, to assure that
the semantics do not get stuck in this way.

13 Errors and Exceptions

Haskell uses a special error type to indicate erroneous situations. Errors carry with them an error message, as
a string. In most other languages, including OCaml, exceptions behave in a similar way to errors. For example,
calling sumFirstTwo with a list of length less than two.

Semantically, since errors are, well, errors, virtually all formal semantics simply ignore them. But, we don’t shy
away from formally defining things in this course, so let’s do it anyway, and add errors to the λ-calculus:

⟨Term⟩ ::= · · · | error
⟨Expr⟩ ::= · · · | error

ErrorLeft error E → error ErrorRight V error → error

In short, if an error occurs in any subexpression during application, then the expression is itself an error. This
propagates upwards through all applications, so that if a program encounters an error anywhere, the entire program
will be in error. With the λ-calculus, we only needed to explicitly show this propagation with two rules, but imagine
if we had many more rules! Even adding the primitives we introduced in Module 3 would involve a dozen new, and
extremely boring, rules, which is why they’re usually ignored in formal semantics.

More interesting than errors are exceptions, but Haskell has no exceptions per se11.

14 Lazy Evaluation

Recall that when we discussed the λ-calculus, we considered three reduction strategies: Applicative Order Reduction
(AOR), Applicative Order Evaluation (AOE), and Normal Order Reduction (NOR). AOR and AOE proceed by
always reducing the leftmost, innermost redex (in the case of AOE, ignoring redices inside of abstractions), while
NOR always reduces the leftmost, outermost redex. As a result, under AOR and AOE, arguments to a function are
always reduced completely before they are passed to the function. Conversely, under NOR, arguments are passed to
the function first, and then evaluated as needed. This “as needed” form of evaluation is called lazy evaluation, and
with lazy evaluation, arguments that aren’t explicitly used (or even variable bindings that aren’t explicitly used!)
will never be evaluated at all. AOR and AOE are forms of eager evaluation, which are similar to how almost all
programming languages evaluate.

11Monads, monads, monads! If you’re familiar with Haskell, you’re screaming at me that of course it has exceptions, but its exceptions
are a library feature relating to monads, not a language feature.
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As we learned from the Standardization Theorem, a reduction under NOR will always reach a normal form,
if one exists. On the other hand, AOR and AOE—in this section, we will use “AOR” to refer to either—can get
caught in infinite reduction sequences, even if a normal form exists. From this point of view, it would make sense
to base the reduction strategies of functional programming languages on NOR rather than AOR. However, we’ve
just stated that most languages are based on eager evaluation. Why should this be? The answer is that in general,
eager strategies tend to be more efficient and predictable than lazy strategies. Consider the following expression:

(λx. xxxxx)((λy. y)z)

This expression reduces to the normal form zzzzz. However, notice that it takes six steps to reach the normal form
under NOR, but only two to reach it under AOR12. This phenomenon manifests itself any time a function makes
use of its argument more than once. If the argument is not reduced before being passed to the function, then it is
replicated by the function and must then be reduced multiple times.

There are, however, two situations in which NOR can reach a normal form faster than AOR. First, as we have
seen, AOR can fall into avoidable infinite reductions, whereas NOR is guaranteed to reach a normal form if one
exists. In this case, of course, NOR reaches the normal form faster than AOR because AOR never reaches it. Any
finite amount of time is less than infinite time. The second case is when NOR can avoid evaluation steps entirely.
Consider the following expression:

(λx. z)((λa. λb. λc. λd. λe. e)yyyyy)

This expression reduces to the normal form z. However, in this case, AOR requires six steps of reduction to reach
the normal form, while NOR requires only one. This expression illustrates the other important efficiency advantage
that NOR has over AOR: if a function does not use one of its arguments, then NOR never reduces the argument,
while AOR does reduce it. In other words, NOR does not bother to perform reductions whose results will just be
thrown away, while AOR does.

Haskell is a lazily evaluated language, which means it mostly follows NOR. Actually, as Haskell has no interest
in normal forms per se, but is a language with actual primitive values, it follows NOE: normal order evaluation.
NOE is to NOR as AOE is to AOR: it follows the same order, but never reduces inside an abstraction. This is
“lazy” because we only reduce expressions at the latest possible time, when we absolutely must in order to get a
value; since an abstraction is a value, we don’t need to reduce inside of it at all!

All of the primitive semantic rules we defined in Module 3 work for any of these evaluation orders, but our
informal definition of pattern matching doesn’t quite. For pattern matching to work lazily, the left-hand side is
evaluated fully, and the comparator evaluates fully only the parts of the case expression necessary to make the
comparison.

In addition, lazy evaluation allows us to change our definitions of let bindings and global declarations: both can
allow expressions to be bound, rather than values, because those expressions will only be evaluated when needed
anyway.

This lazy evaluation strategy makes certain patterns natural in Haskell, but nonsense in other languages. For
instance, consider this function:
allTheNumbersFrom = \x -> Pair x (allTheNumbersFrom (x+1))

This function generates a list of every integer greater than or equal to the integer x. That list is, of course, infinitely
long. And yet, this function works fine: if we call allTheNumbersFrom 1, for example, we get a list. If we get the
first element of that list, it’s 1. The second element is 2. Of course, if we try to go over the entire list, we’ll never
get to the end, because the list is infinitely long, but that didn’t stop Haskell from representing it.

Let’s see why this works by getting the third element of one of these infinite lists. We’ll start with these
additional (rather silly) definitions of third, second, and first:
third = \x -> case x of Pair _ y -> second y
second = \x -> case x of Pair _ y -> first y
first = \x -> case x of Pair y _ -> y

12Tongue-in-cheek exercise: Find the exercise from Module 2 to which this example is a solution.
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Now, let’s do our reduction, using NOE13:

third (allTheNumbersFrom 1)

→ (x-> case x of Pair _ y -> second y) (allTheNumbersFrom 1)

→ case (allTheNumbersFrom 1) of Pair _ y -> second y

→ case ((x-> Pair x (allTheNumbersFrom (x+1))) 1) of Pair _ y -> second y

→ case (Pair 1 (allTheNumbersFrom (1+1))) of Pair _ y -> second y

→ let y = (allTheNumbersFrom (1+1)) in second y

→ second (allTheNumbersFrom (1+1))

→ (x-> case x of Pair _ y -> first y) (allTheNumbersFrom (1+1))

→ case (allTheNumbersFrom (1+1)) of Pair _ y -> first y

→ case ((x-> Pair x (allTheNumbersFrom (x+1))) (1+1)) of Pair _ y -> first y

→ case (Pair (1+1) (allTheNumbersFrom (1+1+1))) of Pair _ y -> first y

→ let y = (allTheNumbersFrom (1+1+1)) in first y

→ first (allTheNumbersFrom (1+1+1))

→ (x-> case x of Pair y _ -> y) (allTheNumbersFrom (1+1+1))

→ case (allTheNumbersFrom (1+1+1)) of Pair y _ -> y

→ case ((x-> Pair x (allTheNumbersFrom (x+1))) (1+1+1)) of Pair y _ -> y

→ case (Pair (1+1+1) (allTheNumbersFrom (1+1+1+1))) of Pair y _ -> y

→ let y = (1+1+1) in y

→ 1+1+1

→ 2+1

→ 3

Consider in particular the last few lines: when we evaluated first, its argument still had an infinite recursion,
but since we didn’t use that part of the argument, the fact that it was infinite is irrelevant. And, in the very end,
since we hadn’t yet needed to evaluate our addition—remember, + is a function too—all of the addition happens at
the end.

This style of evaluation is wildly different from that used by other programming languages. In terms of the
meaning of any expression, it is strictly better, since we can define infinite data structures without filling all of
memory. It may seem unintuitive, but it fits nicely with another feature of Haskell: Haskell is pure. In a pure
functional language, it doesn’t actually matter if a particular subexpression is evaluated, if it doesn’t contribute to
the final value; whether it was evaluated or not is unobservable, except in how long your program runs.

There is a more subtle benefit in how it handles recursion. Most functional programming languages need to
handle one case of recursion specially: so-called tail recursion. Tail recursion is when the very last thing a function
does is call itself, with a different argument. The obvious implementation of recursion would simply add a new
stack frame, and then all stack frames return in sequence when the base case is reached. The problem with this is
that for very large data structures, the stack is easily exhausted. Other functional languages handle this case by
clearing the current stack frame before making the recursive call, so that the same stack space is used repeatedly.
Haskell needs no special handling: it just returns the unevaluated expression.

The compiler magic required to make Haskell perform well in spite of lazy evaluation is nothing short of herculean.
The simple fact is that as lazy as Haskell is, computers are neither lazy nor functional. It is the job of Haskell
compiler to determine which expressions are definitely evaluated, put them in an evaluation order, and make light
functions of all the expressions which are maybe evaluated. Expressions which can’t be proved to be evaluated
exactly once are memoized, which means that memory is allocated to store their value, and then that value is
used when the expression is evaluated again, so that if a variable is used multiple times, it doesn’t involve fully
evaluating an expression every time. In spite of all this, the major implementation of Haskell, ghc, produces code

13We’re also simplifying let expressions to use substitution, just to avoid letting the reduction get out of hand.
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with performance roughly on par with C compilers, at least in well-behaved code.

Laziness can be added ad hoc to any programming language with first-class functions. For instance, an OCaml
function which behaves similarly to the Haskell allTheNumbersFrom above can be constructed by wrapping the
problematic infinite recursion in a function, and infinite lists in an algebraic data type:
type 'a lazyList =

| Empty
| Pair of 'a * (unit -> 'a lazyList)

let rec allTheNumbersFrom x =
Pair (x, fun _ -> (allTheNumbersFrom (x+1)))

let first (Pair (x, _)) = x
let second (Pair (_, x)) = first (x())
let third (Pair (_, x)) = second (x())

This version is more difficult to use, since we must explicitly call the function to get more of the list, with x() (the
application of x with unit). However, this pattern, in particular with infinite lists, is sufficiently useful that it’s
made its way into the syntactic sugar of several languages, such as Python, in the form of generators.

Laziness requires pureness for the results to be unsurprising, but pureness comes at a great cost. In a language
like OCaml, if you want to print something, you just call the printf function, which returns a unit. OCaml
is evaluated in AOE order, so it’s quite obvious when the actually printing will be done; the point in the code
where you’ve textually written printf "Hi" is also when "Hi" will be printed. In Haskell, there are no functions
that return unit, since that’s wholly meaningless in a pure language: expressions have no behavior other than to
evaluate a value, so an expression that evaluates to unit couldn’t actually do anything. When an expression does
something other than evaluate to a value, such as print, that other behavior is called a side effect. All practical
programming languages, including Haskell, allow side effects, but laziness and purity significantly change how they
can be expressed.

Before we discuss the implications of purity on side effects, though, let’s discuss how they’re represented in the
semantics of an impure language like OCaml.

15 Impure State and Assignment

Consider OCaml, in which a reference can be created with ref v, where v is its initial value14. Because references
change their value, the order of evaluation of any function that uses references is extremely important; OCaml
follows AOE, as this is a fairly intuitive “left-to-right” order. But, that’s only half the story. How would we formally
describe references and state?

Recall how we described a store, σ. The store itself isn’t useful for storing references, because it’s transient;
taking a step does not actually change the store, we simply add to the store when we encounter let bindings in
subexpressions. What’s more important is that it gave us a new way to think about our reduction in general: rather
than just reducing an expression, we paired that expression with a store. In order to represent state, we add one
more element to that tuple: a heap.

A heap is a map, like the store, which associates references with their values. In formal semantics, heaps are
often named Σ (capital sigma), but this is much less universal than σ for stores; heaps are sometimes named H, or
even Heap, as some kind of perverse anglophilia. We add Σ to the tuple we reduce over, so instead of just reducing
over a pair of a store and an expression, we now reduce over a triple of a heap, store, and expression: ⟨Σ, σ, E⟩.
Unlike the store as we defined it, however, taking a reduction step can actually change the heap. That is, there are
rules that look like this:

· · ·
⟨Σ, σ, E⟩ → ⟨Σ′, σ, E′⟩

Thus, as reduction proceeds, later expressions are evaluated in a changed heap. We start off our reduction with
14As you’ve learned, this is actually an abbreviation for records in OCaml, but we’ll stick to just references to keep this description

simpler.
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Σ = {}, and we cannot forget the state of the heap until the expression part of our triple has reduced to a value;
i.e., reduction is complete.

Heaps are called such not by their analogy to the heap data structure (which they are not analogous to), but
by their analogy to the heap of a program, i.e., physical memory. As the program runs, the heap is changed, and
so that change should be reflected in the reduction steps.

Our store mapped variable names to values, but the heap cannot be indexed so nicely, because references don’t
actually have names, and even if they did, multiple references may have the same name or multiple names may
have the same reference. Instead, like with symbols in abstract data types, we’re going to need another sort of
value created just to be unique. These values are called labels. You can think of them as memory addresses, as they
are the indices into our heap, but our formal heap is just a simple map, with no particular structure, so it’s better
just to think of labels as arbitrary values. A reference will take the value of a label, and accessing references will
involve using that label to index the heap. Labels are terminal values, insofar as they are not, in and of themselves,
reducible.

Now, let’s extend a language—specifically, the λ-calculus with let bindings—to include references using OCaml’s
syntax, and labels:

⟨Term⟩ ::= · · · | ⟨Label⟩
⟨Expr⟩ ::= · · ·

| ref ⟨Expr⟩
| ! ⟨Expr⟩
| ⟨Expr⟩ := ⟨Expr⟩

Note that we haven’t actually defined ⟨Label⟩. ⟨Label⟩ does not form part of the actual user language—a user cannot
write a label, they can only write a “ref”, which may become a label—so all that’s important in the definition of
⟨Label⟩ is that there are infinitely many unique labels.

The typical metavariable for labels is ℓ, a script lowercase L, which is distinct from l, because it’s not confusing
enough to have both upper and lowercase, and both Greek and Latin letters, so some jackass added different
typefaces.

Now, let’s define the semantics for each of our new expressions. Let the metavariable E range over expressions,
V range over terminal values, ℓ range over labels, Σ range over heaps, σ range over stores. Then,

RefEval
⟨Σ, σ, E⟩ → ⟨Σ′, σ, E′⟩

⟨Σ, σ, ref E⟩ → ⟨Σ′, σ, ref E′⟩
Ref

ℓ is a fresh label in Σ Σ′ = Σ[ℓ 7→ V ]

⟨Σ, σ, ref V ⟩ → ⟨Σ′, σ, ℓ⟩

DerefEval
⟨Σ, σ, E⟩ → ⟨Σ′, σ, E′⟩
⟨Σ, σ, !E⟩ → ⟨Σ′, σ, !E′⟩

Deref
Σ(ℓ) = V

⟨Σ, σ, !ℓ⟩ → ⟨Σ, σ, V ⟩

AssgLeft
⟨Σ, σ, E1⟩ → ⟨Σ′, σ, E′

1⟩
⟨Σ, σ, E1 := E2⟩ → ⟨Σ′, σ, E′

1 := E2⟩
AssgRight

⟨Σ, σ, E⟩ → ⟨Σ′, σ, E′⟩
⟨Σ, σ, V := E⟩ → ⟨Σ′, σ, V := E′⟩

Assg
Σ′ = Σ[ℓ 7→ V ]

⟨Σ, σ, ℓ := V ⟩ → ⟨Σ′, σ, V ⟩

Exercise 5. Perform the reduction in AOE for this program: (λx. JfalseK (x := 2)(!x))(ref 0)

To those more familiar with C and C++, “ref” itself is essentially malloc, “!” is *, and “x := y” is *x = y.
Because Σ is actually changed by “ref” and “:=”, the order of evaluation can completely change the meaning of a
program, and expressions with results which are ultimately discarded, such as the first argument to JfalseK ,
can nonetheless contribute to the final value of the program. Although nothing makes state of this sort technically
incompatible with lazy evaluation, the behavior of a program with state and lazy evaluation would be so difficult
to predict, it’s simply never done.

CS442: 5: Functional Programming 27



Aside: You may have noticed that virtually all of our formal semantics for added features have some rather
boring steps saying “if you have an expression instead of a value as a subexpression, evaluate that first”. Some
formal semantics attempt to abbreviate this, but that’s often very unclear; it’s still more common to simply
include all of these dull ordering steps.

The same basic idea—adding an extra element to the tuple that represents our program state—can also be
extended to any other kind of impure behavior, such as standard I/O (with a list of input characters and output
characters) and even files (with a tree of files).

Note that you will see many different ways of expressing the operands to → when state is included. It’s not
uncommon to write the triple as Σ;σ;E instead of ⟨Σ, σ, E⟩. Some works prefer to group both state components,
something like ⟨Σ, σ⟩ ;E. These differences are purely superficial; the critical thing is that our reduction is now over
not just the expression, but state.

We see that in an impure language, the order of evaluation will significantly impact the meaning of a program.
It affects when the heap is changed, and the heap affects the evaluation of the rest of the program. Let’s now return
our discussion to Haskell, and bridge the gap between pureness and side effects.

16 Monads

At long last, that thing that makes Haskell such an intimidating language to use: it’s monads!

Forget the hype: “monad” is just a pretentious word for “procedure”. A monad is an ordered sequence of
actions15; nothing more, nothing less. What makes monads unique is how these procedures are embedded into the
language. The building blocks of procedures—commands—are values in Haskell. Haskell preserves its purity by
manipulating impure actions as values, rather than actually performing them. In a sense, Haskell describes impure
behavior, rather than doing impure behavior.

Monads bundle the side-effecting behavior into a sort of black box, and allow us to link those black boxes into
explicitly specified chains. Those chains form the specific ordering that makes stateful behavior predictable.

The concept of a monad comes from category theory. Monads were first applied to computer science by Eugenio
Moggi[7], and their use was popularized by the Haskell community, in particular by Philip Wadler[10] and Simon
Peyton Jones[5]. Monads are a rather abstract concept—this is why they are considered so difficult to understand—
so we shall introduce them through the motivating example of input and output, and then generalize.

16.1 The IO Monad and Haskell’s Id and Ego

Haskell is really two languages. I call the language we’ve been discussing until now the Haskell Id16. The Haskell
Id cannot communicate with the world. It cannot perform input and output at all. All it can do is compute, with
no side effects.

So, if we want to perform input and output, how do we? There is another language, which I call the Haskell
Ego. The Haskell Ego is the personality; it communiacates with the user, and is the only component capable of
I/O.

Aside: The terms “Haskell Id” and “Haskell Ego” are unique to these notes. Don’t expect to find them
elsewhere. The Haskell Superego is, of course, the Haskell programmer.

The Haskell Ego is not pure. It’s not even functional! It’s an imperative language. But, a Haskell programmer
doesn’t directly write commands in the Haskell Ego. Instead, it works like this: a Haskell Id program is an
expression that should evaluate to a command in the Haskell Ego language. The Haskell Ego interpreter then runs

15The ordering might be abstract, in the same way that a C compiler might reorder your code for optimization purposes.
16This is “id” as in “id and ego”, not “ID” as in “identification”.
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that command, and the result may be a Haskell Id expression, as well as side effects. If it’s a Haskell Id expression,
then that’s evaluated to get a Haskell Ego command, and so forth. Our → (now →Id) works with NOE semantics,
but the value it creates must be a command in the language of the Haskell Ego. Then →Ego evaluates that, and the
rules for →Ego (which we won’t formalize) can result in an expression in the Haskell Id. So, the program executes
with →∗

Id, then →Ego, then →∗
Id, etc., until the Ego is commanded to stop.

All side effects are under →Ego, but →Ego will always have a fully evaluated value from the Haskell Id (a
command). So, the Haskell Id arrow is always ⟨σ,E⟩ →Id ⟨σ,E′⟩, with no Σ, so no mutation, while the Haskell Ego
arrow is always ⟨Σ, σ, V ⟩ →Ego ⟨Σ′, σ, E⟩, with a value that could not have progressed in the Id language.

With this new view, a Haskell program is supposed to evaluate to a command. Note: evaluate to a command,
not evaluate a command. That command is a value to the Haskell Id—the language we’ve been using until this
point. That command is an instruction for the other language, the Haskell Ego, which may then produce a Haskell
Id expression to evaluate. This is how Haskell manages to be pure: the language you actually use can only create
commands; it cannot run them. The interpreter that runs them is separate; it is the ego.

Why all this bother? Because making commands be values means that they have a type. It brings the type
checker into side effects.

The real name for the Haskell Ego is the I/O monad.

The monad for performing I/O is called, appropriately, IO. IO is a polymorphic type, as an I/O function may
return something as well as performing a side effect; for instance, getLine is a value of type IO String. Note that
the type IO String has no arrows in it. getLine is not a function! This is the id-ego distinction: the Haskell Id
cannot get a line, it can only create a value that describes getting a line. Remember, functions are pure, so getLine
couldn’t have been a function.

Inside of getLine’s value is some code that allows the Haskell Ego to read a line from standard input. But, to
the Haskell Id, it’s just a black box. Think of it like having a pointer to some machine code that will read a line,
and that pointer is not a callable Haskell function, just a pointer.

Similarly, there is putStrLn, which is of type String -> IO (). Yes, putStrLn is a function, but calling it does
not write a string to standard output. It’s a function so that it can make an I/O black box specific to the string
you use as an argument; that I/O black box itself contains the code that allows Haskell to write the string out.
That I/O is paired with (), which, like OCaml, is a unit value containing no information: putStrLn has no return
except for its boxed behavior.

Conceptually, we may think of the type IO a as follows:
IO a = World -> (a, World)

That is, given a distinguished type World that represents the state of the entire world (or at least, Σ), we see that
an IO action may be thought of as a function that takes the entire world as input, and produces a value of type a
and a new world as output. Indeed, that’s exactly how our formal semantics modeled side effects above: Σ is the
world—all the state outside of our code—and a is the type that E actually evaluates to. Since Haskell is a real
programming language, the “entire world” includes the computer screen and keyboard; input actions affect the state
of the keyboard (one or more characters is removed from an input buffer), and output actions affect the state of
the screen (characters appear on the display). This is purely conceptual, since we cannot write functions over the
entire world, so instead, an IO is just a black box.

Let’s imagine that we want to write a very simple program using getLine and putStrLn that simply reads in one
line and writes it back out again. We can imagine getLine and putStrLn pictorially as shown in Figure 1. The “λ”
half of each box shows its behavior in E, the Id, the expression within our language. The “World” half of each box
shows its behavior on the world. Since both interact with the world, both have an input and output there. getLine
has no input on the λ side, as it needs no information from the program to do its job. Its output on the λ side
actually flows across from the World side. putStrLn requires a character from the program in order to change the
world (in the small way of writing out a line), and returns only unit on the λ side.

What we want to do is compose getLine and putStrLn into a single program that performs both actions, as in
Figure 2. Note that the λ side of the composed box has no input; our composed machine is just a value, not a
function. The state of the world in this composed version “flows” through getLine, into putStrLn, and out of our
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Figure 1: The getLine and putStrLn primitives.

λ
World

getLine

λ
World
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Figure 2: getLine and putStrLn composed.

combined program.

The combinator used to combine getLine and putStrLn in this way is written >>=, and called “bind”. In the case
of IO, >>= has the following type (note that :: is used to explicitly specify the type of a declaration):
(>>=) :: IO a -> (a -> IO b) -> IO b

In this particular case, the type variable a will be substituted for String, so that IO String is the type of getLine,
and the type variable b will be substituted for (), so that a -> IO b is the type of putStrLn. Our combined action,
which we call echo, is then written as follows:
echo = getLine >>= putStrLn

echo is a non-function value, of type IO (). It specifies, but does not actually perform, the I/O. Thus, nothing
we’ve done so far is impure. All we’ve done is describe the side-effecting behavior; we haven’t actually done anything
with side effects.

The command, in Haskell Ego terms, is to get a line, and produce the expression putStrLn x, where x is the
read line, for the Haskell Id. That Haskell Id expression then produces a command to print out the line for the
Haskell Ego.

In general, the notation f >>= g specifies (but does not perform!) the following sequence of actions:

• the action f is performed first;

• the result produced by f is passed as an argument to the function g, yielding another action;

• the resulting action is performed, and its result returned as the result of evaluating the entire expression.

We’ve done all this work to produce a value that describes the side effects to be performed, so how do we use
that to say what our program does? Recall that in Section 8, we said that in a language in which the global syntax
only allows declarations, we need to know some starting point, and that in Haskell, that starting point is main. But,
we said there that main is a function; that is not strictly true. main is an IO monad! The behavior of the entire
Haskell program is to run the I/O described by the value of the expression declared as main. So, we can make a
Haskell program which performs echo like so:
main = echo

A Haskell Id program is ultimately a specification of the I/O behavior which must be performed throughout the
program, and it is the Haskell Ego which actually causes that I/O to occur. It is in this convoluted way that Haskell
remains a pure functional language, but is capable of I/O. I/O can never be pure, but Haskell—as long as we only
consider the Haskell Id to be Haskell—cannot perform I/O; it can only describe it.
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Aside: OK, there is unsafePerformIO, which converts an IO a into an a by performing the I/O whenever it’s
evaluated. unsafePerformIO is named so for a reason, and isn’t used frequently in Haskell code. The reason
it’s called “unsafe” rather than just “impure” is mainly laziness: in a lazy language, it’s really hard to predict
when—or if—the expression will be evaluated, so it’s unsafe to assume that this unsafePerformIO will actually
perform its I/O, and very unsafe to assume it will perform it at a given time.

Additionally, in the Haskell REPL ghci, if an expression given by the user evaluates to an IO, then the action
specified by that IO is performed immediately, so for instance, we can make ghci echo like so:
> getLine >>= putStrLn
Hello, Haskell!
Hello, Haskell!
>

Note that the second line is the user input, and the third line is ghci’s output.

Suppose now that we would like to combine our echo program with itself, to produce a program that requests
a line, prints it, and then requests and prints a second line. We cannot simply write echo >>= echo, because echo
is not a function, so its type does not match the type expected by the second parameter of >>=, and therefore the
expression contains a type error.

On the other hand, the output of the first echo, namely (), conveys no information, and is not useful in further
computation. So, we can solve our problem by chaining the first echo to a function that ignores its input and then
performs the second echo. We can capture this behavior in a new combinator, >>, called “then”:
(>>) = \f -> \g -> f >>= (\_ -> g)

We can then implement our desired program as follows:
echoecho = echo >> echo

As another example of >>, the following is an IO action to read a line and print it twice:
echoTwice = getLine >>= (\l -> (putStrLn l >> putStrLn l))

Consider now the case where we would like to return a value to the user, rather than just print to the screen.
Suppose we would like to read three lines from standard input and return the first and third, as a pair. Such a
program must have type IO (String, String); we proceed as follows:
myIOAction = getLine >>= \l1 ->

getLine >>
getLine >>= \l3 ->
return (l1, l3)

Here, after the third getLine, there were no I/O actions left to perform; however, we still need a way to return
the pair (c1, c3) to the user. Using (l1, l3) here will cause a type error, because monadic binding (>>=) always
produces some IO b. (l1, l3) has type (String, String), rather than the required IO (String, String). This is
because l1 and l3 are still part of the I/O—they were defined by lines we read—so we can only specify how we
return them in a black box, and not actually return them. For this reason, we need a new primitive, return. The
return primitive has no effect on World; its purpose is to take a value and wrap it inside the IO monad, so that it
can be used in IO actions. It allows expressions in only the λ-calculus side to be within our IO specification.

We now have the machinery necessary to consider a more complex monadic computation. The following action
retrieves lines of text until an empty line is found, and returns the entire block (note that ++ is used to concatenate
strings in Haskell):

1 getBlock = getLine >>= \l ->
2 if l == "" then
3 return ""
4 else
5 getBlock >>= \ls ->
6 return (l ++ "\n" ++ ls)
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16.2 Generalizing Monads

But what was the point of all this?

In an impure language, there is (typically) no way to express the side effects of a function in its types. There is
no way to label side-effecting functions as special, non-referentially-transparent entities. Values of the IO monad are
of the IO monad type, and are not functions, so you cannot accidentally use them as functions. The type system
therefore represents the referential transparency—or absence thereof—of any behavior, by making side-effecting
commands have a different type from functions. Put briefly: monads gave the control of type systems to side
effects.

But, the side effects don’t have to be I/O. There are many kinds of secondary behaviors that could be expressed
without monads, but to which monads can give types and structure.

Now that we have some experience programming with monadic I/O, we can consider, in the abstract, what it
means to be a monad. The formal definition of a monad is as follows:

Definition 8. (Monad) A monad is a triple ⟨M, >>=M , returnM ⟩, where M is a type constructor and

• returnM : α → M{α}

• >>=M : M{α} → (α → M{β}) → M{β}

such that the following laws are satisfied:

• (returnMa)>>=k = ka

• m>>=(returnM ) = m

• m>>=((λa. ka)>>=(λb. hb)) = (m>>=(λa. ka))>>=(λb. hb)

To summarize, monads are a way of boxing up behavior with ordering (through binding), such that the result
of one behavior must be determined before continuing to the next behavior. Taken abstractly, the ordering doesn’t
have to be literal, as it is with the IO monad, but is simply that a behavior depends on the result of the last behavior.

By now, we have seen several examples of monadic programming, and it has become apparent that certain
programming patterns emerge. In particular, the second argument of >>= is often an explicit λ-abstraction. To
hide some of the complexity and focus attention on the underlying structure of the computation, Haskell supports
a syntactic sugar for these common monad patterns, do. We use the do notation to remove explicit invocations of
>>=. For example, our previous example, myIOAction can be rewritten using do notation as follows:

1 myIOAction =
2 do l1 <- getLine
3 getLine
4 l3 <- getLine
5 return (l1, l3)

Recall that in Section 13, we discussed how errors propagate in Haskell. That was a rather brutish way to handle
errors, so let’s look instead to handling errors with monads.

We will use monads to handle errors in much the same way that we might use exceptions in another language.
Rather than raise an exception in the pure functional setting, a computation that encounters an error will return
a special token to indicate the error, rather than a normal value. We can model this “normal value or error token”
behavior with a data declaration:
data Maybe a = Nothing | Just a

This Maybe type is functionally identical to OCaml’s option type. For example, a division function which wishes
to carefully handle error cases would return Nothing if the divisor is 0 (to avoid a division by zero error), and Just
(the quotient) if the divisor is non-zero. A typical caller would need to pattern match to actually use this division
function, but we can use monadic composition to make it simpler.

We can make a monad of Maybe by defining the monadic >>= and return functions for Maybe’s patterns:

CS442: 5: Functional Programming 32



(>>=) Nothing _ = Nothing
(>>=) (Just x) g = g x

return = Just

Remember that data constructors are still functions, so we can simply rebind return as Just.

The combinator >>=, which combines monadic computations, first examines the value of its first argument. If
the first argument is Nothing, then there was a program error, and the Nothing is propagated without executing
the second action. This is similar to how error is propagated in an application without concern for the rest of the
expression. If the first argument is Just x, then there was no program error, and computation may proceed: the
function g may be applied to the result of the previous computation. The combinator return, which just wraps its
argument into the Maybe monad, is equivalent to Just.

We may now implement a safe integer division operation, using the Maybe monad:
safeDiv x y =

if y == 0 then
Nothing

else
Just (div x y)

Note that Haskell does support /, but it’s floating-point division, and we wanted integer division, which in Haskell
is named div.

Suppose now we wish to define a function f that takes inputs a, b, and c, and computes a/b + b/c. We may
create a safe version of f using the Maybe monad as follows:

1 safef a b c =
2 do
3 r1 <- safeDiv a b
4 r2 <- safeDiv b c
5 return (r1 + r2)

Notice the imperative feel of safef; in this case, everything we’ve written is functional and pure, but monadic
binding gives ordering to pure functions. Also notice that there is no explicit error handling inside of safef. All of
the mechanics of propagating Nothing have been confined to the definition of the Maybe monad itself. Nevertheless,
if b is 0, so that safeDiv a b fails, the error (Nothing) will propagate through the remainder of safef, so that the
remaining computations, safeDiv b c and return (r1 + r2), will be skipped.

The IO monad supports variables and state, but in fact, we don’t need to involve the Haskell Ego just to manage
state; we may also use monads to model mutable state, and assignment, in a purely functional setting. We consider
a “state transformer” on a given state type s and result type a to be a function that takes an old state (of type s)
as a parameter, and returns a result (of type a) and a new state (of type s) as results:
data State s a = ST (s -> (a, s))

Remember that monads box an action, not a value, and that action in this case is a transformation over the state,
along with the function over a.

The data type State is the type constructor for our state transformers, and ST is the data constructor for a given
transformer. We observe that, for any state type s, the type constructor State s is a monad, given definitions of
>>= and return:

1 (>>=) (ST f) g = ST (\s0 ->
2 let (a, s1) = f s0 in
3 let (ST h) = g a in
4 let (b, s2) = h s1 in
5 (b, s2)
6 )
7

8 return x = ST (\s -> (x, s))

Our return combinator maps a value to a function that returns that value, while leaving the state unchanged. Our
>>= produces a function that threads the initial state, s0, through the computations f and g. First f, a function
on states, is applied to the initial state s0, producing a value a and a new state s1. The function g, of type a ->
State s b, is then applied to a, producing a state computation, h, which is then applied to the “current” state, s1,
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to produce a new value b and a final state s2. Thus, the initial state s0 is mapped to s1 after f is applied to it,
and then to s2 after g a is applied to it. The result is the pair (b, s2), consisting of the final value b and the final
state s2.

The state monad moves the changes to Σ into the explicit domain of Haskell code: a function in the State
monad operates over the space of E, and returns a value describing the operation over the state of Σ. If we make Σ
a single variable, instead of a whole map, then we can get or put the value of that variable with pure state functions:
get = \a -> \s -> (s, s)
put v = \a -> \s -> ((), v)

The get function ignores its input and sets the result and state to the same value. The put function puts a given
value into the state.

Although IO’s behavior is essentially magic—you cannot “open” an IO value and retrieve the underlying code to
perform I/O—the concepts of monadic composition apply exactly the same when the monad is decomposable and
even purely functional, as in State.

16.3 Monads Elsewhere

Although monads are only strictly necessary in a pure functional language, their ability to explicitly specify behavior
that is usually only implicitly specified, such as state change and I/O, makes them useful even in an impure setting.
Although monads are not necessary in OCaml, they are now supported, and can be used to make I/O and stateful
behavior part of the checked type of functions. Similarly, Scala, an object-oriented language with functional features
that runs on the Java platform, supports monads, even though its surrounding environment is anything but pure.

However, any language which both allows impure behavior and allows monads must necessarily sacrifice some
assurance: you can use monads to explicitly specify impure behavior, but you don’t have to. Haskell is the largest-
scale language to require monads for all impure behavior.

17 Implementation and Continuation-Passing Style

A note: this section suffers from “nowhere-else-to-stick-it-ism”. It has nothing to do with monads, or even Haskell,
but is sufficiently important to functional languages that it would be unwise to leave it out.

Implementing functional language is complicated by the fact that no matter how much functional programmers
may want it, computers are not functional; they operate in an explicit sequence of steps. However, our formal
semantics always described steps, through the → morphism, so clearly it is not impossible to describe functional
languages in this fashion. In this section, we discuss continuations, an idea borrowed from formal semantics, and
Continuation-Passing Style (CPS), an intermediate representation based on them.

Evaluation of expressions (and execution of programs) proceeds in several steps, each corresponding roughly to
one step of β-reduction in the λ-calculus. With each step of the evaluation, we associate a continuation. A continu-
ation is an entity (we may think of continuations as functions) that represents the remainder of the computation to
be performed. If E → E′, then the continuation is a version of E in which the part reduced by E → E′ is factored
out, and made an argument. A continuation takes as input the value currently being computed and applies the
remainder of the computation to this value. The result is the final result computed by the entire program. Consider,
for example, the following expression:

(3 + 5) ∗ 4

The continuation of the subexpression 3 is λx. (x+ 5) ∗ 4. The continuation of the subexpression 3 + 5 is λx. x ∗ 4.
The continuation of the entire expression, by convention, is simply the identity function, λx. x.

Typically, during the compilation process, a compiler will transform source code into a convenient intermediate
representation, which is typically based on a much simpler language, and upon which optimizing transformations
are more easily performed. There are several well-known intermediate representations. One of these, known as
Continuation-Passing Style (CPS), is particularly popular in compilers for functional languages.
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CPS is based on making the notion of a continuation of an expression explicit. Each function is transformed so
that it accepts an additional parameter, representing the function’s continuation. Then, rather than return a value,
the function passes that value to its continuation. Because CPS is more easily described with AOE than NOR, we
will discuss it in the concept of OCaml. Consider the following simple OCaml function:
let f x = 3

This function could be rewritten to accept continuations as follows:
let f x k = k 3

In this way, functions in CPS never return, they simply pass the values they compute to their continuation. When
the computation is finished, the continuation is the identity function, and this continuation is passed the final value
of the computation.

Consider now the following, more complex, example:
1 let rec filter l p =
2 match l with
3 | [] -> []
4 | x :: xs ->
5 if p x then
6 x :: (filter xs p)
7 else
8 (filter xs p)

This function takes a list and a predicate, and filters out all values from the list which match the predicate. This
function could be rewritten in CPS as follows:

1 let rec filter l p k1 =
2 match l with
3 | [] -> k1 []
4 | x :: xs ->
5 let k2 b = (
6 if b then
7 let k3 l2 = (
8 let r = x :: l2
9 in k1 r

10 ) in filter xs p k3
11 else
12 let k4 l2 = (
13 k1 l2
14 ) in filter xs p k4
15 ) in p x k2

From this example, we can observe the major characteristics of CPS. First, we note that CPS names all intermediate
expressions (in this example, the only instance of this behavior is the binding of the name r to the expression x ::
l2). In this way, CPS makes data-flow explicit. Second, CPS names all points of control flow: each recursive call to
filter is made with a separate continuation, and these continuations (k3 and k4) are distinct from the continuation
k2 passed to the predicate p, and the top-level continuation k1. In this way, CPS makes control flow explicit.
(This is also why we used OCaml instead of Haskell to discuss continuation passing; while Haskell’s control flow is
well-defined, it’s less obvious).

Tracing through the CPS code, we see that, upon invocation of filter, the first step of the computation is the
invocation of p. The result (either true or false) is passed to the continuation k2, which tests the value computed
by p and invokes filter recursively with either the continuation k3 or the continuation k4, both of which eventually
pass control back to the caller via invocation of the continuation k1.

Explicit control flow and data-flow make optimizations based on control flow analysis and data-flow analysis
particularly easy. Consider, for example, the second recursive call to filter in the original function:
let k4 l2 = (

k1 l2
) in filter xs p k4

In general, CPS formulations of a tail call—a recursive call which is the last behavior in a function—will have this
form. The definition of k4 is trivial—it is η-reducible to k1—and so we could easily replace the above code with
simply the following:
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filter xs p k1

That is, we simply reuse the top-level continuation k1. As simple as this transformation is, what we have actually
done is optimize away tail recursion: the continuation requires no context from this function call, so the context
from this function call can be discarded. Tail-call elimination is one of the fundamental optimizations of functional
languages, and CPS makes it trivial.

In Haskell, this style is less needed, because using NOR, we evaluate the outermost expression, instead of
the innermost. Tail calls naturally melt away, because what we return is not the result of a recursive call, but
the expression of the recursive call. Thus, while there are areas of Haskell to which CPS is applicable, different
techniques are used in lazy languages.

18 Fin

In the next module, we will look at another style of declarative programming, logic programming. Assignment 3
will focus on implementing functional languages like you’ve seen in this module.
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Appendix A Full Semantics

We have introduced many features of functional languages, each independently. This appendix serves as a unified
reference. This is the mostly-complete syntax, semantics, and resolve for what we might call “untyped λ-Haskell”,
i.e., an untyped language with Haskell-like features (excluding some semantics that were left as exercises):

A.1 Syntax

⟨Program⟩ ::= ⟨DeclList⟩
⟨DeclList⟩ ::= ⟨Decl⟩; ⟨DeclList⟩

| ϵ
⟨Decl⟩ ::= ⟨V ar⟩ = ⟨Expr⟩ | data ⟨V ar⟩ = ⟨V alueList⟩

⟨V alueList⟩ ::= ⟨DataConstr⟩ ⟨V alueListRest⟩
⟨V alueListRest⟩ ::= “|” ⟨DataConstr⟩ ⟨V alueListRest⟩

| ϵ
⟨DataConstr⟩ ::= ⟨V ar⟩ ⟨V ar⟩∗

⟨Expr⟩ ::= ⟨V ar⟩
| ⟨Abs⟩
| ⟨App⟩
| true
| false
| if ⟨Expr⟩ then ⟨Expr⟩ else ⟨Expr⟩
| match ⟨Expr⟩ : ⟨Expr⟩ then ⟨Expr⟩ else ⟨Expr⟩
| ⟨Num⟩
| ⟨NumExp⟩
| let ⟨V ar⟩ = ⟨Expr⟩ in ⟨Expr⟩
| error
| (⟨Expr⟩)

⟨Term⟩ ::= ⟨V ar⟩ | ⟨Abs⟩ | true | false | ⟨Num⟩ | error
⟨V ar⟩ ::= (any valid ID)
⟨Abs⟩ ::= λ ⟨V ar⟩ . ⟨Expr⟩
⟨App⟩ ::= ⟨Expr⟩ ⟨Expr⟩

⟨Num⟩ ::= 0 | 1 | · · ·
⟨NumExp⟩ ::= ⟨NumBinOps⟩ ⟨Expr⟩ ⟨Expr⟩

⟨NumBinOps⟩ ::= + | − | ∗ | /

CS442: 5: Functional Programming 37



A.2 Semantics

Application ⟨σ, (λx.M1)M2⟩ → ⟨σ,M1[M2/x]⟩ ReduceLeft
⟨σ,M1⟩ → ⟨σ,M ′

1⟩
⟨σ,M1M2⟩ → ⟨σ,M ′

1M2⟩
Add a+ b = c

⟨σ, (+ a b)⟩ → ⟨σ, c⟩

AddLeft
⟨σ,M⟩ → ⟨σ,M ′⟩

⟨σ, (+ M N)⟩ → ⟨σ, (+ M ′ N)⟩
AddRight

⟨σ,M⟩ → ⟨σ,M ′⟩
⟨σ, (+ a M)⟩ → ⟨σ, (+ a M ′⟩)

Sub a− b = c c ∈ N
⟨σ, (− a b)⟩ → ⟨σ, c⟩

SubLeft
⟨σ,M⟩ → ⟨σ,M ′⟩

⟨σ, (− M N)⟩ → ⟨σ, (− M ′ N⟩)
SubRight

⟨σ,M⟩ → ⟨σ,M ′⟩
⟨σ, (− a M)⟩ → ⟨σ, (− a M ′)⟩

IfTrue ⟨σ, if true then E1 else E2⟩ → ⟨σ,E1⟩ IfFalse ⟨σ, if false then E1 else E2⟩ → ⟨σ,E2⟩

IfExpr
⟨σ,E1⟩ → ⟨σ,E′

1⟩
⟨σ, if E1 then E2 else E3⟩ → ⟨σ, if E′

1 then E2 else E3⟩

LetDistinct
x ∈ FV [V ] z is a fresh variable M ′ = M [z/x]

⟨σ, let x = V in M⟩ → ⟨σ, let z = V in M ′⟩

LetBody
x ̸∈ FV [V ] σ′ = σ[x 7→ V ] ⟨σ′,M⟩ → ⟨σ′,M ′⟩

⟨σ, let x = V in M⟩ → ⟨σ, let x = V in M ′⟩

Variable
σ[x] = E

⟨σ, x⟩ → ⟨σ,E⟩
LetResolution ⟨σ, let x = E in V ⟩ → ⟨σ, V [E/x]⟩

MatchLeft
⟨σ,E1⟩ → ⟨σ,E′

1⟩
⟨σ,match E1 : P then E2 else E3⟩ → ⟨σ,match E′

1 : P then E2 else E3⟩

MatchRight
⟨{}, P ⟩ → ⟨{}, P ′⟩

⟨σ,match E1 : P then E2 else E3⟩ → ⟨σ,match E1 : P ′ then E2 else E3⟩

MatchBind

P = {y,_1,_2, · · ·_n, x, z1, z2, · · · , zm}
P ′ = {y,_1,_2, · · · ,_n,_, z1, z2, · · · , zm}
V = {y,M1,M2, · · · ,Mn, N,M ′

1,M
′
2, · · · ,M ′

m}
⟨σ,match V : P then E1 else E2⟩ → ⟨σ,match V : P ′ then let x = N in E1 else E2⟩

MatchThen
P = {y,_1,_2, ...,_n} V = {y,M1,M2, ...,Mn}

⟨σ,match V : P then E1 else E2⟩ → ⟨σ,E1⟩

MatchElse
P = {y, · · · } V = {z, · · · } y ̸= z

⟨σ,match V : P then E1 else E2⟩ → ⟨σ,E2⟩

ErrorLeft ⟨σ, errorE⟩ → ⟨σ, error⟩ ErrorRight ⟨σ, V error⟩ → ⟨σ, error⟩
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A.3 Global Name Resolution

EmptyProgram resolve(ϵ) = empty

Declaration
σ = resolve(L) σ′ = σ[x 7→ V ]

resolve(x = V ; L) = σ′

EmptyDataDecl resolve(data n = ϵ ; L) = resolve(L)

DataDecl
σ = resolve(data n = M ; L) σ′ = σ[N 7→ {N}]

resolve(data n = N M ; L) = σ′

ParamDataDecl

σ = resolve(data n = M ; L) σ′ = σ[N 7→ \x1 -> \x2 -> · · · \xm -> {N, x1, x2, · · · , xm}]
resolve(data n = N T1 T2 · · ·Tm M ; L) = σ′

Rights

Copyright © 2020–2025 Gregor Richards, Brad Lushman, and Anthony Cox.
This module is intended for CS442 at University of Waterloo.
Any other use requires permission from the above named copyright holder(s).
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