
CS442
Module 8: Object-Oriented Programming

University of Waterloo

Winter 2025

“Object-oriented design is the roman numerals of computing.”

— Rob Pike

1 Object-Oriented Programming

In this module, we discuss Object-Oriented Programming (OOP), a paradigm that has enjoyed considerable pop-
ularity in recent decades. Proponents of OOP cite its potential for information hiding and code reuse; opponents
argue that the hierarchical type systems imposed by object-oriented languages are not always an accurate reflection
of reality, and can lead to compromised and unintuitive type hierarchies.

Objects were first introduced in 1967, as part of the programming language Simula, a descendent of Algol1.
While Simula had many of the features we now attribute to OOP, they came almost by accident from its goal of
simulation (hence the name). Later languages, in particular our exemplar, Smalltalk, are responsible for expanding
on and refining them into modern OOP.

However, the widespread adoption of OOP into the programming mainstream did not happen until decades
later. OOP grew from fairly niche to major importance in the 1990s. Currently, OOP is one of the most popular
(probably the most popular) paradigms among programmers; most widely-used modern programming languages
have some kind of support for OOP. However, there are relatively few languages that conform strictly to the
object-oriented mentality and may thus be legitimately considered “purely” object-oriented. Smalltalk is one such
language, but it’s difficult even to name a second, setting aside research languages and languages with no modern
maintenance. Instead, OOP acts more as a “meta-paradigm” that may be combined with other paradigms. For
example, Ada95 and C++ are fundamentally structured, procedural languages, with support for objects in addition
to that procedural core. Java conforms more strictly to the object-oriented mentality than do C++ and Ada (as
Java forces programs to be organized into classes), but the language in which methods are written in Java remains
fundamentally structured programming. On the other hand, languages like CLOS and OCaml add object-orientation
to functional languages.

In Module 1, when we introduced Smalltalk, it was described as being “so object oriented that it’s barely a
procedural imperative language”. It is the complete absence of traditional procedures, the fact that even simple
numbers are objects, and the encapsulation of conditions and loops—structured programming—into objects that
makes Smalltalk purely object-oriented. Mostly-OOP languages like Java eschew this level of OOP purity in favor
of familiarity and predictability.

1.1 What OOP Is(n’t)

Because of its current widespread popularity, object-oriented programming is a particularly difficult paradigm
to study in the abstract. Part of the reason for the difficulty is that there is no widespread consensus among
programmers and language designers about what the defining features of an object-oriented language should be.

1Algol was, in turn, was a major early procedural language.

CS442: Module 8: Object-Oriented Programming 1

Here we will present the most common language features possessed by object-oriented languages. When we discuss
semantics, we will discuss it in the context of Smalltalk, with occasional sidebars to discuss how other languages
differ.

At the very least, OOP has objects: the encapsulation of data and behavior into a single abstraction, which
can be viewed equivalently as records with associated code, or code with associated records. Some other language
features commonly associated with object-oriented programming are outlined below:

• Reference Typing: variables and fields can only hold references to objects. There is no primitive type that is
not (at least apparently) a reference, and there are no bare records;

• Data Abstraction: objects often provide facilities by which we may separate interface from implementation,
often hiding parts of the implementation behind abstraction barriers;

• Inclusion Polymorphism: object types tend to be arranged in hierarchies by a subtyping relationship that
allows some types to be used in place of others;

• Inheritance: objects often share some of the details of their implementation with other objects, but may
override particular methods freely (note: in C++, only virtual methods are truly OO);

• Dynamic Dispatch: the actual code associated with a particular method invocation may not be possible to
determine statically. Dynamic dispatch is a form of dynamic binding, which we briefly mentioned in Module
2.

Most object-oriented languages possess at least some of the above characteristics.

2 Exemplar: Smalltalk

You’ve already learned and used Smalltalk in this course, so there’s no need to introduce its syntax here. Instead,
we’ll discuss Smalltalk’s place in language history.

Smalltalk was developed at Xerox PARC by Alan Kay, Dan Ingalls, Adele Goldberg, and many others. You
may have heard of Xerox PARC; it’s a research group famous for inventing everything before anyone else and then
failing to monetize any of it. Among their various inventions are:

• the graphical user interface, later monetized by Apple and Microsoft;

• What-You-See-Is-What-You-Get (WYSIWYG) editing, later monetized by numerous corporations;

• “fully-fledged” object-oriented programming (in Smalltalk), later monetized by Sun and later still by numerous
corporations;

• prototype-based object orientation (which we will briefly look at in this module), later monetized by Netscape
as JavaScript.

Xerox is known for printers.

In fact, the first and third items in that list are one and the same: Smalltalk! The graphical user interface
that Xerox PARC was famous for inventing was Smalltalk. Indeed, a course on the history of human-computer
interaction (HCI) would probably discuss Smalltalk as a major leap forward in HCI, with only a brief mention of
the fact that it’s also a programming language. It’s nearly impossible to separate the two concepts, because of the
experience of programming in Smalltalk: there is no such thing as a Smalltalk file2, and to write Smalltalk code, one
interacts with a Smalltalk environment in which they can graphically create and define new classes. The Smalltalk
language and implementation were described thoroughly in the so-called “blue book”, Smalltalk-80: The Language
and its Implementation ?. The Smalltalk programming environment was described in the so-called “red book”,

CS442: Module 8: Object-Oriented Programming 2

Figure 1: The Smalltalk environment, from a faithful recreation created by Dan Banay at https://github.com/
dbanay/Smalltalk. The system browser is used to create and modify classes graphically, so there is no syntax for
classes themselves. Shown is a method of the Pen class.

CS442: Module 8: Object-Oriented Programming 3

https://github.com/dbanay/Smalltalk
https://github.com/dbanay/Smalltalk

Smalltalk-80: The Interactive Programming Environment ?. An example of a Smalltalk environment is shown in
Figure ??.

Smalltalk’s design throws out the idea of a main function or starting point, and instead opts for the program
and interface to be a uniform medley of objects. This is useful for keeping Smalltalk quite pure in its OOP design:
in Smalltalk, everything is an object. But, we need many objects to already exist to even perform basic functions
(think of Smalltalk’s true and false), so it’s hard to rectify this design with a “starting point”. Instead, Smalltalk
software is distributed as images, which are essentially a frozen state of one of these object medleys; one loads an
image and is then experiencing the same environment as that in which the programmer wrote their software.

Ultimately, much of that design, while central to Smalltalk’s philosophy, isn’t relevant to our interest in object-
oriented programming. GNU Smalltalk gets around it by having a special file syntax and semantics. We’ll get
around it by borrowing a concept from Java: a main class with a main method. But, we’re getting ahead of
ourselves; let’s focus on the basic elements of OOP.

Smalltalk is untyped, so when discussing types, we’ll use an extended syntax borrowed from Strongtalk ?, a
typed3 variant of Smalltalk. In Strongtalk, the types of fields, variables, arguments to methods, and returns from
methods are annotated with explicit types, like so:

1 hypotenuseWithSide: x <Number> andSide: y <Number> ^<Number> [
2 | x2 <Number> y2 <Number> |
3 x2 := x*x.
4 y2 := y*y.
5 ^(x2 + y2) sqrt
6]

The <Number> next to each argument indicates that that argument is of type Number, and the ^<Number> at the end
indicates that this method returns a Number as well. Like in the Simply Typed λ-calculus, the return type can be
discovered from the return statements in the method, so it doesn’t need to be explicitly specified. But, as methods
may have multiple return statements in Smalltalk, we’ll specify it explicitly.

3 Classes

Most—but not all—object-oriented languages use classes to describe objects, and can be described as class-based
languages. A class is a description of a set of objects with identical behavior and identical form, but (presumably)
different internal state. This definition is similar to the definition of a type, and indeed, classes form the types of
an object-oriented type system. For now, let’s just focus on semantics.

In a purely object-oriented, class-based language, the global scope contains only classes, and all imperative code
must be boxed into classes. Even in GNU Smalltalk, which violates OOP purity by allowing behavior outside of
classes, the global scope contains only classes; GNU Smalltalk also has a file scope, and an individual file may have
other elements in its scope, but if you load multiple files, they can only see each others’ classes.

A class contains fields and methods. The fields are conceptually the same as fields of a record from imperative
languages, and in that aspect, classes can be considered to be an extension of records: every object of a given class
has values for each field declared in the class. Purely object-oriented languages such as Smalltalk provide no syntax
for accessing the fields of another object, so that the particular fields of an object are an implementation detail, but
most object-oriented languages provide a way to break this encapsulation. Public fields can always be rewritten in
terms of getter and setter methods, so the distinction is largely in intent.

Methods are conceptually similar to procedures, but they are associated with classes, and a given method is
called on an object of the class, so that a given method will always be called with an appropriate object. There
is a now-simmering war between two camps on how to describe methods: Smalltalk proponents usually describe
messages which are matched to methods, and the methods are then invoked. In Java, C++, and most other object-
oriented languages, methods are simply “called”, like procedures. There is no practical difference between them, and

2GNU Smalltalk is an outlier and exception to all the rules. Any mentions of “Smalltalk” without “GNU” as a qualifier are referring
to traditional Smalltalk, not GNU Smalltalk.

3Technically, optionally typed: you may specify types if you desire in Strongtalk, but are not required to, and there is no type
inference, so code without types behaves as in Smalltalk.

CS442: Module 8: Object-Oriented Programming 4

we only fight over this question of language because programming language people are, after all, language people.

The object that a method is called on is the receiver of the message if you’re using Smalltalk terms, and the
target of the call otherwise. It is sometimes conceptually convenient to describe the target as a “hidden parameter”,
and that is indeed how implementations of object-oriented languages work, but taking this concept too far will
make typing of class-based languages inconsistent, so be careful of it. Within a method, the target object can be
accessed, typically with the name self or this, depending on the language.

We’ll use GNU Smalltalk’s syntax for classes. In GNU Smalltalk, we declare a class—we’ll ignore for the moment
the subclassing that this introduces—like so:
Rectangle subclass: Square [
" content of the Square class... "

]

This introduces the name Square into the global scope, referencing the class. The class can be used to create
objects, with, in this case, Square new. There are as many syntaxes for creating objects of a given class as there
are object-oriented programming languages, so we won’t explore any others.

Let’s create a syntax for class declarations. For the time being, that’s the only syntax we’ll need:

⟨prog⟩ ::= ϵ

| ⟨classdecl⟩ ⟨prog⟩
⟨classdecl⟩ ::= ⟨var⟩ subclass : ⟨var⟩ [⟨fieldsdecl⟩ ⟨methodslist⟩]
⟨fieldsdecl⟩ ::= ϵ

| “|” ⟨varlist⟩ “|”
⟨varlist⟩ ::= ϵ

| ⟨var⟩ ⟨varlist⟩
⟨methodslist⟩ ::= · · ·

Thus, a program is a list of class declarations, and a class declaration has four parts: a superclass, a name, field
declarations, and method declarations. We haven’t defined the syntax for methods, but as you’ve already seen
Smalltalk, we’ll use its syntax in examples.

Note that in the file itself, nothing does anything. We’ve encountered this phenomenon before: in most typed
functional languages, you can only write declarations into a file, not expressions. In a purely object-oriented
language, you can only write class declarations into a file, not statements.

Aside: In this sense, purely object-oriented languages are declarative: declarations are primary, not behavior.
Indeed, the same thing tends to happen with typed procedural languages. For historical reasons, the “declar-
ative” paradigm is considered opposite to imperative, and so has less to do with declarations than referential
transparency.

When a class is declared, it is declared a subclass of some existing class, which is in turn its superclass. In our
simple Square example, Square was declared as a subclass of the Rectangle class. This means that it inherits all of
the fields and methods from Rectangle. At its most basic level, this inheritance is very simple: if Rectangle has a
field named width, then Square also has a field named width; if Rectangle has a method named area, then Square
has an identical method named area. But, Square may be defined with additional fields and methods as well as
those defined by Rectangle.

Finally, Square may re-define methods that were defined in Rectangle: instead of inheriting the behavior of a
method, it may override the behavior of a method. In such an overridden method, you may call the superclass’s
original implementation, or any other method of the superclass, typically with a special syntax that looks like calling
the method on the object super. For instance, consider this partial implementation of Rectangle and Square:

CS442: Module 8: Object-Oriented Programming 5

1 Object subclass: Rectangle [
2 | width height |
3 " ... constructor, etc... "
4

5 setWidth: v [
6 width := v.
7]
8

9 setHeight: v [
10 height := v.
11]
12

13 setWidth: w setHeight: h [
14 self setWidth: w.
15 self setHeight: h.
16]
17

18 area [
19 ^width * height
20]
21]
22

23 Rectangle subclass: Square [
24 setWidth: v [
25 super setWidth: v.
26 super setHeight: v.
27]
28

29 setHeight: v [
30 self setWidth: v.
31]
32]

By overriding the setWidth: and setHeight: methods, a Square guarantees that it will always be, well, square: the
setWidth: method calls Rectangle’s setWidth: and setHeight: methods on the same value, and the setHeight:
method calls Square’s setWidth: method. There’s no need to override the setWidth:setHeight: method, since it
calls setWidth: and setHeight:, but it’s important to note the behavior of self setWidth: and self setHeight:
within the setWidth:setHeight: method: if self is a Square, then this will call Square’s method even though it’s
actually part of the implementation of Rectangle! Any method which is not overridden is inherited, so regardless,
the subclass is guaranteed to have at least all the same methods as the superclass. Some languages require explicitly
specifying when a method is intended to override a superclass method.

When a method is dispatched, it is the class of the actual object at run-time that determines which method
implementation (the original or an override) will be called, never the static type. Method dispatch intentionally
obscures what method implementation is actually called, as subclasses—including subclasses the calling code is
unaware of—may override methods of superclasses. In this way, code that uses objects is separated from the code
that implements the objects, allowing modular substitution of methods—at least, ideally. Note that in C++,
methods are non-virtual by default, which is quite contrary to the spirit of object-oriented programming; methods
are a concept that exists exactly for this virtualization, so hobbling that renders C++ non-OO by default.

Aside: I will repeatedly pick on C++ when mentioning many features. This isn’t because of particular
animosity to C++; it’s just expected that many programmers have learned OO with C++, and unfortunately,
if they have, then they’ve learned a very peculiar derivative of OO. It’s necessary to mention the many ways
that C++ is not OO (or atypically OO) so that programmers accustomed to it know when to discard this prior
knowledge.

Since classes define objects with the same fields and methods, the implication of this inheritance is that an
object of the class Square is an object of the class Rectangle: it has at least all the same fields and methods, so
anything you can do with a Rectangle, you can do with a Square. But it may have more than Rectangle has. So, all
Squares are Rectangles, but not all Rectangles are Squares. This requirement also mandates the use of references
to objects: if Square added additional fields, then it would need more space, but a local variable of type Rectangle
must also accept a Square, so instead the local variable simply stores a reference, which is always the same size.
Once again, C++’s violation of this makes C++ non-OO by default; you must use pointers or references to objects

CS442: Module 8: Object-Oriented Programming 6

in C++ for subclasses and their superclasses to be truly interchangeable.

4 Semantics

At the basic level, the semantics of an object-oriented language follow naturally from the semantics of an imperative
language. However, as basic mathematical operators are—or at least, can be—methods, we don’t need most of the
weight from even the Simple Imperative Language. Instead, we will define a simple(ish) semantics, with some parts
based very loosely on Featherweight Java ?, for an object-oriented language in the style of Smalltalk.

We need a few exceptions to Smalltalk to make the language tractable to formally define its semantics. First,
we will make field access syntactically distinct from local variable access, by imagining that fields are accessed with
an arrow, e.g. self->width, as in C++. Since fields and local variables are both explicitly declared, it would be
trivial to modify existing Smalltalk code in this way. Second, because Smalltalk has several different syntaxes for
methods, we require that all user-defined methods be of the colon-separated form, such as setWidth:setHeight:.
We will define two zero-argument methods as built-in methods, and this will assure that they are separate and
distinct from user methods, as well as just simplifying the rules for calling methods. Third, we require that every
method have exactly one return statement, and that that return statement be the last statement in the method.
This is because return’s ability to break out of a method early makes the semantics much harder to define. Finally,
we remove expression syntax entirely by requiring that every statement be of one of a limited set of forms:

• x := M, where x is a variable name, and M is a method call. Both the target and the arguments to the method
call must be variable names.

• x := [...], i.e., an assignment of a block to a local variable.

• x := y, i.e., an assignment of a variable to another variable.

• x := self->y, i.e., the transfer of a field of self to a local variable.

• self->y := x, i.e., the transfer of a local variable to a field of self.

• ^x, i.e., a return statement returning from a local variable.

• x, just a variable name.

For instance, we would rewrite
x := r setWidth: (s area).

as
x1 := s area.
x := r setWidth: x1.

Since even mathematical operators are methods in Smalltalk, any expression can be broken up into individual steps
in this way.

The store, σ, will contain global class declarations and, like in our semantics for the Simple Imperative Language,
“freshened” local variables. We also need a heap, Σ, to store our objects, and labels to reference them4. There is no
syntax for an object value in Smalltalk, so we’ll have to define one: an object is defined by its class and the values
of all of its fields. So, we will give its syntax in the heap like so:

⟨object⟩ ::= ⟨var⟩ [⟨fieldvaluelist⟩]
⟨fieldvaluelist⟩ ::= ϵ

| ⟨var⟩ “:=” ⟨value⟩ . ⟨fieldvaluelist⟩

The ⟨var⟩ in the definition of ⟨object⟩ is the object’s class. Each field is written ⟨var⟩ := ⟨value⟩, where the first
⟨var⟩ is the name of the field, and ⟨value⟩ is the field’s value. Technically, Smalltalk allows multiple fields to have

4Some semantics manage to combine σ and Σ by making objects immutable (reference typing is indistinguishable from copying if
nothing can be modified anyway), but mutability is sufficiently important that we define then separately.

CS442: Module 8: Object-Oriented Programming 7

the same name if they’re in different classes, but we’ll see in Section ?? that this can easily be written away, so
we’ll stick to just field names. The values in Σ will all be ⟨object⟩s, and the values in σ, along with the globally
defined classes, will be labels for objects in Σ.

In fact, we need one more type in σ: blocks. Smalltalk can’t operate at all without blocks, so we’ll need them
to make sense of anything. Since blocks evaluate to a value, we will restrict them similarly to methods: the last
statement in the block (which is equivalent to the return statement) must just be a variable name, which will be
the value that the block evaluates to.

Like with Haskell, our global scope contains only declarations, so we need a resolve function to populate σ with
all of the defined classes.

Exercise 1. Define resolve for Smalltalk, given the restriction that files contain only class declarations.

Also like with Haskell, since our files contain only class declarations, we need a starting point. GNU Smalltalk’s
answer to this is to allow files to contain statements, but that breaks object-orientation purity; other Smalltalk
implementations’ answer to this is to be an environment rather than a program, but that’s not very useful for
defining semantics. We will borrow a concept from Java by having a main class, which we will distinguish simply by
requiring to to be named Main, and requiring that it have a main method, which we will require to be named main:.
Thus, we start our execution with a σ already populated with classes, and with the following standard statements
to “bootstrap”: x := Main new. x := x main: x.. Note that the argument to main: is useless, and is only required
to fit the restrictive syntax we defined above.

Let the metavariables L, Q, O, M , v − w, x− z, and ℓ range over statement lists, statements, objects, method
declarations, values, variable names, and labels, respectively.

There are only a small number of possible statements, so we simply need to define a semantics for each of them.
Unfortunately, a few method calls require special implementations. First, the built-in method call for creating a
new object, new. Because of inheritance, new needs a way of gathering all of the fields in all of the superclasses
of the named class. We will define this as fields(σ, x), which returns a list field names for all the fields in x and
all of its superclasses. As a practical matter, new always has a special implementation in the Smalltalk language
implementation, and cannot be implemented directly as a Smalltalk method, so it’s natural for the semantics to
implement it specially as well.

New

fields(σ, x2) = y1, y2, · · · , yn
O = x2[y1 := nil.y2 := nil. · · · yn := nil]

ℓ is a fresh label in Σ

σ′ = σ[x1 7→ ℓ] Σ′ = Σ[ℓ 7→ O]

⟨Σ, σ, x1 := x2 new. L⟩ → ⟨Σ′, σ′, L⟩

Whew! This might be the longest semantic rule we’ve written yet! But, it’s fairly simple when we break it down
into its component parts: The first premise says that the fields for x1 are y1 through yn. The second premise defines
an object with an appropriate shape for the class: it has all of the yi fields, and each is given the value nil. nil
is the default value of a field in Smalltalk. The third, fourth, and fifth premises add a link from the variable to a
label and from that label to the object in the store and heap.

Next, we’ll look at the value method of blocks. This is relatively straightforward:

Block
σ(y) = [L1.z]

⟨Σ, σ, x := y value. L2⟩ → ⟨Σ, σ, L1.x := z. L2⟩

Quite simply, to evaluate a block, we run its statements, and assign the value of its last statement—which, recall,
we’ve restricted to being a single variable name—to the target of our assignment. Since a block contains a statement
list, this operates over statement lists rather than statements.

CS442: Module 8: Object-Oriented Programming 8

Next, simple assignments of a variable to another variable:

VarAssg
σ′ = σ[x 7→ σ(y)]

⟨Σ, σ, x := y. L⟩ → ⟨Σ, σ′, L⟩

That is, we can assign from a variable y to a variable x by looking up y’s value in σ, and adding the same value
mapped from x.

Next, fields:

FieldRead
σ(x2) = ℓ Σ(ℓ) = x3[· · · y := w · · ·] σ′ = σ[x1 7→ w]

⟨Σ, σ, x1 := x2->y. L⟩ → ⟨Σ, σ′, L⟩

FieldWrite

σ(x1) = ℓ σ(x2) = w

Σ(ℓ) = x3[z1 := v1. z2 := v2. · · · y := vm · · · zn := vn]

Σ′ = [ℓ 7→ x3[z1 := v1. z2 := v2. · · · y := w · · · zn := vn]]

⟨Σ, σ, x1->y := x2. L⟩ → ⟨Σ′, σ, L⟩

To read a field, we look up the object by name in σ, look up that label in Σ, and find the field-value pair matching
the name y. We then update σ to map x1 to that value. To write a field, we similarly look up the object and value
in σ, and look up the object’s label in Σ, but this time, we update Σ to have an identical object, but with the
field-value pair for y replaced with the new value. In practice, of course, we wouldn’t replace O with an identical
object changed slightly, but simply update the one field in place.

All that remains (really!) is method calls. Calling a method is similar to calling a procedure from Module 7,
with one major difference: we need to find the method. We will thus break down calling a method into a “finding”
step and a calling step. To find a method, we need to walk up the superclasses of the target class until we find the
named method. We’ll handle those steps first, by defining a function method(σ, x, y), which finds a method of x
with the name y:

σ(x) = z subclass: x[· · · y[Q] · · ·]
method(σ, x, y) = y[Q]

σ(x1) = x2 subclass: x1[· · · z1[Q1] z2[Q2] · · · zn[Qn]] y ̸∈ {z1, z2, · · · , zn}
method(σ, x1, y) = method(σ, x2, y)

The first rule extracts a method named y from the class x if it’s present in the class. The second rule says that if
y is not found in the class (x1)—that is, it’s not among the methods z1 to zn—then the superclass (x2) should be
searched. If the method isn’t defined at all, then method has no definition, so our semantics will get stuck.

With method defined, we can now call methods similarly to the Simple Imperative Language. Like in Module 7,
we will do this by freshening its variables to avoid conflict, and assume that freshen is already defined. Importantly,
freshen also needs to freshen the name “self”. Our method call rule is as follows:

Call

σ(x2) = ℓ Σ(ℓ) = x3[· · ·]
M = method(σ, x3, y1 : y2 : · · · yn :)

S = freshen(M) x4 = self S

M S = y1 : w1 y2 : w2 · · · yn : wn[L1.ˆwr]

⟨Σ, σ, x1 := x2 y1 : z1 y2 : z2 · · · yn : zn. L2⟩ →
⟨Σ, σ, x4 := ℓ. w1 := z1. w2 := z2. · · ·wn := zn. L1. x1 := wr. L2.⟩

CS442: Module 8: Object-Oriented Programming 9

Yes, it’s another monster of a rule. But again, we can break it down into simpler parts: The first premise says
that x2 must refer to a label, and the second premise says that that label must refer in the heap to an object of
some class x3. The third premise uses that class name, x3, to look up the method. Remember that methods in
Smalltalk are named in several broken parts, in this case y1 :, y2 :, etc, so y1 : y2 : · · · yn :. The fourth premise
generates a substitution to freshen the names in the method, and the fifth premise freshens the important name
self. Finally, the sixth premise defines all the names in the freshened method, so that we can use them to take a
step. In the conclusion, like in the Simple Imperative Language, we rewrite the method as writes to the freshened
variable names corresponding to its arguments, then the method body. SIL didn’t have returns, so we also include
a write of the return value to the target variable.

The ubiquity of objects makes these the most complex rules we’ve seen yet, but if you’ve understood the
behavior of Σ and σ, you should be able to disentangle them. Alternatively, if you’ve written in an object-oriented
programming language, start from there. In particular, it’s surprising that our semantics have no conditions or
loops, but in fact, they’re not needed: we can build them out of True and False classes exactly like Smalltalk does:

1 Object subclass: Boolean [
2 " ... "
3]
4

5 Boolean subclass: True [
6 ifTrue: block [| x | x := block value. ^x]
7 ifFalse: block [^nil]
8 ifTrue: tBlock ifFalse: fBlock [| x | x := tBlock value. ^x]
9]

10

11 Boolean subclass: False [
12 ifTrue: block [^nil]
13 ifFalse: block [| x | x := block value. ^x]
14 ifTrue: tBlock ifFalse: fBlock [| x | x := fBlock value. ^x]
15]

5 Inclusion Polymorphism

In our brief introduction to polymorphism, we mentioned inclusion polymorphism, but left it for later elaboration.
In the context of object-oriented languages, the most common form of polymorphism is inclusion polymorphism.
In this section, we discuss inclusion polymorphism and its relationship with inheritance.

Inclusion polymorphism is based on the arrangement of the types into a hierarchy of subtypes. A language may
define subtypes however it wishes, but as a minimum restriction, a type a is a subtype of a type b if a value of
type a can be used anywhere that a value of type b can be used. You may notice an analogy to inheritance here: if
classes are our types, and this is the only restriction we place upon subtypes, then Square is a subtype of Rectangle.

We define subtyping formally with a a relation <:, which is reflexive and transitive, and is typically a partial
order. That is, every type is a subtype of itself (∀τ1.τ1 <: τ1); if τ1 <: τ2 and τ2 <: τ3, then τ1 <: τ3; and there exist
pairs of types τ1 and τ2 for which neither τ1 <: τ2 nor τ2 <: τ1. When types τ1 and τ2 are related by τ1 <: τ2, we
say that τ1 is a subtype of τ2, and equivalently, that τ2 is a supertype of τ1. The goal of an inclusion-polymorphism-
based type system is to assure that if τ1 <: τ2, then a value of type τ1 can be used anywhere where a value of type
τ2 is expected, but the reverse does not hold.

The key type rule associated with inclusion polymorphism is known as subsumption, which can be written like
so:

T_Subsumption
Γ ⊢ e : τ1 τ1 <: τ2

Γ ⊢ e : τ2

In words, an expression of type τ1 may be given type τ2 whenever τ1 is a subtype of τ2. Typically, T_Subsumption
isn’t written quite so generally, because this version is not syntax-directed: if we judge e to have type τ1, we could
then decide arbitrarily to give it any supertype of τ1 in place of τ1. Instead, subsumption is often written implicitly
with respect to particular rules. For instance, consider a subsumptive version of a rule for adding integers:

CS442: Module 8: Object-Oriented Programming 10

T_AddSubs
Γ ⊢ e1 : τ1 τ1 <: int Γ ⊢ e2 : τ2 τ2 <: int

Γ ⊢ e1 + e2 : int

Of course, a particular language might have a more precise rule that allows addition to yield a subtype of the
integers, but this rule demonstrates that syntax-directed subsumption is possible. It remains to determine which
types may be related by <:.

There are, broadly, two answers to this question: structural subtyping and nominal subtyping. We will focus on
structural subtyping first.

5.1 Structural Subtyping

Consider these two Smalltalk classes, which we will define without any explicit superclass (which isn’t actually valid
in Smalltalk):

1 HelloEN [
2 greeting ^<String> [...]
3]
4 HelloFR [
5 valediction ^<String> [...]
6 greeting ^<String> [...]
7]

Both of these classes have no fields, and have a method named greeting. HelloFR additionally has a method
valediction. The greeting methods have a lot in common, which we call their signature. The signature of a
method is its name, number and type of arguments, and type of return. Given correct objects to call them on, two
methods with the same signature are interchangeable; either will work in all the same situations. Since greeting
was the only method of HelloEN, anywhere where a HelloEN can be used, a HelloFR can also be used. We haven’t
explicitly defined these classes as having any relationship to each other, but implicitly we can see that they meet
our minimum bar for subtyping: that one can be used in place of the other.

Aside: “Valediction” is to “greeting” as “goodbye” is to “hello”: it’s a word for words and phrases of parting.

A language in which that minimum bar is the only bar is said to employ structural subtyping. Assuming that
the signature function in our formal model extracts the signature of a method, we can write a rule for subtyping.
In the following rule, let the metavariables F and M range over field lists and methods, respectively, and assume
that our class syntax has no explicit subtyping specified:

T_Structural
τ1 = x[F1M1,1M1,2 · · ·M1,n] τ2 = y[F2M2,1M2,2 · · ·M2,m]

∀v ∈ (1, n).∃w ∈ (1,m).signature(M1,v) = signature(M2,w)

τ2 <: τ1

We can break down this rule into several parts. The first and second premise simply state that τ1 and τ2 are types
referring to classes x and y, respectively. Class x contains methods M1,1 to M1,n, and class y contains methods
M2,1 to M2,m. The third premise is the important one: if, for every method M1,∗, there exists a method M2,∗
with the same signature, then τ2 is a subtype of τ1. The particular quantifications are very important here. Every
method in τ1 must have a corresponding method in τ2, but the reverse is not true. Thus, a τ2 may be used in place
of a τ1, but a τ1 cannot (necessarily) be used in place of a τ2. Note that we haven’t discussed fields; we’ll get to
why when we discuss encapsulation, in Section ??.

Structural subtyping is uncommon in practice, for pragmatic reasons of implementation which we will address
when we discuss nominal typing. Structural subtyping is sometimes also called duck typing—if it looks like a duck
and quacks like a duck, it’s a duck—but “duck typing” is more frequently used to describe an informal sense of
types in a dynamically typed language than a static type system. A static type system can certainly be structural,
but would usually not be called duck-typed.

Structural subtyping is distinct from parametric polymorphism by the presence of a hierarchy. In parametric
polymorphism, a function with type parameter α must work for any substitution of α. Thus, it’s more common

CS442: Module 8: Object-Oriented Programming 11

to use parameters in which α forms part of some larger type, such as α → α, since α is essentially a black box,
and α → α can at least do something. In a structurally subtyped inclusion-polymorphic language, if a method’s
parameter has type τ , it may get a value of a subtype of τ , but it can still count on having a definition for τ that
holds.

The <: relationship in structural subtyping is naturally reflexive and transitive. τ1 will definitely have the same
methods as τ1 (reflexivity). If τ3 has all the methods of τ2, and τ2 has all the methods of τ1, then τ3 clearly has
all the methods of τ1 (transitivity). However, we do not need explicit rules for reflexivity and transitivity, as these
arise naturally from the T_Structural rule.

5.2 Nominal Subtyping

When we looked at structural typing, we left out any explicit specification of subclasses. In nominal subtyping, that
explicit specification is the subtyping relationship. That is, τ1 <: τ2 if τ1 was explicitly specified to be a subclass of
τ2. The only other type rules needed are reflexivity and transitivity, which must be explicitly specified in nominal
type judgments.

For nominal typing to make any sense, we must have a way to explicitly declare subtype relationships, and as we
already saw, Smalltalk has this: every class is declared as a subclass of another class, and if class a is a subclass of
class b, then the type represented by a is a subtype of the type represented by b. Like with subtypes and supertypes,
if a is a subclass of b, we say that b is a superclass of a. We don’t define the superclass relationship as reflexive,
however: a class is not a subclass of itself. For instance, we could declare several classes like so:

1 Object subclass: Greeter [
2 greeting ^<String> [...]
3]
4

5 Greeter subclass: Parter [
6 valediction ^<String> [...]
7]

We haven’t explicitly given Parter the structure of Greeter, but it implicitly has the structure of Greeter because of
inheritance, so the basic requirement of subtyping is satisfied: a Parter can take the place of a Greeter. Inheritance
automatically gave us a sufficient relationship for subtyping, so nominal subtyping is simply using the inheritance
relationship as the subtyping relationship.

Exercise 2. Write the rules for <: in nominally typed Smalltalk. Remember, <: must be transitive and reflexive!

We’ve said that classes are defined as subclasses of other classes, but this leaves a question: how do we define
our first class? Object-oriented languages have two answers:

1. In many languages in which classes are “bolted on” to an existing imperative language, such as C++, classes
may be defined without any superclass. These classes inherit nothing, and as a consequence, there are no
methods shared by every class in the entire system.

2. In most languages which were designed to be object oriented from the beginning, such as Smalltalk and Java,
there is a single class, typically called Object, which is defined a priori by the language implementation. There
is no way for a programmer to define a class without a superclass, so the Object class is unique, and cannot
actually be written in the language. This allows the language designer to ensure that some methods are
available on every object, such as GNU Smalltalk’s display method.

Nominal subtyping is usually justified by implementation concerns, rather than theory, as it’s strictly more
restrictive than structural subtyping. So, let’s discuss those implementation concerns.

When we compile Smalltalk code, we have to decide how we’re going to call methods on objects. Thus, we have
to have some way, given an object, to find a given method for that object. One solution would be to remember every
method’s name, and use a hash map stored in the object to map every method name to its machine code. This is
viable, but it can be too slow, or more importantly, its performance can be too unpredictable for most language
implementations.

CS442: Module 8: Object-Oriented Programming 12

Instead, classes are compiled into virtual tables (also called vtables or vtbls), which are simply arrays of pointers
to machine code. Every method gets an index in this array, typically simply in the order that they appear in the
source code. For instance, the Greeter class above would have a virtual table with one element, which points to the
machine code for greeting. If we know from our type judgment that a given value has Greeter as its type, then we
know which element of its virtual table corresponds to greeting. Without subtyping, this is sufficient: remember,
a type is just a set of values, so the Greeter type is all objects created as Greeters, and all Greeters will naturally
be created with Greeter’s virtual table.

To support subclasses, all we need to do is make a subclass’s virtual table compatible with its immediate
superclass’s virtual table. Since it inherited the methods anyway, that’s simple: the virtual table for Parter has two
elements, of which the first points to greeting, and the second points to valediction. Now, every Parter behaves
like a Greeter, because the first element of its virtual table is a greeting method, and a Parter simply has a second
method in an index that would never be used by a simple Greeter. If we had overridden Parter’s implementation
of greeting, we would put that in the first slot of the virtual table, regardless of the order in which it was defined,
to guarantee compatibility with Greeter.

This virtual table design works well, but makes structural subtyping essentially impossible. The compatibility
between two virtual tables depends not just on the types of all the methods of their classes, but the order in which
they happen to be declared, which is irrelevant for structural subtyping. For instance, HelloEN and HelloFR would
have incompatible virtual tables. Thus, the desire for well-performing implementations spurred on a desire for
nominal subtyping.

It is not impossible to implement similar optimizations in a structurally typed language—indeed, this is done
for modern dynamic languages such as JavaScript, and for structural subsets of languages like Java—thanks to
just-in-time compilation (JIT) and type profiling, but these are beyond the scope of this course.

Aside: While beyond the scope of this course, JIT compilation is the instructor’s area of expertise, so if you
want to know more, he’d be happy to spend countless hours telling you more.

Although the most frequent argument for nominal typing is practical, there is also an argument about usability:
structural subtyping can sometimes render accidental relationships between classes. In nominal typing, subtyping
is never an accident, since it’s always explicitly specified.

6 Smalltalk’s Weird Methods

Smalltalk has a very unusual method syntax. However, it’s superficial: there’s nothing about its unusual method
syntax that makes methods behave any differently in Smalltalk than they do in any other programming language.

Methods in Smalltalk take three forms: nullary methods (taking no arguments), operators, and n-ary methods.

Nullary methods are simply named by an identifier, such as area, and are called by placing the name next to
the target object, such as x area.

Operators are named by symbols, but are otherwise just methods. In Smalltalk, 2 * 2 is a call to the * method
on the Number object 2, with argument 2.

The signature of an n-array methods in Smalltalk is given with a sequence of pairs of a partial method
name and a parameter name. For instance, the setWidth: w setHeight: h signature is for a method with name
setWidth:setHeight:, and parameters w and h. In a language like Java, this method would probably be written
setWidthAndHeight(x, y), but the difference is superficial. When Smalltalk code is compiled, it shuffles these parts
around to recognize the name setWidth:setHeight:, and that is (usually) used internally as the method’s name.

As specified all the way back in Module 1, we can also write Rectangle>>setWidth:setHeight: to indicate
specifically the setWidth:setHeight: method of Rectangle.

CS442: Module 8: Object-Oriented Programming 13

7 Subtyping and Methods

We haven’t yet mentioned method types. At a basic level, method types are exactly the same as procedure types:
a list of parameter types. Methods are procedures which return values (typically), so in addition, we need a return
type. Thus, we can write a procedure type as (τ1, τ2, · · · , τn) → τr, where τ1 through τn are the parameter types,
and τr is its return type.

With non-object-oriented procedural languages, one could imagine a procedure being curried (and thus repre-
sented as τ1 → τ2 → · · · → τr instead), though very few, if any, languages like this actually exist5. With methods,
the same does not apply, because methods are not values.

A method is called on an object. That object cannot then return a method, because that method would be
naked; it would have no object to call it on. Many object-oriented languages support functions, so that those
functions can be values when methods cannot; but, many don’t.

The fact that methods are not values makes method types a bit of a dubious proposition. We said that types
are sets of values, but now we’ve said that methods aren’t values at all. In fact, method types aren’t complete
types: they only exist as part of object types. An object’s type is defined by its class, which contains methods; no
expression can have a method type, but method types nonetheless exist, bound up within object types.

Method types themselves aren’t complicated, and are usually written explicitly. For instance, the Rectangle>>
setWidth: method would be written in Strongtalk as
setWidth: v <Number> ^<Rectangle> [...]

Smalltalk has no unit type, so the typical return type from a method that doesn’t need to return anything is the
type of the surrounding class, and the default return value is self. This method’s type is (Number) → Rectangle.

Note that the hidden parameter—self—does not represent any part of this type! That’s because it doesn’t need
to: remember that method types are part of their surrounding object types, so the type of the hidden parameter is
implied. There are no naked methods.

Now, let’s look at Square>>setWidth:. It would be written in Strongtalk as
setWidth: v <Number> ^<Square> [...]

This method’s type is (Number) → Square. But wait, Rectangle>>setWidth:’s type was (Number) → Rectangle, and
that’s not quite the same. We said that subtypes would depend on the signatures of the methods being the same,
but this signature is not the same! We need a concept of method compatibility, and with it, method subtyping.

The goal of subtyping is that if τ1 <: τ2, then a value of type τ1 can be used in the place of a value of type τ2.
The same is true of method subtyping: we want a method type τ1 to be a subtype of τ2 if τ1 can be used in place
of τ2. But, when is this true?

First, let’s consider the return. Square>>setWidth: returns a Square, but Rectangle>>setWidth: was expected to
return a Rectangle. This isn’t actually a problem, though: Squares are Rectangles! The return type is compatible
so long as it’s a subtype, so we can fill in part of our subtyping relationship:

??? τ1,r <: τ2,r

(τ1,1, τ1,2, · · · , τ1,n) → τ1,r <: (τ2,1, τ2,2, · · · , τ2,n) → τ2,r

For a method type to be a subtype, its return type must be a subtype.

Now, let’s consider the parameters. At a bare minimum, we can insist that the number of parameters must be
the same. In fact, in Smalltalk, it’s not even possible for the name to be the same if the number of parameters isn’t
the same. Thus, we need to consider how we’re allowed to override a given parameter type.

Consider overriding Square>>setWidth: to take an Object as its argument instead of a Number. Object is the
top of our type hierarchy, so Number <: Object. As a consequence, this wouldn’t break anything: we can still

5I don’t know why few languages like this exist, but to proffer a guess, it’s probably because currying makes it unclear when a function
is actually run, but that doesn’t matter in a referentially transparent language. Procedural languages are not generally referentially
transparent, so it’s very important to be abundantly clear when a procedure is actually executed.

CS442: Module 8: Object-Oriented Programming 14

take all the argument values that Rectangle>>setWidth: can take, we can just accept more. The reverse, however,
isn’t true: if Square>>setWidth: took Float as its argument (Float <: Number), then we wouldn’t be able to use
Square>>setWidth: in all the ways we could use Rectangle:setWidth: (i.e., we couldn’t pass it any other number
type), so we can’t allow a subtype. What’s surprising about this, however, it that it’s in reverse. It was safe for
Square>>setWidth:, in a subtype of Rectangle>>setWidth:, to take a supertype of Number as its argument!

With this surprise, we may now fill in the rest of our subtyping relationship:

∀v ∈ (1, N).τ2,v <: τ1,v τ1,r <: τ2,r

(τ1,1, τ1,2, · · · , τ1,n) → τ1,r <: (τ2,1, τ2,2, · · · , τ2,n) → τ2,r

Note how the type requirement for the parameters is the inverse of the requirement for the return: the parameter
types on the right must be subtypes of the parameter types on the left, while the return type on the left must be
a subtype of the return type on the right. This reversal of the subtyping relationship of embedded types within
a constructed type is called contravariance, and when the relationship is not reversed, we call it covariance. An
additional possibility is invariance, which we will discuss in Section ??.

There’s one final corner to discuss: What about that hidden parameter, self? The type of self in Square>>
setWidth: is Square, since Square>>setWidth: will always be called on Squares. Similarly, the type of self in
Rectangle>>setWidth: is Rectangle. So, the hidden parameter type is covariant, even though the other parameter
types are contravariant! In fact, this corner is why it’s often confusing to think of the target as a hidden parameter.
The reason we can confidently define self’s type as Square within Square>>setWidth: is precisely because it’s not
actually an argument, but the target: the very fact that we found this method means self must have been a Square.
This is also why it’s necessary that methods cannot be values: if you were to strip a method from its object and
call it on some other object, you would need to know, for instance, that you’d stripped it from a Square, even if the
type system said it was a Rectangle. This odd typing anomaly of self itself is part of why the target is usually not
included in a method’s signature.

8 Fields and Encapsulation

One of the principles of object-oriented programming is that the details of how a particular object works should
be hidden, so that those details can be changed without needing to change the interface. The interface is whatever
part of an object is accessible from outside that object; but, what should it be? Generally speaking, an object’s
methods are accessible from outside the object, as otherwise they’d be rather useless. Many languages allow specific
methods to be marked private, which makes them only accessible from other methods within the object.

But, what about fields?

First, let’s consider the most open option, by making all fields accessible from outside the object. What this
means is that objects truly behave like records, but with methods. This completely breaks our principle of hiding
the implementation, since every aspect if it is bared to all users, but that’s just a principle, not a rule.

If we do allow all fields to be fully accessible, what does this mean for typing objects? Let’s expand our Rectangle
type from above to be explicit about the width and height fields:
Object subclass: Rectangle [

| width <Number> height <Number> |
...

]

We don’t need to add any fields to Square, because it inherits these fields from Rectangle. And, let’s imagine an
expanded Strongtalk syntax that allows you to access fields of objects other than self using an ASCII arrow, e.g.,
r->width. So, we could forcibly set the width of a rectangle (or square!) to 10 with r->width := 10, and get the
width directly.

Now, let’s consider a new class, IntSquare. In Strongtalk (and Smalltalk), Integer is a subtype of Number, so
we might quite reasonably want a square with integer width and height, an IntSquare, to be a subclass of Square.
We define it as follows, assuming that in this unlikely version of Strongtalk, we can override fields in the same way
that we override methods:

CS442: Module 8: Object-Oriented Programming 15

Square subclass: IntSquare [
| width <Integer> height <Integer> |
...

]

And now, let’s look at an unrelated method that expands a rectangle by a factor of 1.5:
expandRectangle: r <Rectangle> ^<Rectangle> [

r->width := r->width * 1.5.
r->height := r->height * 1.5.
^r

]

But now, we have a problem. What happens if we call the expandRectangle: method with an IntSquare as its
argument? We’ll attempt to set width to a floating-point number (probably), but this doesn’t work; an IntSquare’s
width field is of type Integer! So, we can’t possibly let field overrides be covariant.

Well, if field overrides can’t be covariant, how about contravariant? Let’s imagine a new kind of square, that’s
not as restrictive about the sides being defined by boring numbers. AbstractSquare will allow the sides to be of any
object type (but don’t ask what this actually means):
Square subclass: AbstractSquare [

| width <Object> height <Object> |
]

Unfortunately, this still doesn’t work. If we pass an AbstractSquare to expandRectangle:, it attempts to call the *
method on an Object, and so fails.

In fact, the only way we can define a width field in the subclass is with exactly the same type as in the superclass.
We call this requirement type invariance, and because of it, there’s no reason to allow field overrides at all: if you
can only “override” the field by declaring an identical field, then there’s no real overriding being done.

Invariance also comes up if we have OCaml-style references in a language with method (or function) subtyping:
ref τ1 is only a subtype of ref τ2 if τ1 = τ2.

Exercise 3. Work out why OCaml-style references require invariant typing. You may want to imagine a reference
class with methods put and get.

Recall that this entire discussion was in the context that we make fields completely open. Smalltalk takes the
most opposite approach: fields are completely private; you can’t even access the fields of a superclass in a subclass!
This fits the design goal of hiding implementation details well, since even if you inherit from a class, you can’t touch
its fields, but it’s also fairly inflexible. Because fields are private to particular classes, you can even define fields
with the same name in a subclass. The field doesn’t override, it’s just a totally distinct field: Rectangle>>width is
a different field from IntSquare>>width, and when a method in Rectangle reads width, it will only find its own.

Weirdly, although Smalltalk fields are as private as possible, Smalltalk doesn’t even support private methods.
All methods in Smalltalk are usable by anyone with a reference to the object. Software which intends to be more
controlled works around this by defining an interface class (sometimes called a proxy class) and an implementation
class for all public types, where the interface class has a field reference to the implementation class, and exposes
only the methods intended to be public.

Most programming languages choose a compromise somewhere between Smalltalk and our hypothetical all-open
language, allowing individual fields and methods to be declared private or public.

Because, as we’ve now said many times, the purpose of the subtyping relationship τ1 <: τ2 is to ensure that
a τ1 can be used anywhere where a τ2 is expected, field and method privacy also affects subtyping. The effect is
quite simple, though: we can simply disregard all private fields and methods, since they don’t affect the public
interface of objects. This is also why we disregarded fields entirely while describing <:: fields are completely private
in Smalltalk.

CS442: Module 8: Object-Oriented Programming 16

9 Overloading

In Smalltalk, an object may have two fields with the same name. This is possible if the fields are defined on different
classes, and works because it’s completely unambiguous which field is meant in any context, since methods of a
class may only access the class’s own fields, and not any superclass’s fields. This is one kind of overloading. Most
statically typed object-oriented languages also allow method overloading. Strongtalk does not, but we will use its
syntax to describe the idea.

Broadly, overloading is a facility by which different entities in the same context can share the same name.
Overloading is one (very limited) form of polymorphism, so an object-oriented language with overloading is mainly
inclusion-polymorphic, and secondarily overloading-polymorphic. References to the shared name are disambiguated
by information from the context of the reference. In the case of overloaded methods, the compiler examines the
number and type of the arguments passed to the method, and in some languages, also the return type of the method.
It then selects the instance of the shared name that best fits. If there is no match, or if there are multiple matches,
the compiler signals an error. The process of disambiguating references to overloaded names is known as overload
resolution.

In Smalltalk, the number of arguments to a method is part of the name of the method, so it’s meaningless for
two methods with the same name to have a different number of arguments. However, we could imagine defining
methods with the same name but different argument types.

Consider a Strongtalk class for handling money in dollars and cents, with a method for adding two dollar
amounts together:

1 Object subclass: Money [
2 | dollars <Integer> cents <Integer> |
3

4 Money class >> withDollars: d cents: c [
5 " ... constructor ... "
6]
7

8 dollars ^<Integer> [^dollars]
9 cents ^<Integer> [^cents]

10

11 + second <Money> ^<Money> [
12 | d c |
13 d := dollars + second dollars.
14 c := cents + second cents.
15 c > 100 ifTrue: [
16 d := d + 1.
17 c := c - 100.
18].
19 ^Money withDollars: d cents: c
20]
21]

For pragmatic reasons, it may also be useful to add an amount of money specified as a number. With support for
method overloading, we could simply define a second + method, this time taking a Number as an argument:
...

+ second <Number> ^<Money> [
" ... round second's cents, perform the addition, etc... "

]
...

Now, consider the expression m + 42. This is a call to the + method on m (which we will assume is a Money), with
42 as an argument. Assuming the compiler is doing its job, it should know the types of m and 42: Money and Integer,
respectively. Since m’s type is an object type—indeed, all values are objects in Smalltalk—its type is defined by a
class. Looking into this class, the compiler finds two + methods: one expecting a Money as an argument, and one
expecting a Number. 42 is neither a Money nor a Number, which on the surface is a problem. An ideal method would
be of some type (Integer) → Object (Object because in this context, we don’t care what the return type is), but
our options are (Money) → Money and (Number) → Money. Subtyping can rescue us again: we need a method that
can take an Integer as an argument, so we need a method with an argument type which is a supertype of Integer.
Indeed, we need a method which is itself a subtype of our ideal method type! (Number) → Money <: (Integer) →
Object, so we select that version of the method.

CS442: Module 8: Object-Oriented Programming 17

Overload resolution can get vastly more complicated than this. For instance, if we had a version of + for Number,
but a third version of + for Integer specifically, then both of those methods fit a call with an Integer argument.
In some languages, this ambiguity is simply disallowed, or the call is not allowed if it has multiple matches. In
other languages, such as C++, there is an algorithm by which a “closest match” is chosen, but that algorithm is
not always intuitive or obvious.

Method overloading introduces several complications which may not be immediately obvious. Almost without
realizing it, we’ve lost a useful feature: erasability! With System F, for example, we could erase all of our types,
and our semantics would behave exactly the same. Until method overloading, the same was true of procedural and
object-oriented types. This is so because while classes define types, classes are not types in and of themselves; all
type declarations can still be erased. Indeed, erasing all type declarations from Strongtalk yields Smalltalk, and
that fact is part of why Strongtalk doesn’t allow method overloading.

With method overloading, types actually affect compiled code: we need to know which overloaded method to
call, and the only way to decide is with the types. This causes difficulty both for our formal semantics, which don’t
usually mix types and semantics, and for a language implementation, which often needs to have a unique name
for a method simply to generate code. We typically resolve this in our formal semantics by ignoring it: for all its
usability benefits, method overloading isn’t semantically very interesting, so is typically left out of semantics for
object-oriented languages. In implementations, this is resolved by having a type-directed compilation step called
name mangling.

Name mangling is simply a renaming stage in which methods (or anything else with overriding allowing conflicts)
are renamed to system-generated names containing their surrounding class’s name, the types of all of the arguments,
and, if it’s used in overloading, the return type. In fact, every time we’ve specified a field or method with >>, we’ve
been performing a light form of name mangling. A Strongtalk-with-overloading compiler could rename + on numbers
as, for instance, Money>>+<Number>. Name mangling may also involve reducing the character set of mangled names,
usually for platform-specific reasons such as label names in assembly code, in which case +’s name could instead
become, say, _ZN5MoneyplE6Number. It’s not worth trying to disentangle this particular name (it was generated
by GNU C++); it’s just an example of character-set-reduced name mangling.

9.1 Parametric and Overloading Polymorphism

We’ve only mentioned overloading polymorphism now, in the object-orientation module. Overloading is perfectly
compatible with imperative languages, as well, and many imperative languages allow procedure overloading.

Parametric polymorphism and overloading polymorphism aren’t inherently incompatible, but they don’t work
well together. For instance, in Java, a generic class cannot overload Object and the type parameter in the same
method, because the resulting rules on choosing and overload would be ambiguous.

However, there is a more pressing reason why most parametric polymorphic languages don’t have overloading:
most parametric polymorphic languages are curried, and currying is difficult or impossible to reconcile with over-
loading. If a function is overloaded on its second parameter, but the language is curried, then there must be some
way to pass in the first argument and get a function. That function would have an unresolved overload, since
the second, type-overloaded argument hasn’t been given yet. An unresolved overload is a set of functions, not a
function, so it’s not a value. The same problem arose with type inference: an unresolved polymorphic type cannot
be a value.

10 Completing The Type Hierarchy

Now that our types form subtypes in a hierarchy, we can discuss the extreme points of that hierarchy.

We’ve already talked about Object, the root of the hierarchy. In Smalltalk, because every class must be declared
as a subclass of some other class except for Object, every class is, unavoidably, a subclass (directly or indirectly)
of Object, and thus every value is a subtype of Object. Object forms the top of our type hierarchy, as ∀C.C <:
Object. The top of a type hierarchy is written as ⊤, which is not a capital T, because mathematicians love creating
as many nearly-indistinguishable symbols as possible.

CS442: Module 8: Object-Oriented Programming 18

Many object-oriented languages do not have Object as the root of their hierarchy, and many mix objects with
other kinds of data. For instance, in C++, there is no root of the class hierarchy, and in both C++ and Java,
simple primitive values such as ints aren’t objects at all. Even in a language like Smalltalk, where numbers are
objects, to define the semantics of numbers, we need to eventually describe them in terms of actual, mathematical
numbers, which are not objects. In these cases, is there a top of the hierarchy? Should there be?

Aside: As an implementation detail, no Smalltalk implementation actually allocates objects for most numbers
used in Smalltalk, and so the actual value at run-time is not a reference to any object. Yet, the language still
acts as if they’re references. Since object-oriented languages such as Smalltalk hide the implementation details
of objects regardless, it’s possible to have the user language remain purely OO but implement faster numbers
as a transparent optimization.

C++’s answer is no. As a consequence, on the surface, it may seem impossible to write a C++ procedure
which accepts any value as an argument, but in fact, C++ implements a form of parametric polymorphism called
templates to get around this problem. We’ll talk a bit about templates in Section ??.

Java uses another form of polymorphism to paper over the problem of ⊤: coercion. Coercion is an ad hoc form
of polymorphism in which values of some types are allowed to take the place of values of another type by converting
them at run-time. For instance, in Smalltalk, if you add 3 + 0.14, because the underlying machine can only add
together two integers or two floating-point numbers, the integer 3 is first converted into a floating-point value. In
Java, as well as numeric type coercions like that, all non-object types are coercible into object types. For instance,
if you write Object o = 42; in Java, then it will insert code to create an instance of the Integer class, which is a
subclass of Object. In this way, even though int is not explicitly a subclass of Object, an int can be used anywhere
an Object is expected, by coercion. By defining <: with both nominal types and coercion in mind, we restore Object
as the root of the type hierarchy. Note that coercion is not erasable.

Aside: Java also implements overloading, so Java has inclusion polymorphism, overloading polymorphism,
and coercion polymorphism! If you’re keeping score, that’s three of the four forms of polymorphism from
the Cardelli-Wegner polymorphism hierarchy discussed in Module 4. Now, if only we can get parametric
polymorphism too...

We’ve found the top of the type hierarchy. Is there a bottom? That is, is there some type τ which is the subtype
of every possible type? Again, different languages have different answers; in fact, it’s even more divisive than the
top type. In any case, the bottom type is written ⊥.

One answer is that bottom is the type of errors, exceptions, failures, and infinite loops. That is, it’s the type we
give to an expression that will not produce a value, or will not produce a “normal” value. This is Haskell’s answer,
and fits typing well, because it allows that any expression could have such an error.

A second answer is simply that there needn’t be a bottom type. With inclusion polymorphism, the bottom
type is odd anyway: it would need to be able to take the place of any type in the entire system, and thus would
presumably have to have every defined method, and more generally, every conceivable method. Given that a value
cannot have every conceivable method, we can simply reject the idea of a bottom type. The only problem with
this answer is the initialization problem from Module 7: if an object of a class has all the fields defined in that
class, what are their values before you’ve first assigned them? With object orientation, this problem only gets more
difficult to solve: how can we set up a complicated object hierarchy with interactive, even cyclic, object references,
if we’re also not allowed to set an object’s fields directly? There is no satisfying answer to this question, and it
remains the subject of active research.

The third answer is both the most controversial and the most popular: null.

“I call it my billion-dollar mistake. It was the invention of the null reference in 1965.”

— Tony Hoare

The null reference is written in different ways in different languages: nullptr, null, nil, etc. We’ll use nil,
because that’s Smalltalk’s name for it. nil is both a type and a value, and there is only one value of type nil: nil.

CS442: Module 8: Object-Oriented Programming 19

nil is an object with no methods and no fields6. And ∀τ. nil <: τ . The fact that nil is a subtype of every other
type doesn’t arise from the typing rules; indeed, it makes no sense! How can a type with no interface be a subtype
of every other type? The answer is, because it’s an axiom:

T_Nil nil <: τ

We simply allow nil to be taken as any type, by fiat.

This, of course, breaks the entire concept of typing. The goal of type checking is to prevent the semantics from
getting stuck (and thus, presumably, prevent the implementation from crashing, or needing to consider badly-typed
cases, etc), but how can the semantics possibly not get stuck if we try to call a method on a value that has no
methods? The answer is, it gets stuck. And, the implementation usually crashes or throws an exception.

So, why add this problematic ⊥ type, nil, if it breaks our type safety and causes crashes at run-time?

“... At that time, I was designing the first comprehensive type system for references in an object oriented
language (ALGOL W). My goal was to ensure that all use of references should be absolutely safe, with
checking performed automatically by the compiler. But I couldn’t resist the temptation to put in a null
reference, simply because it was so easy to implement. This has led to innumerable errors, vulnerabilities,
and system crashes, which have probably caused a billion dollars of pain and damage in the last forty
years.”

— Tony Hoare

An answer to this question that’s less self-flagellating than Tony Hoare’s is the initialization problem. nil gives
us a powerful aid in initialization: a default value. Since nil is a subtype of every type, we can set every field to
nil to start with, and leave the problem of correct initialization to the programmer!

An amusing second consequence of nil is that every proof of type safety of an object-oriented language with nil
has an extra caveat: an expression will yield a value of the judged type, reduce forever, or attempt to dereference
null. Oh well; except-for-null type safety is almost type safety I suppose.

11 Casting and Recovering Types

Notice that in our semantics, every object in the heap carries with it the name of its class. This is a form of run-time
type information, and it allows us to recover type information. It is, of course, another way in which types are
usually not erased in object-oriented languages.

For instance, consider the following snippet of Strongtalk code:
1 Object subclass: IntHider [
2 | value <Integer> |
3

4 add: x <Number> [
5 value := value + x.
6]
7]

This may seem fine, but actually contains a type error! We’re adding an Integer to a Number, so the result is a
Number, not an Integer! In fact, because of Strongtalk’s lack of overloading, this would occur even if x were defined
as an Integer. Most object-oriented languages provide some kind of run-time type checking and casting, by which
we can check if a value has a particular type, and ascribe it that type, respectively. Strongtalk doesn’t, so we’ll
have to imagine syntax for it:

6Actually, in Smalltalk, nil is of the Undefined class, because Smalltalk wouldn’t dare make anything not be a class, but this bit
of knowledge is in no way useful to understanding nil.

CS442: Module 8: Object-Oriented Programming 20

1 Object subclass: IntHider [
2 | value <Integer> |
3

4 add: x <Number> [
5 | v <Number> |
6 v := value + x.
7 v is<Integer> ifTrue: [
8 value := v <Integer>.
9] ifFalse: [

10 self halt. " unrecoverable, crash "
11].
12]
13]

v is a Number, so the assignment to v is allowed. The is<Integer> is an imagined syntax for checking if v is of the
class Integer, and v <Integer> is a similarly imagined syntax for casting.

Type checking involves looking in the run-time type information to validate the type. Because of inheritance,
this means looking through an entire chain of classes. This also means that some information needs to be stored
about classes in the run-time system. In most object-oriented languages, Class is a class, and classes are elements
of that class, so that the run-time system can look information like this up. Thus, the Class class contains a method
something like this:

1 isSubclassOf: query <Class> [
2 self = query ifTrue: [^true].
3 superclass isNil ifTrue: [^false]. " we've reached the root of the object hierarchy "
4 ^superclass isSubclassOf: query
5]

Casting, which we’ve written as v <Integer>, gives the expression v <Integer> the type Integer, but at run-
time, performs a check, so that the type is guaranteed to be correct. If the check succeeds, then this expression is
the same as v; the cast doesn’t do anything. If the check fails, though, the behavior depends on the language. Some
languages evaluate to nil, since nil is of every type. Others raise an error, which yields yet another exception to
type safety in object-oriented languages: an expression will yield a value of the judged type, reduce forever, attempt
to dereference null, or perform an incorrect cast.

Me: Can we get some type safety?
Mom: We have type safety at home.

Type safety at home:

“We prove a type soundness result for FJ: if a well-typed expression e reduces to a normal form [...]
then the normal form is either a well-typed value [...] whose type is a subtype of the type of e, or
stuck at a failing typecast.” — Featherweight Java?, emphasis added

Yet another solution is flow typing, which allows us to eschew casting entirely. If we examine the code with
knowledge of how is<Integer> works, then it’s clear that in the ifTrue: block, v must be an integer. A flow-typing-
based type checker would give v the type Integer in that block, and the type Number everywhere else. Flow typing
requires considering many more and more complex cases (consider loops, for instance), and is beyond the scope of
this course.

CS442: Module 8: Object-Oriented Programming 21

12 Generics

Consider a class defining a linear linked list:
1 Object subclass: List [
2 | el next |
3 " constructor... "
4

5 setEl: to [
6 el := to.
7]
8

9 el [^el]
10

11 setNext: to [
12 next := to.
13]
14

15 next [^next]
16]

If we want to give this class types, that’s relatively easy for next—it’s a List—but what about el? We could make
el of type Object, and we would then be able to store anything in our list, but presumably anyone using the List
type knew specifically what they were storing. Setting el to something so generic would force every user of the
class to cast every time they retrieve an element from the list, which is unfortunate. If we make el a more specific
type, then our list would only be useful for that type.

We’ve actually already seen the solution: parametric polymorphism. Recall that in System F, we can define
a function over types, a Λ (capital lambda, second-order lambda) function. A Λ function isn’t directly usable as
a λ-calculus function, because a type must be supplied first. In object orientation, the same concept exists over
classes: generics.

A generic is a family of classes, defined by a function over types. To get an actual class, you need to call that
function with a type as its arguments. Like in System F, the syntax for these type functions is distinct from the
syntax for normal functions: in Strongtalk, we declare and call a type function with square brackets. Let’s rewrite
List to use generics:

1 Object subclass: List[A] [
2 | el <A> next <List[A]> |
3 " constructor... "
4

5 setEl: to <A> [
6 el := to.
7]
8

9 el ^<A> [^el]
10

11 setNext: to <List[A]> [
12 next := to.
13]
14

15 next ^<List[A]> [^next]
16]

A here is not a specific class, but any class; it’s a type variable. List is not a class, but a family of classes. To get
a specific class, we instantiate List with a specific type argument, such as List[Integer]. Like Λ-abstractions in
System F, this is simply done by substitution, in this case substituting A for Integer, like so:

1 Object subclass: List[Integer] [
2 | el <Integer> next <List[Integer]> |
3 ...
4]

Of course, one never explicitly writes the above code; it’s merely the result of using List[Integer]. As a result,
we only need to write the structure of a list once, and it is then instantiated into as many specific list types as the
program needs. Note that since List is not itself a class, it isn’t a type either. List[Integer] is a type.

Generics raise some type-theoretic issues. First, there’s the question of when to type-check a generic class: we

CS442: Module 8: Object-Oriented Programming 22

can type check the class with no specific type for the parameter type, but then the parameter type is completely
opaque. Or, we can type check it only when it is used with a specific type as argument, which allows it to be defined
only for argument classes with the right interface, but means we can’t type check it unless or until it’s used.

The bigger question is, is List[Integer] <: List[Number]? It can’t be, because that would allow the setEl:
method to be used wrongly. Then, is List[Number] <: List[Integer]? Again, it can’t be; in this case, el would
return the wrong type. In most languages, generic types are invariant over their parameter types for this reason.
Some languages instead allow parameter types to be declared as explicitly covariant or contravariant. An explicitly
covariant parameter type cannot be used in a method argument, because its actual type may be a supertype of its
specified type. An explicitly contravariant parameter type cannot be used in a method’s return. Neither may be
used as a field.

Generics are erasable, in that a generic family of classes can be replaced with a single class if all types are
removed. However, types aren’t generally erasable in object-oriented languages, so erasing generic types can cause
problems. For reasons of backwards compatibility, Java’s generic types are erased, but as a consequence, casts
between different, e.g., List types are allowed, causing errors when they’re used.

Aside: If generics are a form of parametric polymorphism, and Java has generics... yes, that’s right, Java has
inclusion polymorphism, overloading polymorphism, coercion polymorphism and parametric polymorphism!
That’s all four forms in the Cardelli-Wegner polymorphism hierarchy, bingo! Presumably, someone at Sun
asked “what sort of polymorphism should Java support?”, and the response was “yes”.

Generics are defined over a specific class, e.g., List[A]. If we extend it to any number of classes, or procedures,
etc, we get templates, which are C++’s equivalent. Although this makes templates very powerful, they’re actually
exactly what we already had with Λ-abstractions; it’s generics that restricted this. Thus, templates aren’t distinct
from our perspective, so we won’t discuss them further. We can simply consider “template” as another name for
“generic”.

13 Multiple Inheritance

Some object-oriented languages permit multiple inheritance, by which a class may inherit code from more than one
other class. For instance, we could imagine writing
(Money, Rectangle) subclass: Wallet [...]

to create a Wallet class which is both a Money and a Rectangle.

Multiple inheritance poses semantic problems when a class inherits from two or more classes that define methods
with the same name. Consider, for instance, adding + to Rectangle, so that we can add two rectangles together.
Given v1 of type Wallet, what is the meaning of v1 + v2? It could mean either. Overloading could provide a
solution—after all, the two versions of + don’t have the same argument type—but even that falls flat: what if v2
is also a wallet? There is no general answer to this conundrum. Most languages ban multiple inheritance entirely
because of it. Some make the conflicting method (in this case, +) unusable on the problematic class, requiring an
explicit cast to differentiate which method is meant. Some have explicit ways of stating preferences. And some,
including Strongtalk, have a specific ordering to multiple inheritance, with later superclasses having priority over
earlier ones7.

Another consequence of multiple inheritance is a phenomenon known as repeated inheritance. Suppose class A
inherits from classes B and C, each of which also inherits from a class D, which has a method g. Then A inherits g
twice: once through B and one through C. If g is not overridden in either B or C, then there is no problem; the two
gs can be merged into one, as they’re the same. On the other hand, if one of the classes, say C, overrides g, then
which should we prefer? Worse yet, what if both override g?

As bad as multiple inheritance is on our semantics, it’s much worse for implementation. Consider our virtual
tables, from Section ??. Virtual tables worked because subclasses could look like their parent classes in the first

7Actually, Strongtalk implements mixins, which aren’t quite the same as multiply-inherited classes, but are close enough for our
purposes.

CS442: Module 8: Object-Oriented Programming 23

elements of their virtual table, and then add their own methods afterwards. But, the virtual table for Money will
want dollars to be in the first element, and the virtual table for Rectangle will want setWidth: to be in the first
element, so how can we define a virtual table for Wallet? There are many solutions to this conundrum, and none
are very good.

A simple solution is to disallow multiple inheritance.

Another solution is multiple virtual tables. Java classes have one virtual table for their class, and an extra
virtual table for each interface they implement. In Java, an interface is a list of method signatures, with no bodies;
formally, then a Java class doesn’t inherit from an interface at all, since the interface doesn’t define any behavior,
which solves the name clash issue as well. The difficulty with multiple virtual tables is just looking them up. Classes
in Java contain a hash-map mapping interfaces to their virtual tables, and several layers of optimization to make
this a bit less terrible than it sounds.

Another solution is sparse virtual tables, used by many C++ compilers. If the compiler can see all of the classes
it needs to compile, then it can anticipate the multiple-inheritance problem, and intentionally define the virtual
tables for Money and Rectangle such that they don’t conflict, by giving Rectangle enough unused elements at the
beginning to fit a Money virtual table in as well, or vice-versa. Even in the best-case implementation, this will leave
gaps in the virtual table of one or the other, which is inefficient. But, there are very few virtual tables for very
many objects, so that inefficiency isn’t very important.

14 Blocks

In order for a language to be Turing-complete, it must have a way to represent decisions, and a way to repeat. In
structured imperative languages, this is the if statement. Smalltalk, in an effort to be more-object-oriented-than-
thou, instead opted for blocks.

You should be familiar with the syntax of blocks, and from our semantics above, their semantics as well. Their
semantics of blocks are unusual, and blocks always need to be specially handled, because they contain statements,
but those statements are in the context of the surrounding method. Thus, a block is not like a method, because
it’s nested within another method.

In Smalltalk, all blocks are objects of the Block class, which has a field containing the internal representation of
the block’s code. Thanks to encapsulation, the details of how the statements are actually stored do not need to be
exposed to the end user, similarly to the IO monad in Haskell.

Blocks may also define their own local variables, which raises the question, what happens if you evaluate a block
within itself? Most modern Smalltalk implementations treat blocks like procedures, creating multiple instances
of the variables the block contains (technically, multiple stack frames). But, this makes blocks slightly slower,
since they need to allocate and free space; classic Smalltalk implementations have only one instance of a block’s
variable per call to the surrounding method. Thus, this method will have different effects depending on the version
of Smalltalk:

1 | block |
2 block := [:then :x |
3 then value: [] value: 5.
4 x
5].
6 (block value: block value: 42) displayNl.

If only one x is allocated, this method will print 5, because the recursive call to itself has replaced the value of x.
If an x is allocated for each call, this method will print 42.

CS442: Module 8: Object-Oriented Programming 24

An even more unusual behavior of blocks is return statements. A block may contain return statements, and if
one is encountered, it returns from the surrounding method. This is odd for two reasons. To understand the first,
consider this example, in which we’ve explicitly defined True for context:

1 Boolean subtype: True [
2 ifTrue: block [
3 ^ block value
4]
5]
6

7 Object subclass: Foo [
8 foo [
9 true ifTrue: [

10 ^ 42
11]
12]
13]

When we call Foo>>foo, it calls True>>ifTrue: with the block on line 9 as an argument. True>>ifTrue:, in turn,
calls value, evaluating the block. The stack now looks something like this:
Foo>>foo
True>>ifTrue:
block from Foo>>foo

When that block evaluates its return statement, Foo>>foo returns, bypassing True>>ifTrue: entirely! So, Smalltalk
implementations need to be able to break out of multiple layers of the stack.

Aside: For those curious about implementation, this is done by having block objects contain a stack location,
and then (fairly brutishly) force the stack pointer to that location when they return. This technique wouldn’t
work in all languages; the alternative is to explicitly read and “unwind” the stack, which is what’s done by
exceptions in most languages that implement them.

Weirder still, since blocks are values, we can actually strip a block from its surrounding method, even if it
contains a return statement:
Object subclass: Bar [

bar [
^[^42]

]
]

Object subclass: Baf [
baf [

| x |
x := Bar new.
x := x bar.
x value. " Where does this block return from??? "

]
]

There is no good answer to the question of where a block removed from its surrounding method returns. Most just
raise an error. For instance, GNU Smalltalk will report:
Object: 42 error: return from a dead method context

15 Object-Based and Prototype-Based Languages

We’ve focused our attention on class-based languages, but a language does not need to be class-based to be object
oriented. We now turn our attention from class-based languages to object-based languages. Object-based languages
differ from class-based languages in that they lack an explicit “class” construction for defining groups of similar
objects. Many of the characteristics typical of object-based languages are outlined in a document known as The
Treaty of Orlando ?.

CS442: Module 8: Object-Oriented Programming 25

Proponents of object-based languages argue that a class is a rigid structure that establishes a template for all
future code reuse, thereby constraining the ways in which software may evolve. Thus, proper use of classes requires
some degree of foresight—a “vision” of the structure of the overall system. Consequently, in the early stages of
development, classes may get in the way; a design change may require that the entire class hierarchy of the system
be redesigned. Further, classes are not well suited to capturing idiosyncratic behaviour: an object that differs from
other objects in a class by some detail of its behavior requires that a new class be built to accommodate it.

On the other hand, as software projects mature, wholesale design changes are less likely to occur, and the
rigidity, strong typing, and stability provided by classes become more valuable. For these reasons, object-based
languages are often used for prototyping software systems in the early stage of their development (indeed, object-
based languages are sometimes referred to as “prototyping” languages), while the final production system might be
written in a class-based language. Some languages, such as TypeScript, support both styles for this reason.

Smalltalk is quite strictly class-based, so we will instead use mostly the syntax of Self ? in this section. Self’s
syntax is similar to, and derived from, Smalltalk’s. To make Self a bit less foreign, we’ll replace some of its syntax
with the Smalltalk equivalent.

15.1 Code Sharing in Object-Based Languages

In the absence of classes, we must have a syntax to define objects directly, and field and method declarations must
take place within the objects themselves, as in the following Self example:

1 x = (|
2 n = 15.
3 f = (
4 self n := self n + 1
5)
6 |).

This example defines an object with fields n and f, in which the field f is bound to a method. That object is bound
to the name x. Note that we don’t distinguish fields from methods in object-based languages: to put a method on
an object, we assign it to a field. As a consequence, methods are values in object-based languages. We can strip a
method from its object, assign it to a field of another object, and call it, and self will then be the second object.
This makes it extremely difficult to define sound type rules for an object-based language. For example, TypeScript
allows you to strip methods from their objects (because TypeScript is a type system bolted onto JavaScript, and
JavaScript is an object-based language), but TypeScript’s method type doesn’t contain any information on self, so
the resulting method stripped of its object is usually unsafe to use. This lack of safety is not caught by TypeScript’s
type system.

Of particular interest in the study of object-based languages are the mechanisms by which we achieve code
sharing in the absence of classes. Clearly, our conceptions about inheritance must change. We will abandon typing
entirely; structural typing of object-based languages is possible, but beyond the scope of this course.

Cloning. Most object-based languages allow objects to be cloned, i.e., shallowly duplicated. For instance, in
Self, x clone will create a duplicate of the above x, like so:
y = x clone.

The object y is then an exact copy of x, having fields n and f. Using cloning, we may create any number of objects
with identical behavior. Since methods are just fields, we can specialize a cloned object’s behavior by changing that
field in a clone.

Prototyping. While cloning works well, it’s fairly restrictive. Self also allows prototyping, by which an object
may delegate behavior to another object. For instance, we can create the following object:
z = (| prototype* = x |).

When a field is looked up in z, if it’s not directly defined in the object, it instead looks for it in the prototype* field.
If it finds a method in the prototype, in this case x, the self parameter will still be z, so that method can access
z’s fields. In this way, we can build classes fairly directly with prototypes: we can build all the methods into one
prototype, and then clone an object that has all the correct fields. Of course, prototype* is also a field, so if we’re
feeling especially cruel, we can actually change an object’s prototype, though that’s not a very good idea. As a

CS442: Module 8: Object-Oriented Programming 26

final twist, Self allows an object to have multiple prototypes—in fact, any field named with a * is a prototype—and
thus supports multiple inheritance. It uses priority to disambiguate, with alphabetically earlier names prioritized
over alphabetically later names.

The constructor pattern. In Self, it’s common to use prototypes and a constructor method, like the following:
1 Rectangle = (|
2 withWidth: x height: y = (
3 | r |
4 r := (|
5 prototype* = self.
6 width = x.
7 height = y
8 |).
9 ^r

10).
11

12 area = (
13 ^self width * self height
14)
15 |)

The withWidth:height: method is meant to be called on Rectangle itself, and creates an object with Rectangle (as
self) as a prototype. The area method actually won’t work if called on Rectangle itself, because it will look for fields
named width and height, but no such fields exist on Rectangle. Instead, objects created by withWidth:height: will
have these fields, and through their prototype, the area method. A much more popular prototype-based language,
JavaScript, does not support cloning, and directly supports the constructor pattern.

16 Miscellany

An object-oriented system usually requires some initial configuration by the implementation, which cannot be
implemented in the language itself. For instance, Smalltalk requires every class to be a subclass of some other class,
except for Object. There is no way to create a class without a superclass in Smalltalk, so Object must be defined
by the implementation. The same is true of blocks, and the Class class, as well as the special values true, false,
and nil. On the other hand, the classes for those special values—True, False, and Undefined, respectively—can
actually be defined in Smalltalk, and are.

Because Smalltalk systems are usually environments, rather than files, they have images. An image is a file-
based representation of the state of all objects in a Smalltalk system—bearing in mind that classes are objects of
the Class class—which can then be loaded to recreate the environment. Essentially, an image is a file representing
σ and Σ. GNU Smalltalk was chosen for this course because it’s incredibly difficult to grade an image, for the same
reason as it’s difficult to define a formal semantics without a starting statement.

Although neither Smalltalk nor Self are themselves particularly popular, their implementations have had pro-
found effects on computing. The concept of Just-in-Time Compilation—compiling code as the program runs—was
invented for Smalltalk, refined in Self, and then popularized in Java and JavaScript. This is the usual fate of a
research language: its concepts are used, but the language is not. For most researchers, this is the desirable fate of
their language, because they get all the credit and none of the maintenance!

17 Fin

In the next module, we will look at concurrency, through the lens of Erlang, which makes concurrency feel similar
to object orientation.

CS442: Module 8: Object-Oriented Programming 27

Rights

Copyright © 2020–2025 Gregor Richards, Brad Lushman, and Anthony Cox.
This module is intended for CS442 at University of Waterloo.
Any other use requires permission from the above named copyright holder(s).

CS442: Module 8: Object-Oriented Programming 28

