
Assignment 2: The λ-Calculus; Basic Type Theory

CS 442/642

Due January 27th, 5:30pm

Solve the programming portion of this assignment using DrRacket. Set the language to R5RS.

1 A λ-Calculus Interpreter

Using the pure functional subset of Scheme, write an evaluator that reduces pure λ-calculus expressions to
β-normal form. The pure functional subset of Scheme excludes all functions that have side-effects, notably
those whose names end with an exclamation mark, ‘!’. Submissions that use such functions will receive a
mark of 0. λ-expressions will be represented using Scheme data structures as follows:

e ::= <symbol> (any symbol except fun is a variable)
e ::= (fun <symbol> e) (function abstraction)
e ::= (e e) (function application)

For example, the λ-expression λx.λz.x(λy.yy)zz would be represented as

(fun x (fun z (((x (fun y (y y))) z) z)))

Note that (for now) λ-expressions are fully parenthesized.

Part A: Download the file http://www.student.cs.uwaterloo.ca/~cs442/subst.scm. This file contains
a number of utility functions for constructing and deconstructing λ-expressions, and can serve as an example
of a reasonable Scheme coding style. It also contains a substitution function for λ-expressions. However, the
substitution function implements dynamic binding. You are to modify the substitution function so that it
implements static binding. Your implementation of the corrected substitution function must exactly match
the corrected definition of substitution outlined in class. (Solely for the purpose of generating new variable
names, you are allowed a single use of set! here, without penalty. You are permitted to “reserve” a class of
variable names for internal use; document your choice.)

Part B: Using your solution for Part A as a starting point, write a function reduce that takes a λ-term and
returns the result of reducing the term to β-normal form. Your interpreter (i.e., the function reduce) is to
follow the Normal-Order (i.e., lazy) reduction strategy. For example,

(reduce ’((fun x x) ((fun y y) z))

should return

’z

Part C: Now enhance your interpreter so that it makes no assumptions about how the λ-expression is
parenthesized—it may have fewer parentheses than prescribed by the grammar above, or it may have more
parentheses. Do this by writing a Scheme function parse-lambda that takes an arbitrarily-parenthesized
λ-expression and returns the equivalent λ-expression that is parenthesized according to the grammar in the
preamble to this question. For example,

1

(parse-lambda ’(fun x fun z x (fun y y y) z z))

should return

’(fun x (fun z (((x (fun y (y y))) z) z)))

and

(parse-lambda ’(fun x ((x (((x)))))))

should return

’(fun x (x x))

Your completed interpreter is then essentially the function

(define (interpret E) (reduce (parse-lambda E)))

Submit your solutions to Parts A, B, and C as a single source file, but clearly indicate the portion that
solves each part (and preferably order your program so that part B follows part A, and part C follows part
B) so that everything is easy to find. Be sure to name your functions as prescribed above, so that the TA
will not have trouble running your program. Include the definition of interpret, as given above, in your
submission. You are to hand in a listing of the source code of your program on paper, as well as electronically,
via submit.

Part D (Demonstration): To help convince the marker that your interpreter works, create a λ-calculus
implementation of the function fib, which computes the n-th Fibonacci number, where (fib 0) is 0 and
(fib 1) is 1, such that your interpreter will run it. Then test your fib function on a few sample numbers,
using the λ-calculus representation of natural numbers from class. Submit a transcript of your interpreter’s
responses to your inputs (print out your interaction with your interpreter).

For extra fun (not to be submitted): Create a λ-calculus implementation of the function foldl, such
that your interpreter will run it. Then use foldl to implement reverse and test your reversal function
on a few sample lists, all implemented in the λ-calculus. Keep in mind that there are no multi-argument
functions in the λ-calculus, so your implementation will have to be curried.

Hints:

• The crux of the problem is to find the leftmost β-redex and to reduce it; then repeat.

• Consider writing a trace facility that prints intermediate results.

2 Eager Evaluation

After you have finished your evaluator, answer the following questions:

1. Assume you are given an evaluator that takes input in the same format as the evaluator you wrote, but
reduces it using the Applicative-Order Evaluation (AOE) strategy. Assume also that numbers, and the
usual operations on them, have already been defined for you, as they were defined in class. Provide
an implmentation of the function fact, which takes a single argument and produces its factorial, that
would work with the new evaluator.

2. Assume that the evaluator you wrote in Question 1 of this assignment works flawlessly. (We hope this
is a valid assumption!) If you were to run your evaluator on the new version of fact you just wrote,
applied to a numeric argument, would it work? Why or why not? Provide a full explanation. You
should not need to actually try it.

2

3. Are there any circumstances under which your evaluator (assuming again that it works flawlessly)
and the AOE evaluator supplied to you, given the same input, would both terminate, and yet return
different results (α-equivalent expressions with different bound variable names don’t count)? If so, give
an example. If not, explain why not.

3 Simple Types

The Church numerals may be given the type τC = (int → int) → int → int.

Part A For each of the first three Church numerals presented below, annotate the abstractions with types,
and give a type derivation for each, such that the conclusion assigns each numeral the type τC :

• λf.λx.x

• λf.λx.fx

• λf.λx.f(fx)

Part B The Church numeral addition function, λm.λn.λf.λx.mf(nfx), takes two Church numerals and
returns the Church numeral representing their sum. Given the type presented above for Church numerals,
determine the correct type annotations for the addition function, and give a type derivation for it.

Submission

Questions 2 and 3, on eager evaluation and simple types, are written questions, and should be submitted to
Crowdmark only. For Question 1, the λ-calculus interpreter, you should submit both a copy of your source
to Crowdmark, and an electronic copy of your source via submit. In addition, for Question 1D, you are to
submit, to Crowdmark only, a transcript of your demonstration. It must not exceed two pages in length.

The distribution of marks for this assignment is expected to be approximately 50% for Question 1, 20%
for Question 2, and 30% for Question 3.

3

