
On the use of Database Technology in
Embedded Control Programs

Moderator: Grant Weddell

Discussion Topic

Embedded Control Program (ECP)

E.g.: The software part of an intelligent device.

An Intelligent Device

Software Components

Control Program

IP StackRTOS

DD2DD1 … DDn
(utility layers)

(application layer)

Reference Architecture

SS2DB

SS3

SS1 Ã (responsible for real time functionality)

Ã (responsible for administration)

Ã (responsible for diagnosis)

Definition: Any software system for which
there is utility in adopting a repository style of
architecture.

 (unspecified)

Another Phone

And Another

Software Components

Control Program

ProprietaryRTOS

DD2DD1 … DDn
(utility layers)

(application layer)

And Another

A Telephone Switch

Data Switch

Software Components

Control Program IP Stack

RTOS

DD2DD1 … DDn
(utility layers)

(application layer)

Vending Machine

Automated Banking Machine

ECP for a Telephone Switch

Table ControlDB

Maintenance

Call Processing

 (unspecified)

Contents of DB

ÿ Information about subscribers.

ÿ Network status.

ÿ Call state data.

ÿ Diagnostic information.

Ã (responsible for real time functionality)

Ã (responsible for administration)

Ã (responsible for diagnosis)

Effect of Performance Requirements

DB (C types) Table Control

Maintenance

Call Processing

Contents of DB

ÿ Information about subscribers.

ÿ Network status.

ÿ Call state data.

ÿ Diagnostic information.

Ã (responsible for real time functionality)

Ã (responsible for administration)

Ã (responsible for diagnosis)

 API

Data Access

DB (C types) Table Control

Maintenance

Call Processing ÿ Access a record field.

ÿ Access ith entry of an array.

 API

Data Revision

DB (C types) Table Control

Maintenance

Call Processing ÿ Update a record field.

ÿ Update ith entry of an array.

ÿ Allocate space for a record.

ÿ Free space for a record.

 API

Transaction Management

DB (C types) Table Control

Maintenance

Call Processing ÿ Successful test and set
 (a record field is zero;
 set the field to one).

ÿ Unsuccessful test and set
 (a record field is non-zero).

 API

Integrating Telephone Systems

DB (C types) DB (SQL DDL)

-
 (responsible for cache management)

CM

Table Control

Maintenance

Call Processing

 API

 SQL DML

Data Access

SQL DML

ÿ Access a tuple attribute value.

ÿ Open an iterator
 (defined by a static SQL query).

ÿ Succeed in accessing an iterator.

ÿ Fail in accessing an iterator.

ÿ Increment an iterator.

ÿ Close an iterator.

API

ÿ Access a record field.

ÿ Access ith entry of an array.

Data Revision

SQL DML

ÿ Update a tuple attribute value.

ÿ Create a new tuple.

ÿ Delete an existing tuple.

API

ÿ Update a record field.

ÿ Update ith entry of an array.

ÿ Allocate space for a record.

ÿ Free space for a record.

Transaction Management

SQL DML

ÿ Connect

ÿ Begin transaction.

ÿ Commit transaction.

ÿ Abort transaction.

ÿ Disconnect

API

ÿ Successful test and set
 (a record field is zero;
 set the field to one).

ÿ Unsuccessful test and set
 (a record field is non-zero).

Packaging

DB (C types) DB (SQL DDL)

CM

Table Control

Maintenance

Call Processing

 (part of load)

 API

 SQL DML (independent system)

Advanced Intelligent Networks

 (part of load)

 API

 SQL DML (independent system)

DB (C types) DB (SQL DDL)

CM

Table Control

Maintenance

Call Processing

ECP: Generic Runtime Architecture

 (part of load)

 API

 SQL DML (independent system)

DB (C types) DB (SQL DDL)

CM

SS2 (administrative)

SS3 (diagnostic)

SS1 (real time)

ECP: Desired Compile Time Architecture

 (part of load)

 API

 SQL DML (independent system)

DB (SQL ?) SS2 (administrative)

SS3 (diagnostic)

SS1 (real time)

(functionality)

Global Schema

DB (SQL DDL)

(integration schema)

(data integration)

DB (C types)

SQL DML

Data Access

ÿ Access a tuple attribute value.

ÿ Open an iterator
 (defined by a static SQL query).

ÿ Succeed in accessing an iterator.

ÿ Fail in accessing an iterator.

ÿ Increment an iterator.

ÿ Close an iterator.

Data Revision

ÿ Update a tuple attribute value.

ÿ Create a new tuple.

ÿ Delete an existing tuple.

Transaction Management

ÿ Connect

ÿ Begin transaction.

ÿ Commit transaction.

ÿ Abort transaction.

ÿ Disconnect

Integration in Heavyweight DB Engines

 (part of load)

 API

 SQL DML (independent system) (integration schema)

Global Schema

DB (SQL DDL)

(data integration)

Files

DB (proprietary main memory)

DB (SQL DDL)

Lightweight Engines: Sybase Ultralight

 (part of load)

 API

 SQL DML (independent system) (integration schema)

DB (SQL DDL)SS2 (administrative)

SS3 (diagnostic)

SS1 (real time)

SQL DML

Data Access

ÿ Access a tuple attribute value.

ÿ Open an iterator
 (defined by a static SQL query).

ÿ Succeed in accessing an iterator.

ÿ Fail in accessing an iterator.

ÿ Increment an iterator.

ÿ Close an iterator.

Data Revision

ÿ Update a tuple attribute value.

ÿ Create a new tuple.

ÿ Delete an existing tuple.

Transaction Management

ÿ Connect

ÿ Begin transaction.

ÿ Commit transaction.

ÿ Abort transaction.

ÿ Disconnect

Special Data Revision

ÿ Synchronize

Main Memory Databases: TimesTen

 (part of load)

 API

 SQL DML (independent system) (integration schema)

DB (SQL DDL) DB (SQL DDL)

CM

SS2 (administrative)

SS3 (diagnostic)

SS1 (real time)

DB (proprietary main memory)

Additional Operations Supported

Physical Design

ÿ Create index.

ÿ Delete index.

Data Access

ÿ Open an iterator
 (defined by a SQL query string).

Conceptual Data Revision

ÿ Create table.

ÿ Delete table.

ÿ Create view.

ÿ Delete view.

A Performance Benchmark

The LINUX kernel.

Real time subsystem: fork, malloc, open, connect, …

Administrative subsystem: ps, ls, …

Competition: What expert C programmers can do in
coding to the generic runtime architecture.

Issues in Query Optimization

ÿ Pointers and arrays.

ÿ Pipelined query plans.

ÿ Code inlining.

ÿ Semantic query optimization.

ÿ Timing.

ÿ Safety.

Issues in Concurrency Control

ÿ Deadlock free protocols.

ÿ Concurrency requirements.

Issues in Backup and Recovery

ÿ Reliable main memory.

ÿ Backup and recovery requirements.

ÿ Compensating transactions.

ÿ User specified recovery.

Issues in Physical Database Design

ÿ Tuple identification.

ÿ Field layout.

ÿ Indexing: arrays, stacks, heaps, …†

†See, e.g., Knuth, volume 3.

Final Reflections

What is the main memory data?

ÿ Anything in heap memory.

ÿ Anything on execution stacks?

ÿ The application code?

DB (SQL ?) SS (virtual machine)

 SQL DML

