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“In Prolog programming (in contrast, perhaps, to life in general) our goal is to fail as quickly as possible.”

— Leon Sterling and Ehud Shapiro, The Art of Prolog

Programming languages are often classified as either declarative or imperative. These two rather broad terms
refer to the degree to which the task of programming is abstracted from the details of the underlying machine, and
are often associated with the terms high-level and low-level, respectively. A programming language is declarative
if programs in the language describe the tasks to be performed without outlining the specific steps to be taken.
Conversely, imperative languages prescribe more of the details of how computations are to be carried out.

Aside: Of course, technically, a declarative language is simply a language in which declarations are primary,
and an imperative language is a language in which imperatives (commands) are primary, but this distinction
in level of abstraction is a natural consequence of this structural difference.

In reality, the terms declarative and imperative are most appropriately treated as relative terms: one language
is “more declarative” or “more imperative” than another. In this way, the notions of “declarative” and “imperative”
suggest the possibility of constructing a “spectrum” of programming languages arranged according to the level of
abstraction at which they operate. While an actual construction of such a spectrum is not really a well-defined task,
we may certainly ask ourselves what languages would lie at its boundaries—what are the lowest- and highest-level
programming languages?

At the lowest level, we can program a computer by specifying the sequence of electrical impulses that passes
through the processor. Programming of this nature amounts essentially to specifying the sequence of 1’s and 0’s
that make up an executable program.

At the highest level, we might imagine a language that allows us to simply describe the characteristics of the
program we seek, and then allow the computer to perform the task of meeting the criteria we laid out. The
language we use to describe our programs should ideally be completely devoid of any references to computers or
implementation details; it should simply outline the constraints to be satisfied in order to solve the problem at
hand.

An ideal candidate for such a language is predicate logic. By defining an appropriate problem domain and set of
predicates, it is possible to use predicate logic to describe any computable problem. Moreover, predicate logic is a
language of mathematics, and its existence predates computers. Indeed, a system in which we may program purely
in predicate logic is an ideal to which many in the declarative programming community aspire. In this chapter, we
discuss the logic programming paradigm, and its best-known representative language, Prolog.

Prolog is our exemplar, but it’s actually more than that for logic programming; virtually all languages in the
logic programming paradigm are based on Prolog. In a very real sense, logic programming is Prolog. Or, at the
very least, Prolog is certainly the mother of logic programming.

Logic programming forms one branch of a family of query languages, and we will explore query programming
more broadly at the end of this module.
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1 Programmming in Logic

We begin with a summary of the language of predicate logic. Strings in this language (called formulas) are composed
of the following elements:

• constants, denoted by a, b, c, · · · , possibly subscripted;

• function letters, denoted by f, f1, f2, · · · , g, g1, g2, · · · , etc.;

• predicate symbols, denoted by (possibly subscripted) capital letters;

• variables, denoted by x, x1, x2, · · · , y, y1, y2, · · · , etc.;

• grouping and delimiting symbols: (,) and ,;

• logical connectives: ¬, →, ∨, ∧ (negation, implication, or, and and, respectively);

• quantifiers: ∀ and ∃.

With each function symbol and each predicate symbol, we associate a number n ≥ 0, known as its arity. The arity of
a function or predicate denotes the number of arguments it will accept. The particular language under consideration
depends on our choice of constants, function letters, and predicate symbols. For example, suppose we introduce
the unary function symbol s and the binary predicate g. Then the following is a formula in our predicate language:
∀x.g(s(x), x). We might choose to interpret this formula as follows: we take as our domain of consideration the set
of natural numbers, so that the variable x may range over the values 1, 2, · · · . We then associate the function s with
the successor function, λx. x + 1, and the predicate g with the binary predicate λ(x, y). x > y. Then the formula
reads: “For every natural number x, the successor of x is greater than x,” which, in this domain of interpretation,
happens to be true. We assume at this point that you have sufficient background in logic to distinguish between
well-formed and mal-formed formulas in predicate languages.

The logical connectives are those used in logic in general:

• ¬X is true if X is false (logical negation).

• X → Y means “X implies Y ”, and so is true if, in all cases that X is true, Y is also true. If X is always false,
then the implication is said to be “vacuously true”.

• X ∨ Y is true if either X or Y is true (logical or).

• X ∧ Y is true if both X and Y are true.

A sequence of clauses joined by ∨ is called a disjunction, while a sequence of clauses joined by ∧ is called a
conjunction.

Aside: The only way this author can ever remember the difference between ∨ and ∧ is to observe that ∧ looks
a bit like an ‘A’, as in “AND”. Perhaps the same mnemonic will help you.

The logic programming paradigm proceeds as follows: we first assert the truth of a set of formulas in our predicate
language. Our set of assertions forms a database. We then either query the database about the truth of a particular
formula, or we present a formula containing variables and ask the system to determine which instantiations of the
variables satisfy the formula, i.e., make it evaluate to true.

This task, as stated above, is quite difficult, as predicate languages admit a wide variety of qualitatively different
formulas. To make the task more feasible, we will show how formulas in predicate languages may be placed in a
more uniform format known as clausal form. The programming language we will eventually get to, Prolog, demands
that its predicates be in a clausal form. The exact constraints of clausal form are best described by describing the
process of transforming any formula into clausal form. Note that the mechanical details of converting a predicate
into clausal form are not part of Prolog, they’re just what you have to do to express any predicate in Prolog, so
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the main purpose of this section is simply to demonstrate that restricting ourselves to clausal form doesn’t actually
reject any predicates, as they can all be converted.

We first note that we can get rid of the logical implication symbol, →, by replacing all occurrences of A → B
by ¬A ∨B. For example ∀x.(A(x) → B(x, f(y))) would become ∀x.(¬A(x) ∨B(x, f(y))).

Next, we can move all of quantifiers to the left. Doing so will produce a formula of the form ⟨quantifiers⟩ ⟨body⟩.
To do this we observe the following two rules:

¬∀x.A becomes ∃x.¬A

¬∃x.A becomes ∀x.¬A

Quantifiers may be pulled outside of conjunctions and disjunctions unchanged. Note, however, that if moving a
quantifier to the left introduces a variable capture, then we must perform an α-conversion and rename the quantified
variable to a fresh one. That is, to simplify an expression like this one:

(∀x.A(x)) ∧ (∀x.B(x))

we must first rename one or both of the x’s, like so:

(∀x.A(x)) ∧ (∀x′.B(x′))

Then we may move the quantifiers out like so:

∀x.∀x′.A(x) ∧B(x′)

Note also that we may not reorder quantifiers with respect to each other. That is, when moving quantifiers to
the left, we must respect the left-to-right order in which they occurred in the original formula. For example, the
formula ¬(∃x.A(x) ∧ ∀x.B(x)) becomes ∀x.¬(A(x) ∧ ∀x.B(x)), and then ∀x.∃y.¬(A(x) ∧B(y)).

Next, we can eliminate existentially quantified variables via a process known as Skolemization: essentially, we
replace them with freshly invented constants, known as Skolem constants. For example, ∃x.∃y.(A(x, y) ∨ B(x))
becomes A(s1, s2) ∨ B(s1), where s1 and s2 are Skolem constants. The reason why this works is that a predicate
logic statement is simply a set of constraints. A constant is constrained to exist by virtue of using it, so an existential
qualifier is not needed. We simply need to make sure that if different existential qualifier happen to use the same
name, we don’t use the same name when the existential qualifier is used, hence the introduction of a new constant.

Aside: Actually, we’ve been Skolemizing throughout the course! Every time we’ve had a metavariable in the
Post system, that’s actually a Skolemized existential quantifier.

Skolemization becomes more difficult in the presence of universal quantifiers. Consider the expression
∃y.∀x.P (x, y). This expression asserts that there is a value of y such that P (x, y) holds of every x. Hence we may
replace y with a Skolem constant s1 that represents the particular value of y for which the assertion holds. However,
consider the expression ∀x.∃y.P (x, y). In this case, the assertion does not guarantee that there is a single choice of
y for which P (x, y) will hold for all x; rather it asserts that a suitable value of y can be found for each value of x.
Thus, the value of y is dependent on the value of x, and therefore it would not be appropriate to replace y with a
Skolem constant. Rather, we should replace y with a newly invented Skolem function parameterized by x. Thus,
we Skolemize ∀x.∃y.P (x, y) as ∀x.P (x, s1(x)), where s1 is a Skolem function.

In general, an existentially quantified variable x is replaced with a Skolem function parameterized by all of
the universally quantified variables whose quantifiers occur to the left of x’s quantifier. If there are no universal
quantifiers to the left of x’s quantifier, then x may be replaced with a Skolem constant.

In this way, we may convert any formula in our predicate language to one without implications, in which the only
quantifiers that appear are universal quantifiers, and in which all of the quantifiers occur leftmost in the formula.

Free variables in our predicate language are variables not associated with a quantifier; hence their meaning
is assumed to be externally provided. Since we seek self-contained formulas defining the characteristics of the
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problems we wish to solve, we shall assume that there are no free variables. Hence, after the transformations we
have performed so far, all of the variables in the formula are universally quantified. Thus, the presence of the
quantifiers provides no additional information and for convenience we shall omit them. For example, we shall write
the Skolemized formula ∀x.P (x, s1(x)) as P (x, s1(x)), and understand that the former is meant when we use the
latter. We do, of course, need to be able to distinguish between (Skolem) constants and variables.

What remains is a quantifier-free expression involving primitive predicates and the logical connectives ¬, ∨ and
∧. Next, we will push the logical negations inward, so that negation may only be applied to lone predicates. To do
this, we use the following transformation rules:

¬(A ∧B) = ¬A ∨ ¬B
¬(A ∨B) = ¬A ∧ ¬B

¬¬A = A

Since we have pushed the negations all the way down to individual predicates, we may consider them to be part
of the predicates and ignore them for the moment. We shall call an occurrence of a predicate negated if it has a
logical negation operator applied to it.

We now have a formula consisting of (possibly negated) predicates that have been combined using ∧ and ∨. We
may distribute ∨ over ∧ using the following rule:

A ∨ (B ∧ C) = (A ∨B) ∧ (A ∨ C)

That rule is commutative, since ∨ is commutative. Putting this all together, we can convert a formula to what’s
called conjunctive normal form (CNF), in which the formula is written as a set of clauses, connected by ∧, and each
clause is a set of (possibly negated) predicates, connected by ∨. For example, the formula

(P (x) ∨Q(x) ∨R(y, z)) ∧ P (y) ∧ (S(z) ∨Q(z))

is in CNF.

Since conjunction is commutative and associative, we may dispense with the conjunctions and simply view a
formula as a set of clauses; for example, we may view the example from the previous paragraph as the set

{P (x) ∨Q(x) ∨R(y, z), P (y), S(z) ∨Q(z)}

Each clause is a disjunction of (possibly negated) predicates. Since disjunction is commutative and associative,
we may reorder the predicates so that the unnegated predicates occur first and the negated predicates occur last.
Thus, a clause has the form

P1 ∨ · · · ∨ Pj ∨ ¬Pj+1 ∨ · · · ∨ ¬Pn

After applying deMorgan’s law1, we can collect the negations and convert the clause to the form

P1 ∨ · · · ∨ Pj ∨ ¬(Pj+1 ∧ · · · ∧ Pn)

We can also reintroduce implication and convert the clause to the form

(Pj+1 ∧ · · · ∧ Pn) → (P1 ∨ · · · ∨ Pj)

Finally, we reverse the formula and introduce the symbol :- to replace (and reverse) →, obtaining

(P1 ∨ · · · ∨ Pj):-(Pj+1 ∧ · · · ∧ Pn)

Thus, we can express any formula in our predicate language as a set of clauses, where each clause is a single
implication relating a conjunction to a disjunction. We call this clausal form. The disjunction P1∨· · ·∨Pj is known
as the head of the clause, and the conjunction Pj+1 ∧ · · · ∧ Pn is called the body of the clause. The meaning of the
clause is that if the body of the clause is true, then the head of the clause is true.

1¬(A ∧B) = ¬A ∨ ¬B
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The major advantage of clausal form is that it admits a particularly simple method of inference known as
resolution, which we may express by the following Post rule2:

(P1 ∨ · · · ∨ Pi ∨R):-(Pi+1 ∧ · · · ∧ Pm) (Q1 ∨ · · · ∨Qj):-(R ∧Qj+1 ∧ · · · ∧Qn)

(P1 ∨ · · · ∨ Pi ∨Q1 ∨ · · · ∨Qj):-(Pi+1 ∧ · · · ∧ Pm ∧Qj+1 ∧ · · · ∧Qn)

That is, you can split an arbitrarily long clause in two around a new predicate symbol R: if the first part of the
body is true, then either the first part of the head is true, or something from the rest of the head is true, represented
by R. If the second part of the body is true or, by way of R, the first part of the body was true but the first part
of the head was not, then something from the second part of the head is true. We can repeat this process as often
as we like until we’re left with single queries.

Resolution has the important property that if a set of clauses is logically inconsistent (i.e. cannot be satisfied),
then resolution will be able to derive a contradiction, denoted by the empty clause, :-. Conversely, if resolution is
able to derive :-, then the set of clauses is inconsistent. Thus, to determine whether the set of clauses {C1, · · · , Cn}
implies clause D, we need only show, by resolution, that the set of clauses {C1, · · · , Cn,¬D} is inconsistent (i.e.
that it can derive :-).

We shall concern ourselves primarily with a particular kind of clause, known as a Horn clause, defined as follows:

Definition 1. A Horn clause is a clause whose head contains at most one predicate. A headed Horn clause is a Horn
clause whose head contains exactly one predicate. A headless Horn clause is a Horn clause whose head contains no
predicates.

Since the head is a disjunction of results of an implication, and the body is a conjunction of premises of an
implication, a headed horn clause means “if all of these facts are true, then this one fact is true”. A headless horn
clause implies nothing, so it’s simply a query: it either is true or it is not. Horn clauses may also have no body, in
which case they are simply a declaration of a fact. A body-less horn clause is written without :-.

As it happens, Horn clauses are sufficient to express any computable function. Further, we may express any
computable function as a set of Horn clauses with exactly one headless Horn clause. The headless Horn clause
represents the “query”, and has the form :- P1 ∧ · · · ∧ Pn . By using resolution, coupled with unification for
matching, we may decide whether the query represented by the headless Horn clause may be satisfied, and if it can,
which substitutions must be applied to the variables in the query in order to satisfy the clauses. This is the essence
of logic programming.

2 Introduction to Prolog

Prolog is by far the most famous logic programming language, because logic programming languages are usually
created to fill particular niches or solve particular problems, and very few (other than Prolog) try to be general-
purpose. It was invented around 1970 at the University of Marseilles. The name ‘Prolog’ comes from Programmation
en Logique.

Prolog programs have three major components: facts, rules, and queries. Facts and rules are entered into a
database (in the form of a Prolog file) before computation. Queries are entered interactively, and are the means by
which Prolog programs are “run”.

Example 1. The following is an example of a fact in Prolog:
cogito(descartes).

This fact establishes a predicate “cogito” of arity 1 (that is, the predicate “cogito” takes a single argument),
usually denoted cogito/1. The token cogito is known as the functor. Notice the facts in Prolog end with a period

2The Post rule for resolution as stated requires that a predicate R be present on the left-hand side of one clause and on the right-hand
side of the other. In reality, these occurrences need not be identical; they only need to “match” in the sense of being unifiable according
to Robinson’s unification algorithm. The MGU of the two occurrences is then applied throughout the clause in the conclusion of the
rule. As we will cover unification in detail in later sections, we will omit discussion of it here in the name of brevity.
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(.). The token descartes represents a symbolic constant that satisfies the predicate cogito/1. That is, when the
predicate cogito/1 is supplied with the argument descartes, the result is true.

Interpretation of the meaning of a predicate and its arguments is left to the programmer. In the example above,
a reasonable interpretation might be “Descartes thinks” (Descartes cogitat).

We may use queries to retrieve from the database the information stored in facts. Consider the following queries:
?- cogito(descartes).
Yes

?- cogito(aristotle).
No

In the first query, we ask the database whether the assertion cogito(descartes) can be verified. Prolog answers
with Yes, since the fact cogito(descartes) occurs in the database. When we query cogito(aristotle) (presumably
asking whether Aristotle thinks), Prolog responds with No, as this assertion cannot be deduced from the database,
which currently contains only the fact cogito(descartes).

A database consisting only of facts is generally of little interest, as the amount of information it can provide is
limited by the number of facts present. A Prolog database will usually also contain a number of rules, by which
new facts may be deduced from existing facts.

Example 2. The following is an example of a rule in Prolog:
sum(X) :- cogito(X).

Reversing this to more conventional predicate logic, it can be read as

∀X.(cogito(X) → sum(X))

This rule establishes a predicate sum/1. The token X is a variable, and is universally quantified. Variables in
Prolog must begin with a capital letter. All other identifiers must begin with a lowercase letter. A rule is essentially
a Horn clause: the rule sum(X) :- cogito(X) states that for all X, sum(X) is satisfied whenever cogito(X) is satisfied.
That is, cogito, ergo sum: I think, therefore I am.

Aside: Technically this should be “cogitat, ergo sit”, they think therefore they are, but let’s not get distracted
by Latin inflection, or by the fact that putting this philosophical observation in the third person nullifies it.

We may now issue queries containing our new predicate, sum/1, to the database:
?- sum(descartes).
Yes

?- sum(aristotle).
No

As expected, the query sum(descartes) succeeds and the query sum(aristotle) fails. The former can be deduced
from the fact cogito(descartes); the latter cannot be deduced.

Queries may also contain variables. If the query succeeds, then Prolog reports a satisfying assignment for each
variable in the query. For example, we may query the predicate sum/1 as follows:
?- sum(X).
X = descartes

When a query contains variables, it is possible for more than one instantiation of the variables to satisfy the query.
For example, if we add the fact cogito(aristotle) to the end of our database, then the query ?- sum(X). will have
two solutions; namely, X = descartes and X = aristotle. Prolog returns the first solution it finds in the database
(X = descartes) and then waits for the user to press a key. If we press ;, then Prolog will return the next solution
it finds in the database, or No, if none remain. If we press Enter, Prolog abandons the computation and returns to
the interactive prompt. Thus, querying a Prolog database is—or at least can be—an interactive process.
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A Prolog query is a headless Horn clause. Thus, just as a Horn clause may have a conjunction of several
predicates in its body, so may a Prolog query. For example, suppose we add the following fact to the end of our
database:
philosopher(descartes).

Suppose now that we issue the following query:
?- cogito(X), philosopher(X).

This query is satisfied by only those values of X satisfying both cogito(X) and philosopher(X). Thus, in this case,
the only answer returned by Prolog is
X = descartes

Of course, everyone who thinks is a philosopher in their own way, so we may add the following clause to our
database:
philosopher(X) :- cogito(X).

And if we query philosopher(X) now, we get that both descartes and aristotle are philosophers. Interestingly,
the fact philosopher(descartes) is established in two ways: he is a philosopher because he is a thinker, but we
have also stated as a plain fact that he is a philosopher. These two ways of stating clauses do not conflict with each
other, even if they imply the same result.

3 Prolog Data Structures

The Prolog programming language shares a feature common in untyped functional languages, in particular Lisp and
Scheme, known as uniformity: Prolog code and Prolog data are identical in appearance. Data structures in Prolog
are known simply as structures, and consist of a functor, followed by zero or more components. The following is an
example of a Prolog structure:
book(greatExpectations, dickens)

The functor is book, and the components are greatExpectations and dickens, presumably representing the title
and author. Just like predicates, interpretation of the meaning of structures is entirely up to the programmer;
you must be consistent, and document your structures well, for book(greatExpectations, dickens) to have any
meaning. If we place the functor as a fact in and of itself, it is the same functor as we used before: this is actually
a declaration that book(greatExpectations, dickens) is a fact. We will make structures distinct from facts by
contextualizing them momentarily.

Prolog is an untyped language; hence there is no need to “declare” structures or to use them in a uniform way.
In addition to the structure illustrated above, we may also use the following structures in the same program:
book(greatExpectations)
book(great,expectations,charles,dickens)
book(greatExpectations,author(dickens,charles))
book

Note that a nullary structure (e.g. book above) is called an atom, and is, in fact, a symbol. Also notice from
the third example above that structures may be nested.

We see, then, that structures have exactly the same general appearance as predicates. We distinguish one from
the other by context. Structures may only appear inside predicates, but predicates cannot usually appear inside
other predicates. Consider the following Prolog fact:
owns(jean, book(greatExpectations, dickens)).

Here, owns/2 is not nested inside of anything else, thus it is a predicate. On the other hand, book/2 is nested
inside of owns/2, thus it is a structure. jean, greatExpectations, dickens, and, from before, descartes and aristotle
are also structures, namely nullary structures (atoms). Given this fact, we may now issue the following queries:
?- owns(jean,X).
X = book(greatExpectations, dickens)
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?- owns(X, book(greatExpectations, dickens)).
X = jean

?- owns(jean, book(greatExpectations, X)).
X = dickens

?- owns(X, book(Y, dickens)).
X = jean, Y = greatExpectations

In Prolog, it is not valid to use a variable for the name of a functor, and thus the following query is not valid:
?- owns(jean, X(greatExpectations, dickens)).

In addition to structures, Prolog supports numbers and lists. Numbers basically work as atoms, but we will
discuss further uses of atoms soon.

Lists in Prolog are enclosed in square brackets, and their elements separated by commas. For example,
[10, 20, 30]

represents the list consisting of 10, followed by 20, followed by 30. The empty list is written as []. Prolog’s “cons”
operator is the vertical bar, |. The expression [X|Y] denotes the list whose elements consist of X, followed by the
elements of Y (Y is assumed to be a list). For example, the list [10, 20, 30] may also be written [10 | [20, 30]].
We may also write any finite number of list elements before the |. For example, [10,20,30] can also be written as
[10, 20 | [30]] and as [10, 20, 30|[]]. This flexible cons syntax allows us to specify queries such as [10, 20 |
X], assigning variables to only part of a list. Note that lists offer no power that structures do not—you could always
define your own lists with a pair/2 structure and nil atom, as in functional languages—but Prolog interpreters can
usually optimize lists written with the standard Prolog syntax.

4 Unification and Search

In general, logic programming is an exercise in theorem proving. Given a set of clauses, we use resolution to prove
them consistent or inconsistent, and use the example of consistency or proof of inconsistency to answer a query.
Hence, logic programming language interpreters behave much like theorem-proving software.

In the abstract, given a set of clauses, we can use resolution to derive an inconsistency by combining clauses as
we see fit. In other words, there is no fixed sequence of alternatives to try, and we are free to rely on our intuition
in our search for a derivation of the empty clause.

However, in real programming tasks, we often prize predictable behavior, so that we may make assertions about
the properties of programs. For this reason, logic programming languages take a deterministic approach to the
resolution problem, and in the case of Prolog, the deterministic order is defined as part of the language.

Effective Prolog programming requires that we understand the mechanisms by which Prolog answers queries.
We discuss those mechanisms in this section.

Execution of Prolog programs is based on two principles: unification, and depth-first search. Here, unification
refers to Robinson’s unification algorithm, which we saw in the previous module. Depth-first search refers to the
strategy that Prolog employs when searching through the database. Essentially, Prolog attempts to satisfy a query
by searching the database from top to bottom, attempting to unify each fact, and the head of each rule, with the
query. If the query unifies with a fact, then Prolog returns the MGU, or simply “Yes” if the MGU is the empty
substitution (i.e. if there are no variables in the query). If a query unifies with the head of the rule, then Prolog
applies the MGU to the body of the rule and recursively attempts to satisfy the body of the rule. If the search
terminates without finding a match to the query, Prolog returns “No”.

This style of execution is so far removed from the step-wise execution we’ve seen before (the → morphism) that
it’s rarely useful to describe it in that way. Instead, we simply describe the unification and search algorithms; the
surprising result is that by implementing these algorithms, we have implemented a programming language, even
though no component seems to behave like an interpreter or compiler.

In the context of Prolog, unification is somewhat more complex than what we presented in Module 5. We present
the details here.
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Definition 2. (Unification Algorithm for Prolog Predicates)

Let the name R, possibly subscripted, range over relations (that is, predicates and structures).

Let O, possibly subscripted, range over objects (atoms).

Let X, possibly subscripted, range over variables.

Let T , possibly subscripted, range over terms (relations, objects, and variables).

Let S, possibly subscripted, range over substitutions.

Then the unification algorithm for Prolog predicates is as follows:

U(O1, O2) =

{
[] if O1 = O2

fail otherwise

U(O,R(T1, · · · , Tn)) = fail, n ≥ 1

U(X,T ) = [T/X]

U(R1(T1,1, · · · , T1,n), R2(T2,1, · · · , T2,m)) =



fail if R1 ̸= R2

fail if m ̸= n

S1S2 · · ·Sn where



S1 = U(T1,1, T2,1)

S2 = U(T1,2S1, T2,2S1)

· · ·
Sn = U(T1,n(S1S2 · · ·Sn−1),

T2,n(S1S2 · · ·Sn−1))

otherwise

U(T1, T2) = U(T2, T1)

The astute reader will notice that this formulation of unification omits the occurs-check. Recall that the occurs-
check would place a condition on the rule for U(X,T ), which would require that X not occur in T if T is not equal
to X. Indeed, omitting the occurs-check carries the same potential for trouble here as it does in the theory of
type assignment. Nevertheless, Prolog omits the occurs-check because it is expensive to perform. As a result, it is
possible to enter facts and queries into Prolog that would result in circular unification and cause Prolog to return
infinite answers. For example, suppose we place the following rule in the database:
equal(X, X).

Then suppose that we issue the following query:
?- equal(X, f(X)).
X = f(f(f(f(f(f(f(f(f(f(...))))))))))

The result is a nonsensical substitution in which X is assigned an expression of infinite length.

This is less of a problem for Prolog than it is for type checking, because while it’s critical for type checking to
terminate (i.e., the type judgment must be decidable), Prolog is a Turing-complete language, so there exist programs
that won’t terminate anyway. Nonetheless, in some cases, we might like Prolog to perform the occurs-check despite
its cost. In such cases, we may use the built-in predicate unify_with_occurs_check/2. Using this predicate, we
would rewrite our equality predicate as follows:
equal(X,Y) :- unify_with_occurs_check(X,Y).

Unification is the mechanism by which Prolog matches queries against facts and rules in the database. To
complete our understanding of Prolog’s execution model, we now discuss the strategy by which Prolog searches the
database for matches.

When attempting to answer a query, Prolog always searches the database from the top down. Prolog attempts
to satisfy the predicates in a query one at a time, starting from the left and working to the right. If a predicate in
the query matches the head of the rule, then the body of the rule is added to the front of the list of predicates to
be satisfied (remember that :- is implication in reverse!), and Prolog recursively tries to satisfy the new query. In
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this way, Prolog’s search strategy is based on depth-first search. When adding predicates in this way, because you
may have other predicates with similar variable names already in the list of predicates to be resolved, it may be
necessary to rename variables, similarly to while substituting in λ-applications, to avoid pairs of unrelated variables
which have the same name being interpreted as the same variable.

Example 3. consider the following database:
1 p(X) :- q(X), r(X).
2 q(X) :- s(X), t(X).
3 s(a).
4 s(b).
5 s(c).
6 t(b).
7 t(c).
8 r(c).

Suppose that we then enter the following query:
?- p(X).

To satisfy this query, Prolog searches the database for a fact, or the head of a rule, that unifies with p(X).
The first (indeed, the only) match is the first rule, p(X) :- q(X),r(X).; the MGU is the empty substitution. Thus,
Prolog replaces p(X) in the query with q(X), r(X) and attempts to answer the new query. Prolog searches the
database for a match for q(X), and finds the rule q(X) :- s(X), t(X). Thus, it replaces q(X) with s(X), t(X) in
the query; the query becomes s(X), t(X), r(X), and Prolog attempts to satisfy s(X). The first match is the rule
s(a); the MGU is [a/X]. Prolog applies the MGU to the remainder of the query and attempts to satisfy the query
t(a), r(a). As there is no match for t(a) in the database, the current answer fails, and Prolog searches for another
answer to s(X). The second match is s(b). with MGU [b/X]. Prolog applies the MGU and then attempts to satisfy
t(b), r(b). There is a match for t(b) in the database, but not for r(b), and so this answer fails as well. Thus,
Prolog backtracks and tries the third and final answer for s(X), namely s(c), with MGU [c/X]. Prolog applies the
MGU and tries to satisfy t(c), r(c). As both of these facts occur in the database, Prolog has found a successful
match and returns the MGU, X = c.

Alternatively, this search with backtracking can be shown with indentation:
p(X)
q(X), r(X)
s(X), t(X), r(X)
s(a), t(X), r(X) [a/X]
t(a), r(a)
fail

s(b), t(X), r(X) [b/X]
t(b), r(b)
r(b)
fail

s(c), t(X), r(X) [c/X]
t(c), r(c)
r(c)
solution: X=c

We can best illustrate Prolog’s backtracking search strategy using a structure known as a tree of choices [3].
The following three examples were originally presented by Cohen [4].

Example 4. Suppose we have the following simple database:
1 p :- q, r, s.
2 p :- t, u.
3 q :- u.
4 t.
5 u.
6 p :- u.

Given this database, we may represent the query ?- p, t. as the tree in Figure 1.

Each internal node in the tree represents the current query being evaluated. Every internal node has exactly six
children, one for each entry in the database. If an entry in the database matches the first predicate in the query,
then the query is updated and evaluated in the subtree with the same number as the position of the matching entry

CS442: Module 6: Logic Programming 10



p, t

1 2 3 4 5 6

q, r, s, t t, u, t u, t

1 2 3 4 5 6

u, r, s, t

1 2 3 4 5 6

r, s, t

1 2 3 4 5 6

1 2 3 4 5 6

u, t

1 2 3 4 5 6

t

1 2 3 4 5 6

Yes

1 2 3 4 5 6

t

1 2 3 4 5 6

Yes

Figure 1: A Prolog search tree. Note that the facts
are referred by the line number in which they ap-
pear.

p, t

1 2 3 4 5 6

q, r, s, t t, u, t u, p, t

1 2 3 4 5 6

u, r, s, t

1 2 3 4 5 6

r, s, t

1 2 3 4 5 6

1 2 3 4 5 6

u, t

1 2 3 4 5 6

t

1 2 3 4 5 6

Yes

1 2 3 4 5 6

p, t

Figure 2: An infinite search tree with a successful
match.

in the database. If the query is exhausted, we have found a successful match, and output “Yes”. Thus, Prolog’s
search strategy is essentially a depth-first traversal of this tree.

Prolog’s search is not guaranteed to terminate. Indeed, since Horn clauses are equivalent to computable functions,
whether Prolog does or does not terminate is the halting problem.

Example 5. Consider the following database, which is identical to the previous database, except for a change in
the last entry:

1 p :- q, r, s.
2 p :- t, u.
3 q :- u.
4 t.
5 u.
6 p :- u, p.

The tree corresponding to the query ?- p, t in this database is illustrated in Figure 2.

The addition of the predicate p to the end of the database introduces recursion into the search. Now, when
Prolog matches the query against the rule p :- u, p, after elimination of u by rule 5, we obtain our original query
again. Hence, Prolog recursively answers the query ?- p, t again; since a success had previously been found, the
result is an infinite sequence of “Yes” answers.

The behaviour of the query ?- p, t is dependent upon the way in which the entries in the database. Suppose
we reorder the database as follows:

1 p :- u, p.
2 p :- q, r, s.
3 p :- t, u.
4 q :- u.
5 t.
6 u.

Here, we have simply moved the final entry to the top of the database. As a result, we obtain the search tree in
Figure 3.

In this tree, the infinite recursion appears first. Hence, when attempting to evaluate the query ?- p, t, Prolog
attempts to evaluate ?- u, p, t and then ?- p, t again. Thus, Prolog immediately gets caught in an infinite
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p, t

1 2 3 4 5 6

u, p, t q, r, s, t t, u, t

1 2 3 4 5 6

p, t

1 2 3 4 5 6

u, r, s, t

1 2 3 4 5 6

r, s, t

1 2 3 4 5 6

1 2 3 4 5 6

u, t

1 2 3 4 5 6

t

1 2 3 4 5 6

Yes (not reached)

Figure 3: An infinite search tree without a successful match.

evaluation sequence, before ever generating a successful match for the query. Thus, in this case, Prolog falls into
an “infinite loop” and never reaches the match indicated at the bottom of the tree.

5 Values and Operators in Prolog

The structures and lists we’ve already discussed are values in Prolog, but Prolog also supports numbers. Prolog
clauses may contain numbers, and operators over those numbers. Prolog’s arithmetic comparison operators are >,
<, >=, =<, is, =:= and =\=. The last two operators represent numeric equality and inequality, respectively. Note that
less-than-or-equal-to is =<, not the more common <=.

For instance, the following clause makes greaterThanTen(X) a fact when X is greater than ten:
greaterThanTen(X) :- X >= 10.

However, Prolog cannot search for facts about numbers in the same way that it can for structures. For instance, the
query ?- greaterThanTen(X). fails, because >= does not appear as a rule in the database to search; X must already
have a fixed value for X >= 10 to be verifiable. That is, Prolog cannot discover a substitution for a variable to make
a numerical comparison about numbers true, so some previous query needs to fix the variable to a value.

is and =:= are both numeric equality operators, differing only in how they treat integers as compared to
floating-point numbers. 1 =:= 1.0 is true, but 1 is 1.0 is false. is is more common, simply because floating-point
arithmetic is rare in Prolog in the first place. Prolog can unify using is, but only if one side has been fully resolved,
and the other side is just a variable. For instance, X is Y + Z is unifiable only if Y and Z have already been resolved;
if X and Y have already been resolved, it is of course mathematically trivial to discover the value of Z, but Prolog
cannot unify in this way. That is, Prolog allows U(X, n), where n is an arithmetic expression with no variables after
substitution.

In addition, Prolog has an = operator, which simply forces two values to unify. For instance, we could rewrite
equal above to:
equal(X, Y) :- X = Y.

Note that this is unification, which is distinct from numeric equality. If one of X or Y is a number, then X = Y only if
X is Y. But, if either is not a number, then X = Y is true if they’re structurally identical and X is Y is never true.
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Most versions of Prolog also support strings, but we will not discuss them here, as they’re no more powerful
than lists of character codes, which we can already build with lists and numbers. Strings are, of course, a bit more
practical than lists of character codes.

6 Programming in Prolog

In this section, we consider the task of writing real programs in Prolog. Whereas the languages we have considered
so far have been based on writing and combining functions, the only entities we may define in Prolog are predicates,
which are based on facts and rules.

To mimic the behavior of a function with a predicate, we create a predicate with arguments for each of the
arguments of the function, as well as the result(s). We then use facts and rules to describe the characteristics of
the output with respect to the input. For example, suppose we wish to mimic the behaviour of the function f with
arguments a and b and result c. Then we would write a predicate f(a, b, c) and proceed to write facts and rules
relating c to a and b. So, rather than saying that f(a, b) = c, which is meaningless since all predicates are boolean,
we say that f relates a, b, and c.

We first consider the problem of appending one list to another. To append lists, we will invent a ternary predicate
append/3, which we interpret as follows: append(X, Y, Z) means that Z is the result of appending Y to X. It remains
to relate X, Y, and Z, as follows:
append([], Y, Y).
append([X|T], Y, [X|Z]) :- append(T, Y, Z).

From the first rule, we see that the result of appending any list after the empty list is the list itself. From the
second rule, we see that, if Z is the result of appending Y to T, then [X|Z] is the result of appending Y to [X|T]. We
may then invoke append as follows:
?- append([1,2,3], [4,5,6], R).
R = [1,2,3,4,5,6]

It’s worth taking a moment to consider the style of programming here. We have not stated an algorithm for
appending lists per se; rather, we have stated two facts:

• That the concatenation of an empty list and any list is the second list, and

• that if Z is the concatenation of T and Y, then [X|Z] is the concatenation of [X|T] and Y.

By reversing that, we can discover an algorithm for concatenating lists, by prepending one element at a time, but
that algorithm is just the implied combination of these two rules and Prolog’s search algorithm.

Exercise 1. Using the search algorithm described in Section 4 and the definition of append/3 above, follow through
the steps to resolve append([1, 2, 3], [4, 5, 6], R).

Next, we will write a Prolog predicate to reverse a list. Using append/3 above, we may implement a predicate
reverse/2 as follows:
reverse([], []).
reverse([X|Y], R) :- reverse(Y, Z), append(Z, [X], R).

Here, the reversal of the empty list is the empty list, and the reversal of any other list is the reversal of the tail
of the list, followed by the head of the list. We may also implement reverse using an accumulator, as follows:
reverse(X, Y) :- reverse2(X, [], Y).
reverse2([], Y, Y).
reverse2([X|T], Y, R) :- reverse2(T, [X|Y], R).

Here, we repeatedly push list elements from the first argument of reverse2 onto the second argument of reverse2.
We continue until the first argument is empty, at which point the second argument contains the answer.

Again, what we’ve actually done is state some facts about lists, and it is Prolog’s search algorithm that actually
reverses lists. In the case of reverse2, it’s unclear what fact reverse2 even corresponds to, since one would not
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usually describe reversing a list in terms of an accumulator; the hallmark of an effective logic programmer is the
ability to discover or invent these clauses that cause computation to proceed, though they don’t correspond directly
to any particular real fact.

Exercise 2. Using the search algorithm, follow through the steps to resolve reverse([1, 2, 3], R).

7 Control Flow and the Cut

Consider now the problem of determining whether an object is a member of a list. To answer this question, we
might implement a predicate member/2, as follows:
member(X, [X|_]).
member(X, [_|Y]) :- member(X,Y).

Note that the underscore, _, is a “wildcard” placeholder, indicating that the value occurring at the underscore
is not being used.

A related problem is that of lookup in association lists. Under the assumption that an association list stores
pairs of the form pair(X,Y)3, we might implement lookup/3 as follows:
lookup(X, [pair(X,R)|_], R).
lookup(X, [_|Y], R) :- lookup(X, Y, R).

Notice that, in the cases of both member and lookup, we do not need to explicitly handle the empty list. Since
the empty list cannot match a pattern of the form [X|Y], invoking member or lookup with a second argument equal
to the empty list will simply cause Prolog to fall through both clauses and return “No”.

While both member and lookup work as advertised, their behavior becomes somewhat dubious if the list passed as
the second argument contains duplicate entries. If the element X occurs in the list Y multiple times, then the query
?- member(X,Y). will return “Yes” once for each time it occurs. Similarly, if the pair pair(X, _) occurs multiple
times in the list, then lookup will return multiple results. Depending on its intended use, this behavior of lookup
may be appropriate, but if our association list is meant to be a map, it is incorrect. Similarly, in the case of member,
we are generally interested only in whether the element X occurs in the list Y; if it does, a single “Yes” will suffice.

In fact, we’ve seen this problem before: the list of pairs we’ve made here is exactly equivalent in structure to
a type environment, Γ, and if we were using Prolog to check types, then we would want lookup to have the same
ordering constraint was we discussed for type environments. Ideally, lookup(X, Γ, Z) should be exactly the same
relation as Γ(X) = Z.

To produce the expected behavior, we need some facility by which we can affect Prolog’s search; that is, we need
a control-flow facility. However, given the tree search paradigm by which Prolog operates, conventional control flow
constructs (loops, conditionals, exceptions, etc.) do not seem appropriate, or even possible to express.

Aside: It would also be possible to accomplish this with a “not equal” predicate, but as it turns out, the
solution we’re implementing here is more powerful!

In Prolog, we alter control flow via a construct known as the cut, which is denoted by the predicate !. The effect
of the cut is to commit Prolog to choices made so far in the search, thus pruning the search tree. Its behavior is
best illustrated by example.

Example 6. Suppose we have the following database:
1 a :- b, !, c.
2 b :- d.
3 b.
4 d.
5 c :- e.
6 c.
7 e.

3And remember, since structures can have any form we want, the use of pair to represent a pair is just for our own clarity. We
could just as well name it association, or foo.
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f

1 2 3 4 5 6 7 8 9 10

a Yes

1 2 3 4 5 6 7 8 9 10

b, !, c d

1 2 3 4 5 6 7 8 9 10

d, !, c c

1 2 3 4 5 6 7 8 9 10

c

1 2 3 4 5 6 7 8 9 10

e Yes

1 2 3 4 5 6 7 8 9 10

Yes

1 2 3 4 5 6 7 8 9 10

e Yes (not reached)

1 2 3 4 5 6 7 8 9 10

Yes (not reached)

1 2 3 4 5 6 7 8 9 10

Yes (not reached)

Figure 4: The cut. Dotted lines indicate paths which are not explored.

8 a :- d.
9 f :- a.

10 f.

Then consider the query ?- f. The corresponding search tree is illustrated in Figure 4.

When Prolog attempts to satisfy a rule containing the cut, it first attempts to satisfy all of the predicates
occurring before the cut. If all the predicates before the cut are satisfied when it reaches the cut, Prolog commits
to all choices made to satisfy the predicates to the left of the cut. Prolog also commits to the choice of rule made
to satisfy the predicate on the left hand side of the rule. For example, when Prolog attempts to satisfy the rule
a :- b, !, c, it first attempts to satisfy b. If it succeeds, then Prolog commits to the first answer for b. Further,
Prolog does not consider any other rules that might produce a solution for a. Visually, Prolog prunes the search
tree at each subtree in which the query to be satisfied contains a cut. Further, if the query to be satisfied in a
subtree contains a cut, then Prolog prunes its parent tree as well. In Figure 4, portions of the search tree that are
pruned by the cut are indicated with dashed lines. Notice that three potential “Yes” answers are eliminated by the
cut. Also note that, since the rule a :- b, !, c contains a cut, both the subtrees for b, !, c and for a are pruned.
Since d, !, c contains a cut, both the subtrees for d, !, c and for b, !, c (which was already pruned) are pruned.

In general, there are three main uses of the cut:
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1. to confirm that the “correct” match has been found;

2. to indicate “exceptions to the rule”;

3. to prevent needless extra computation.

To illustrate the first use of the cut, let us consider the creation of a predicate sum_to/2, in which sum_to(N, R)
binds R to the sum 1 + 2 + · · ·+ N. We might define this predicate as follows:
sum_to(1, 1).
sum_to(N, R) :- M is N - 1, sum_to(M, P), R is P + N.

This formulation of sum_to will compute the correct value of R given N, but if the user presses ; after Prolog
returns the value of R, Prolog goes into an infinite loop, searching for other solutions. The reason for this behavior
is that the constant 1 matches both the pattern 1 in the first rule and the pattern N in the second rule. Hence, when
evaluating ?- sum_to(1, R), Prolog actually matches the query against both rules, even though only the first was
intended. When Prolog matches ?- sum_to(1, R) to the second rule, the result is an infinite recursion. Further,
since the recursion ultimately reduces every query of sum_to to a query of ?- sum_to(1, R), every query of sum_to
produces an infinite loop after the first answer.

To remedy this problem, we may use the cut to tell Prolog that the first rule is the “correct” rule to use when
the first argument is 1:
sum_to(1, 1) :- !.
sum_to(N, R) :- M is N - 1, sum_to(M, P), R is P + N.

In this case, when a query ?- sum_to(1, R) matches the first rule, the cut prevents it from also matching the
second rule. In this way, we prevent infinite recursion, and sum_to only returns a single, correct answer.

Our motivating example of lookup/3 also fits this case, if we wish to look up only the first match. For that, we
can rewrite lookup like so:
lookup(X, [pair(X,Y)|_], Y) :- !.
lookup(X, [_|Z], R) :- lookup(X, Z, R).

If the first case matches, so a pair is found, then it will only return that value. The cut will prevent it from trying
to discover further solutions.

To illustrate the second use of the cut (exceptions), suppose that we have the following database:
smallMammal(cat).
smallMammal(rabbit).
goodPet(X) :- smallMammal(X).

In this database, we assert that cats and rabbits are small mammals, and that small mammals make good pets.
Suppose now that we add the following fact to the database:
smallMammal(porcupine).

Working under the assumption that porcupines do not make good pets, we now have an exception to the rule
that small mammals make good pets. To indicate this exceptional condition, we make use of a special predicate,
fail, which always fails. On its own, fail is of limited use, as no rule containing fail can ever be satisfied. However,
when combined with the cut, fail may be used to cause Prolog to return “No” when exceptional cases arise:

1 smallMammal(cat).
2 smallMammal(rabbit).
3 smallMammal(porcupine).
4 goodPet(X) :- X = porcupine, !, fail.
5 goodPet(X) :- smallMammal(X).

Since we know that = simply forces unification, this program may be written equivalently as follows:
1 smallMammal(cat).
2 smallMammal(rabbit).
3 smallMammal(porcupine).
4 goodPet(porcupine) :- !, fail.
5 goodPet(X) :- smallMammal(X).
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If we now issue the query ?- goodPet(porcupine)., Prolog will match the query against the first rule for goodPet
/1. Since it matches, Prolog then processes the cut, which commits it to choosing the first rule. Finally Prolog
processes the predicate fail, which makes the rule fail. Here, Prolog is not permitted to backtrack and try the
second rule for goodPet/1, since it has processed the cut. Hence, the query ?- goodPet(porcupine). results in
an answer of “No”. Note that it’s critical that the cut come before the fail, because Prolog will not proceed to
attempting to satisfy any other conditions once one has failed, so a cut (or anything else) after a fail will never be
reached.

On the other hand, if we issue either the query ?- goodPet(cat). or ?- goodPet(rabbit)., then Prolog will not
be able to match the query to the first rule for goodPet/1, because neither cat nor rabbit unifies with porcupine.
Thus, Prolog does not process the cut; instead, it backtracks and tries the second rule, attempting to satisfy ?-
smallMammal(cat). and ?- smallMammal(rabbit)., respectively. In both cases, Prolog succeeds and returns “Yes”.

Finally, the cut may be used to prevent needless computation. Our motivating example of member/2 demonstrates
this use of the cut: we are interested only whether an object occurs in a list at all, and don’t care if it appears
multiple times.

Using the cut, we may reimplement member/2 as follows:
member(X, [X|_]) :- !.
member(X, [_|Y]) :- member(X, Y).

Under this reformulated definition, Prolog aborts the search after the first match it finds, so the needless extra
computation required to find subsequent matches is eliminated.

8 Negation

Even though negation is not required for programming with Horn clauses to be Turing-complete, Prolog provides
a negation operator as a matter of convenience. Prolog’s negation operator is the meta-predicate4 not/1. Given a
predicate P, the goal not(P) attempts to satisfy P, and returns success if and only if the attempt to satisfy P failed.
Any bindings of variables to values that occurred during the evaluation of P are erased by the application of not.
A simple example of the use of not is a rule stating that a mineral is a thing that is not animal or vegetable:
mineral(X) :- thing(X), not(animal(X)), not(vegetable(X)).

Here, the rule defining mineral/1 succeeds when thing/1 succeeds and both animal(X) and vegetable(X) fail.

Prolog programmers may make other meta-predicates by use of the call meta-predicate, which simply treats
its argument as a goal and attempts to solve it. For instance, the id meta-predicate is:
id(X) :- call(X).

With this definition, if sum(descartes) is true, then id(sum(descartes)) is also true, as is id(id(sum(descartes))),
etc.

call is rarely used, but with it, the cut, and fail, we can define not directly in Prolog as follows:
not(X) :- call(X), !, fail.
not(X).

not attempts to satisfy its argument. If it succeeds, it forces Prolog to return failure; otherwise, if the argument
cannot be satisfied, then the first rule fails, and Prolog tries the second rule. As the second rule always succeeds,
Prolog returns “Yes”.

Even though not tends to capture the behavior we generally associate with logical negation, it is not a true
logical negation operator. Consider the following database:
animal(dog).
vegetable(carrot).
both(X) :- not(not(animal(X))), vegetable(X).

If not were a true logical negation, then we could equivalently define both/1 above as
4not/1 is called a meta-predicate because its argument is Prolog code in the form of a predicate, rather than data.
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both(X) :- animal(X), vegetable(X).

and expect the query ?- both(X). to return “No”, as no symbol in the database is both an animal and a vegetable.
However, when we use the original formulation of both/1, with the double negation, the query ?- both(X). returns
the answer X = carrot. To see this, consider how Prolog attempts to evaluate the query. It first needs to satisfy
the query ?- animal(X)., which it does by setting X equal to dog. Thus, the goal not(animal(X)) fails, since an
answer was found. But, a failed query does not generate a substitution, so X is uninstantiated. Since the goal
not(animal(X)) fails, the goal not(not(animal(X))) succeeds, but X remains uninstantiated. Hence, Prolog now
attempts to satisfy the query vegetable(X). Since X is uninstantiated, Prolog is free to set X equal to carrot, thus
satisfying the query.

Reversing the order of the predicates corrects the behavior, since X will have a substitution when the not is
investigated:
both(X) :- vegetable(X), not(not(animal(X))).

Thus, it is important to be sure which variables will have already been substituted when not is used.

Because not does not have true logical negation semantics, some newer Prolog implementations prefer to use
the name \+ (called “cannot be proven”) for this operator instead.

9 Example: Sorting a List

In this section we present more examples of Prolog programming through the extended example of sorting a list.
We shall focus our efforts on a naïve, purely declarative notion of sorting:
sort(X, Y) :- permute(X, Y), sorted(Y), !.

That is, Y is a sorted reordering of X if Y is a reordering (or permutation) of X, and Y is sorted.

This implementation of sort/2 is based on the notion of generators and tests. The generator, permute/2,
generates all permutations of the list Y (albeit, again, simply by stating the permutations as facts; we never write
algorithms directly in Prolog). The test, sorted/1, determines whether a particular permutation is sorted. In this
way, we reject all unsorted permutations of X. Because there may be several sorted permutations of X (if the same
value appears multiple times in the list), and only one is relevant, we use a cut to terminate our search once we
have found one sorted permutation of X.

The implementation of sorted/1 is quite easy, and is outlined below:
sorted([]).
sorted([_]).
sorted([X,Y|Z]) :- X =< Y, sorted([Y|Z]).

In words, empty and singleton lists are sorted; any other list is sorted if its first element is less than or equal to
its second, and its tail is sorted.

We give two implementations of permute/2. In our first implementation, we create a generator to_X/2, where
to_X(N, R) is taken to mean “R is an element of the set {0, 1, · · · ,N− 1}”. The implementation of to_X is outlined
below:
to_X(X, _) :- X =< 0, !, fail.
to_X(_, 0).
to_X(X, R) :- X1 is X - 1, to_X(X1, M), R is M + 1.

Invocation of to_X yields the expected result:
?- to_X(2, R).
R = 0 ;
R = 1 ;
No

Mathematically, this is equivalent to
to_X(X, R) :- X => 1, X =< R - 1.
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but Prolog cannot discover resolutions for X and R with only these bounds.

Next we give a predicate for finding the length of a list:
length([], 0).
length([_|T] , R) :- length(T, Y), R is Y + 1.

Our intent is to use to_X to choose an element to remove from the list we wish to permute. To accomplish this
feat, we define a predicate select/4, where select(L, N, A, B) binds A to the N-th element of L, and binds B to L
with A removed:
select([H|T], 0, H, T) :- !.
select([H|T], N, A, [H|B]) :- N1 is N - 1, select(T, N1, A, B).

With select in place, we may now define permute as follows:
permute([], []) :- !.
permute(L, R) :- length(L, Len), to_X(Len, I), select(L, I, A, B), permute(B, BP), append([A], BP, R).

That is, to permute a list, we find its length, Len, and bind I to each integer in {0, · · · ,len − 1}. For each I,
we take the I-th element out of L and permute the remainder. Note how this style of stating facts has made the
“for each” completely implicit: since it is fact that to_X(Len, I) for each I < Len, Prolog can simply backtrack to
another resolution of to_X as many times as it needs to, behaving like a loop with no explicit loops or even recursion
specified. Finally, we put the I-th element at the front of the permuted remainder.

We can also write permute in a much shorter way:
permute([], []).
permute(L, [H|T]) :- append(U, [H|V], L), append(U, V, W), permute(W, T).

Here, we are using append as a generator. Rather than supply the arguments and retrieve a result, we supply the
result, L, to append. append then generates all lists whose concatenation is equal to L. We then capture an element
H from the middle of L, and permute the remainder, placing H at the front of the list.

With sorted/1 and permute/2 implemented, sort/2 now works, but as you can doubtless imagine, it is hilariously
inefficient. This naïve implementation of sort/2 will find a sorted list by checking every possible permutation, so
it takes O(n!) time where n is the length of the list, which is exponential. To sort things efficiently takes far more
thought.

10 Example 2: Merge-Sorting a List

To make our sort more efficient, let’s implement the classic merge-sort algorithm. Merge sort is a recursive algorithm:
to merge sort a list, we split it in half, recursively merge sort each half, and then merge the result. This requires
three sub-parts: dividing a list in half, merging two sorted lists, and merge sort itself. We will address them in that
order. Note that this example was inspired by but significantly changed from an example given in Roman Barták’s
On-Line Guide to Prolog Programming [1].

First, dividing a list. When implementing merge sort, one typically divides a list into the first n elements and
the last m elements, where n+m is the length of the list. However, any fair division works, and a style of division
that is much more easily expressed in Prolog is dividing a list into the elements with even and odd indices. We
express this with two mutually recursive predicates, divide/3 and divide2/3:

1 divide([], [], []).
2 divide([X|LI], [X|L1], L2) :- divide2(LI, L1, L2).
3

4 divide2([], [], []).
5 divide2([X|LI], L1, [X|L2]) :- divide(LI, L1, L2).

divide/3 declares that its first argument is divided into its second and third arguments if the first element of its first
argument is the first element of its second argument (L1), and the remainder are divided by divide2/3. divide2/3
is similar, with the only distinction being that it requires the first element to be in the last list, L2. In either case,
the division of an empty list is simply two empty lists. Consider the division of a simple list [1,2,3]:
divide([1, 2, 3], A, B)

CS442: Module 6: Logic Programming 19



divide2(LI, L1, L2) [1/X] [[2,3]/LI] [[X|L1]/A] [L2/B]
divide2([2,3], L1, L2)
divide(LI_, L1_, L2_) [2/X] [[3]/LI_] [L1_/L1] [[X|L2_]/L2]
divide([3], L1_, L2_)
divide2(LI_2, L1_2, L2_2) [3/X] [[]/LI_2] [[X|L1_2]/L1_] [L2_2/L2_]
divide2([], L1_2, L2_2)
L1_2 = [], L2_2 = []

By following the substitutions backwards, we can get that A = [1,3] and B = [2].

Next, we need to be able to merge sorted lists. First, let’s handle the base case: if we merge an empty list with
any list L, the result is L:
merge([],L,L) :- !.
merge(L,[],L).

We used the cut simply to avoid processing both cases when merging two empty lists. Now, we simply need cases
to merge two non-empty lists, by choosing the lesser element:
merge([X|T1],[Y|T2],[X|T]) :- X=<Y, merge(T1,[Y|T2],T).
merge([X|T1],[Y|T2],[Y|T]) :- X>Y, merge([X|T1],T2,T).

These rules say that the lists [X|T1] and [Y|T2] merge to [X|T] if X=<Y, and [Y|T] otherwise. T is the merger of the
remainder of the lists.

Finally, we use these two algorithms to implement merge sort. Merge sort’s base case is when the list is empty
or of length one, and in either of these cases, the list is trivially sorted:
merge_sort([], []) :- !.
merge_sort([X], [X]) :- !.

In both cases, we use the cut to make sure that the recursive case cannot apply. The merge sort algorithm itself is
the last case, and it is written as a division, two recursive merge sorts, and a merge, like so:

1 merge_sort(List,Sorted):-
2 divide(List,L1,L2),
3 merge_sort(L1,Sorted1), merge_sort(L2,Sorted2),
4 merge(Sorted1,Sorted2,Sorted),
5 !.

Once again, we use the cut to free Prolog of any need to search for alternative solutions; there is only one sorting
of a list.

Note that merge_sort always generates the same result as sort, but when Prolog’s search algorithm is applied to
it, it will usually find that result more quickly. This is why effective Prolog programming requires an understanding
of the search algorithm.

Exercise 3. Follow through the steps to resolve merge_sort([3, 1, 2], S).

11 Manipulating the Database

Prolog provides facilities by which we may programmatically alter the contents of the database. This is done
primarily via the predicates asserta/1, assertz/1, and retract/1.

The predicates asserta and assertz add a clause to the database. Given a clause X, asserta(X) adds X to the
beginning of the database, while assertz(X) adds X to the end of the database. Where a clause appears in the
database is, of course, important because of the well-specified resolution order of Prolog.

The predicate retract removes a clause from the database. Given a clause X, retract(X) removes the first clause
matching X from the database. If no clause matching X is found, then retract(X) fails.

Note that the effects of asserta, assertz, and retract are not undone by backtracking. Thus, if we wish to
undo the effects of asserta or assertz, we must do so explicitly, via a call to retract, and vice versa. Undoing
retract can be essentially impossible, since we can only add a clause to the beginning or the end of the database,
not the middle.
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Excessive use of asserta, assertz, and retract tends to lead to highly unreadable and difficult to understand
programs, and is discouraged.

12 Difference Lists

In Section 6, we created a predicate to reverse a list, as follows:
reverse([], []).
reverse([X|Y], R) :- reverse(Y, Z), append(Z, [X], R).

We also introduced a version of reverse based on accumulators, as follows:
reverse(X, Y) :- reverse2(X, [], Y).
reverse2([], Y, Y).
reverse2([X|T], Y, R) :- reverse2(T, [X|Y], R).

Even though, as declarative programmers, we would prefer not to worry about efficiency, when we compare these
two formulations of reverse/2, we cannot help but notice that the second formulation is more efficient. Assuming a
linear implementation of append/3, we see that the second formulation of reverse/2 requires only a linear number
of query evaluations, while the first formulation requires a quadratic number of query evaluations.

In general, the use of accumulators is closely related to the notion of tail recursion in functional programming, and
predicates based on accumulators are often more efficient than their counterparts without accumulators. However,
accumulators can pose problems of their own. Consider the following predicate, which is based on accumulators,
and whose purpose is to increment each element of a list:
incall(X, Y) :- incall2(X, [], Y).
incall2([], Y, Y).
incall2([X|T], Y, R) :- Z is X + 1, incall2(T, [Z|Y], R).

When we invoke incall/2, the result is as follows:
incall([1,2,3], Y).
Y = [4,3,2]

We see that incall/2 does indeed increment all of the elements of the list; however, the list returned by incall/2 is
the reverse of what we intended! It is reasonably clear why this happened: at each step of the execution, we simply
removed an element from the head of the input, incremented it, and placed it at the head of the accumulator.
Thus, elements occurring later in the input are pushed onto the accumulator later, and therefore occur earlier in
the accumulator list than elements which appeared before them in the input. The result is a list reversal.

To reap the benefits of programming with accumulators without the inconvenience imposed by the list reversals,
Prolog programmers use a technique known as difference lists, which we discuss in this section.

We may think of a difference list as a list with an uninstantiated tail. For example, by using difference lists we
would represent the list [1,2,3] as [1,2,3|X]. We may then use X as an argument to other computation. Effectively,
what we obtain through X is a “pointer to the tail” of the list, often called “the hole”. Predicates using difference lists
take as arguments both the head and the hole, with the expectation that the hole is still a variable while the head
is not. By instantiating X, we may add elements to the tail of the list. Further, if we instantiate X to a difference
list, the the result is still a difference list. This fact suggests the following implementation of append:
appendDL(List1, Hole1, List2, Hole2, List3, Hole3) :- Hole1 = List2, List3 = List1, Hole3 = Hole2.

Here, each difference list is represented by two parameters, List and Hole, representing the list and the hole at
its tail, respectively. The result is that the list represented by List3 and Hole3 is bound to the result of appending
the second list to the first. We may implement appendDL more succinctly as follows:
appendDL(List1, List2, List2, Hole2, List1, Hole2).

Our immediate observation is striking: this implementation of append runs in constant time! Since a caller had
to retain a reference, so to speak, to both the beginning and tail of the list, all Prolog needs to do is unify them,
with no extra step of walking through the list. We can then finalize the list by unifying the final hole with the
empty list, again in constant time. Appending linked lists is usually constant time in imperative languages, but
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this is the first constant-time append operation that we have encountered in this course. This fact alone suggests
that difference lists are indeed a valuable tool.

Consider now our motivating example of incrementing the elements of a list via accumulators. To keep our
code clean, we will represent a difference list by a structure with functor dl and components for the list and its
uninstantiated tail. Using difference lists, we implement incall as follows:
incall(X, Y) :- incall2(X, dl(Z, Z), dl(Y, [])).
incall2([], Y, Y).
incall2([X|T], dl(AL, [X1|AH]), R) :- X1 is X + 1, incall2(T, dl(AL, AH), R).

Here, we use a difference list as an accumulator, and as a placeholder for the result. When we invoke incall,
incall calls incall2 and sets the accumulator equal to the empty difference list (denoted dl(Z, Z), since an empty
list’s head is its tail). As incall2 traverses the list, it repeatedly replaces the hole in the accumulator with a
singleton difference list, representing the incremented head of the current list. When the input list is exhausted,
incall2 simply returns the accumulator. incall then fills the hole in the result with the empty list ([]), thus
converting the result to a normal list. Thus, when we invoke incall, as in the following:
?- incall([1,2,3], Y).

we get the desired result:
Y = [2,3,4]

Let’s go over that example in greater detail, by showing the steps of resolution. As there are no backtracking
steps in this example, we will simply show each step in order:
incall([1, 2, 3], Y)
incall2(X, dl(Z, Z), dl(Y, [])) [[1, 2, 3]/X]
incall2([1, 2, 3], dl(Z, Z), dl(Y, []))
X1 is X + 1, incall2(T, dl(AL, AH), R) [1/X] [[2, 3]/T] [Z/AL] [[X1|AH]/Z] [dl(Y, [])/R]
X1 is 1 + 1, incall2([2, 3], dl([X1|AH], AH), dl(Y, []))
incall2([2, 3], dl([X1|AH], AH), dl(Y, [])) [2/X1]
incall2([2, 3], dl([2|AH], AH), dl(Y, []))
X1 is X + 1, incall2(T, dl(AL, AH_), R) [2/X] [[3]/T] [[2|AH]/AL] [[X1|AH_]/AH] [dl(Y, [])/R]
X1 is 2 + 1, incall2([3], dl([2,X1|AH_], AH_), dl(Y, []))
incall2([3], dl([2,X1|AH_], AH_), dl(Y, [])) [3/X1]
incall2([3], dl([2,3|AH_], AH_), dl(Y, []))
X1 is X + 1, incall2(T, dl(AL, AH), R) [3/X] [[]/T] [[2,3|AH_]/AL] [[X1|AH]/AH_], [dl(Y, [])/R]
X1 is 3 + 1, incall2([], dl([2,3,X1|AH], AH), dl(Y, []))
incall2([], dl([2,3,X1|AH], AH), dl(Y, [])) [4/X1]
incall2([], dl([2,3,4|AH], AH), dl(Y, []))
(unify dl([2,3,4|AH], AH) and dl(Y, []))
Y = [2,3,4]

In this way, we see that we may use difference lists to write programs with accumulators, in which the accumu-
lators grow at the tail rather than at the head. For this reason, the result is not, as before, the reverse of what we
wanted.

13 Miscellany

To load a source file into Prolog, we use the predicate consult/1. A call to consult(X) loads the file “X.pl” into the
database. A convenient shorthand for consult(X). is simply [X]..

To access Prolog’s help facility, we issue the query ?- help(T)., where T is our desired help topic. To search the
help files, we issue the query ?- apropos(T), where T is our desired search term. Comments in Prolog begin with
% and extend to the end of the line. C-style comments, beginning with /* and ending with */, are also available.
To display data to the screen, we use Prolog’s display/1 predicate. For character data, we may also use put/1. To
print a newline to the screen, we use nl/0. In this way, Prolog programs can be made to behave like more traditional
programs. In fact, there are Prolog implementations with support for graphics!
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14 Query Programming and Datalog

A few of the words we used in this module may be familiar to you if you’ve studied databases. In particular, we call
the set of clauses a database, and call our predicates and structures relations. These terms are the same as are used
in relational databases, and are, in fact, used in exactly the same way. While meaning only to discuss programming
in predicate logic, we have accidentally stumbled into a larger paradigm: query programming.

Although logic programming and relational databases were developed independently, when their relationship was
discovered, attempts were made to describe a subset of Prolog which fit the use case of databases. In particular,
the goal was to find a large and useful subset of Prolog which is not Turing-complete, since it is desirable when
simply asking questions about data to ensure that the questions will be answered. These subsets are broadly called
Datalog. Datalog is syntactically a subset of Prolog, and semantically mostly a subset of Prolog, except that certain
programs which must not halt in Prolog instead must halt in Datalog. All queries which halt in Prolog and are
valid in Datalog yield the same set of results.

Exactly what restrictions Datalog has isn’t precisely defined—Datalog isn’t an independent programming lan-
guage, but a family of non-Turing-complete subsets of Prolog—but at least the following restrictions are common[5]:

1. The cut operator, fail, and call are removed.

2. Queries are always run to completion and give all results, rather than interactively requesting further results,
and the results are not guaranteed to be in any order (although it’s not uncommon to explicitly sort them as
a final step after querying).

3. Structures other than atoms are removed.

4. Fully recursive queries (e.g., a predicate A(X) reached while trying to satisfy the predicate A(X)) are rejected.

5. Every variable appearing in the head of a rule must appear in the argument of a non-negated predicate in the
body of the rule.

6. Negation is stratified: If the rules for predicate x include a negation of predicate y, then there must be no
path through the rules by which predicate y refers to predicate x.

7. Numeric operators are also stratified: If the rules for predicate x include a numeric operator over variable
Z, then either the result must be guaranteed to be closer to zero, or its use in predicates must stratify as
with negation. Most versions of Datalog only allow positive numbers and/or only allow integers to make the
closer-to-zero verification easier.

8. Lists, if allowed at all, must be stratified like numbers, either by reducing towards the empty list or by
stratified use of predicates.

In short, with the exception of rules 1 and 2, these rules guarantee that taking a step in resolving a query always
yields a lesser query, in the sense that it has fewer steps until facts are reached. This renders the language non-
Turing-complete, but still useful. All queries in Datalog terminate.

Rule 3 removes the ability to create recursive structures (by removing all structures), and thus removes that
path to infinite recursion. Note that we can still express interesting structures, but in a different way. For instance,
to express
owns(jean, book(greatExpectations, dickens)).

we may instead give both people and books some kind of identifier, and then express the ownership relation over
those identifiers, like so:
person(24601, jean).
book(9564, greatExpectations, dickens).
owns(24601, 9564).

Since the number of atoms in any given database is finite, rule 3 and 4 together guarantee that a query with
only positive predicates over atoms (i.e., no numbers or lists) will eventually terminate. Rule 5 guarantees that no
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predicates are themselves infinite, since variables must be resolved. Rules 6, 7, and 8 allow us to add negation,
numbers, and lists, respectively, by guaranteeing that each approach a base case.

The implication of rules 1 and 2 are more interesting: Without the cut, and without any particular guarantee on
the order of results, the exact order in which we resolve a query is no longer constrained. In Prolog, it was necessary
to follow the search algorithm precisely, because the result was only correct if we did. Thus, we couldn’t optimize
a query5; only one implementation of the algorithm is correct. Moreover, some queries and databases which
in Prolog would expand infinitely are allowed and must terminate in Datalog, and the restrictions to Datalog’s
structure guarantee that this is possible. In spite of being a simpler language, Datalog is much more complicated
to implement, because we are allowed to optimize the query, and such optimizations are required to guarantee
termination.

But, before we get to query optimization, let’s look at the other side of this history: databases.

15 Relational Databases

Relational databases were created completely independently of Prolog [2], and have their own foundational logic,
called the relational algebra. In addition to their own foundational logic, they have their own defining language,
the Structured Query Language, or SQL, sometimes pronounced as a homophone with “sequel”. SQL is less a
programming language than an entire family of related programming languages, as each relational database engine
has its own customized version of SQL; the core, however, is standardized. This course is not intended to compete
with CS348 or CS448, so we will not describe SQL at all, and will focus on relational algebra only as it relates to
Datalog. Datalog is strictly more powerful than the relational algebra6, so we will describe the relational algebra
in terms of Datalog clauses.

The data in relational algebra is sets of relations, which are precisely the kinds of relations we’ve defined, i.e.,
functions. In relational database terminology, relations which are only defined as facts are called tables, and relations
which are defined (at least in part) as rules (Horn clauses with bodies) are called views. These are sometimes also
called extensional database predicates and intensional database predicates, respectively. A single fact within a table
is called a row, and may not contain variables, only atoms or primitive data. This restriction is also in Datalog,
implied by Datalog rule 5.

Consider a database which keeps track of employees and their supervisory relationship. This database might
have two tables: one which tracks employee information, such as the employee’s identification number and name,
and a second which tracks who supervises whom. For instance, consider the following database:

1 employee(34, dantes).
2 employee(5, villefort).
3 employee(1, napoleon).
4

5 supervisor(1, 5).
6 supervisor(5, 34).

The employee/2 table states that the employee dantes has employee number 34, the employee villefort has employee
number 5, and the employee napoleon has, of course, employee number 1. The supervisor/2 table states that
napoleon supervises villefort (supervisor(1, 5)), and villefort supervises dantes (supervisor(5, 34)).

Aside: This database is not a useful summary of The Count of Monte Cristo.

A useful view may be the supervisory relationship by name, instead of by number. In relational algebra terms,
this is the join of the two tables:
supervisor_by_name(X, Y) :- employee(N, X), employee(M, Y), supervisor(N, M).

In a relational database, each argument to a predicate is called a field of the relation, and has a name, and
usually a restricted type. Joining two (or more) tables is creating a new relation which is defined when some

5Technically, certain optimizations are allowed, but they’re very limited.
6Note that as there are many variants of SQL, some of which are even Turing-complete, it is not generally true that Datalog is more

powerful than (a particular) SQL.
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fields are equal in the original relations. In this case, supervisor_by_name/2 joins twice: once with the first field of
supervisor/2 and the first field of employee/2, and once with the second field of supervisor/2 and the first field of
employee/2. The natural join of two tables is simply the join in which the fields which must match are those with
the same names, which is not meaningful to us as Datalog fields do not have names.

In addition, relational databases usually have unique and key fields. For our purposes, there is no distinction
between the two concepts; a key field is simply a unique field. This simply restrict how relations are added to the
table, preventing two relations from having the same value for that field. For instance, in our above table, nothing
prevents us from adding this relation:
employee(34, faria).

Doing so, however, would yield strange results, since two employees now have the same employee number. It was
presumably our intention that no two employees have the same employee number—this is, of course, the point of
using such numbers instead of employee names—so a relational database engine would prevent this row from being
added to the database. We can instead add faria like so:
employee(27, faria).

and with that row, we can additionally add a supervisor relation:
supervisor(5, 27).

Queries with variables are called selections, because they select values for the variables which satisfy the query.
For instance, we can find every employee who is supervised by employee 5 (villefort) like so:
?- supervisor_by_name(villefort, X).
X = dantes
X = faria

In the original theory of relational algebra, recursive views and queries were not allowed. In practice, however,
there are as many extensions of relational algebra (and of SQL) as there are relational database systems, and most
of them allow recursive views in some form. For instance, many would allow us to define a view for whether a
named employee is higher in the supervisory hierarchy than another. We can split this into its two components: the
relation of the name to the employee number, and the recursive relation of two employee numbers via supervisor:
higher(X, Y) :- employee(NX, X), employee(NY, Y), nhigher(NX, NY).

nhigher(M, N) :- nhigher(P, N), supervisor(M, P).
nhigher(M, N) :- supervisor(M, N).

We can now query all employees under napoleon at any level of the hierarchy:
?- higher(napoleon, X).
X = dantes
X = faria
X = villefort

Note that in Prolog, this query would not complete, because we’ve structured its recursion before its base case.

Some relational database systems support Datalog directly, but more frequently, they support a modified version
of SQL inspired by Datalog.

16 Query Optimization

Consider the query ?- nhigher(1, X). in Prolog, shown partially here:
1 nhigher(1, X)
2 nhigher(P, N), supervisor(M, P) [1/M] [X/N]
3 nhigher(P, X), supervisor(1, P)
4 nhigher(P_, N), supervisor(M, P_) [P/M] [X/N], supervisor(1, P)
5 nhigher(P_, X), supervisor(P, P_), supervisor(1, P)
6 nhigher(P_2, N), supervisor(M, P_2) [P_/M] [X/N], supervisor(P, P_), supervisor(1, P)
7 nhigher(P_2, X), supervisor(P_, P_2), supervisor(P, P_), supervisor(1, P)
8 ...
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This query will never resolve, because nhigher(P, N) is listed before supervisor(M, P) in a clause defining nhigher
/2, so it will expand to an infinite series of supervisor/2 relations. If we had simply put supervisor(M, P) before
nhigher(P, N), then Prolog would have resolved this easily. It is the role of a query optimizer to reorder predicates
in Datalog, making such queries not just more optimal, but in cases like this one, possible.

Query optimization is an enormous field, and we will only touch on the basic concepts here. Generally speaking,
at any time, a query optimizer is presented with a list of predicates it must resolve, and must choose one to resolve
first. For instance, on line 6 of the above example, a query optimizer must choose whether to resolve nhigher(P, N)
or supervisor(M, P) first. The structure of Datalog guarantees that either ordering is valid (except for halting),
but one may be faster (in this case, infinitely faster).

Aside: You will see query optimization discussed in very different terms than this section uses, simply because
it was originally developed for SQL and relational databases, not Datalog. The concept is the same, but the
details vary greatly.

Given a list of predicates to be resolved, a query optimizer orders them based first on the structure of the
predicates, and second on a cost model. The cost model is completely specific to the specific query optimizer and
database engine, so we won’t discuss it here. Structurally, observe that nhigher/2 consists of a recursive join over
supervisor/2: we join its first argument to its second. Join optimization consists of choosing joins which reduce
the size of our query before joins which increase the size of our query. The “size” in this case is the number of
unrestricted variables or, if equal, the number of predicates in the resulting query. Consider the partially evaluated
query nhigher(P, X), supervisor(1, P). Since supervisor/2 is a table (it has only facts), if we resolve it, we will
not introduce any new predicates, and will resolve the value of P. On the other hand, if we resolve nhigher(P,
X) first, the second rule will introduce one new variable, as well as a new predicate. Thus, we choose to resolve
supervisor(1, P) before nhigher(P, X). When options are equal in these terms, it’s necessary to use a heuristic
cost model.

A similar model can also used to select from multiple resolutions of a predicate. For instance, we would choose
to expand nhigher(1, X) to supervisor(M, N) [1/M] [X/N] before nhigher(P, N), supervisor(M, P) [1/M] [X/N],
because the latter introduces more variables and predicates. This is less important, since ultimately, in Datalog,
every resolution must be explored, but SQL allows, for instance, requesting just one matching result, and this
optimization can be useful for doing so.

Now, let’s consider the same query as above, but with a reordering step to bring the best query by the above
model to the front, which we will mark with /* OPTIMIZATION */:

1 nhigher(1, X)
2 /* OPTIMIZATION: Choose supervisor(M, N) [1/M] [X/N] first */
3 supervisor(M, N) [1/M] [X/N]
4 supervisor(1, X)
5 supervisor(1, 5)
6 solution 1: X=5
7 nhigher(P, N), supervisor(M, P) [1/M] [X/N]
8 nhigher(P, X), supervisor(1, P)
9 /* OPTIMIZATION: Choose supervisor(1, P) first */

10 supervisor(1, P), nhigher(P, X)
11 supervisor(1, 5), nhigher(5, X)
12 nhigher(5, X)
13 /* OPTIMIZATION: Choose supervisor(M, N) [5/M] [X/N] first */
14 supervisor(M, N) [5/M] [X/N]
15 supervisor(5, X)
16 supervisor(5, 34)
17 solution 2: X=34
18 supervisor(5, 27)
19 solution 3: X=27
20 nhigher(P, N), supervisor(M, P) [5/M] [X/N]
21 nhigher(P, X), supervisor(5, P)
22 /* OPTIMIZATION: Choose supervisor(5, P) first */
23 supervisor(5, P), nhigher(P, X)
24 supervisor(5, 34), nhigher(34, X)
25 nhigher(34, X)
26 /* OPTIMIZATION: Choose supervisor(M, N) [34/M] [X/N] first */
27 supervisor(M, N) [34/M] [X/N]
28 supervisor(34, X)
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29 fail
30 nhigher(P, N), supervisor(M, P) [34/M] [X/N]
31 nhigher(P, X), supervisor(34, P)
32 /* OPTIMIZATION: Choose supervisor(34, P) first */
33 supervisor(34, P), nhigher(P, X)
34 fail
35 supervisor(5, 27), nhigher(34, X)
36 /* Similar to the case of supervisor(5, 34), nhigher(34, X) */

This query is not just faster than the Prolog version, but infinitely faster than the Prolog version, in that it
terminates, resolving to X=5, X=34, and X=28.

17 Everything In Between

Most implementations of relational databases actually implement extensions to SQL which render them Turing-
complete, but typically not the Prolog cut. In some cases, this is simply by cheating and allowing a Turing-complete
language to be embedded into SQL, but in other cases, it is by allowing less restrictive databases, for instance by
removing the stratification requirements of numbers or lists, or allowing unbounded variables in the heads of Horn
clauses.

The cut operator is rarely reintroduced, because the goal of such a system is usually a Turing-complete database
in which query optimization is still allowed. Modern database systems have to contend with Turing-complete
programs over which optimization can turn a non-halting computation into a halting computation! If this concept
seems fascinating, however, you’ll have to study it in CS448, not here.

Datalog has also found some use in machine learning, where certain ML structures, such as neural networks, fit
within the constraints of Datalog [6].

18 Fin

In the next module, we will look at imperative programming languages, which account for most languages used in
practice. Assignment 4 will focus on implementing query programming like you’ve seen in this module.
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