
CS446 Design Principles

Design Principles
chiefly but not exclusively object-oriented

Objects, classes, and modules interact and change.

Decisions made to solve problems (e.g. design patterns).

Following good principles can isolate from change.

Key ideas:
Protected Variation [Larman]
Dependence on stability [Martin]

CS446 Design Principles

Change Control Principles
at the level of detailed design
Open-Closed Principle

Be open for extension; closed for modification.

Dependency Inversion Principle
Depend on the more abstract.

Interface Segregation Principle
Implement (depend on) clients’ interfaces.

CS446 Design Principles

Definitions
A class or module may be in itself more or less

concrete or abstract
and in context, more or less

stable or volatile
responsible or irresponsible
dependent or independent

CS446 Design Principles

Stability
Measure of

how likely a module is to change
how frequently a module changes

One way to measure it: consider forces for change
afferent coupling = coupling into (ad-) this module
efferent coupling = couping out of (ex-) this module

†

stability(M) =
AM

AM + EM

CS446 Design Principles

CS446 Design Principles

Responsibility
A module or class is more responsible when more other
classes depend on it.

Dependence: calls, #includes, extends, implements, ...

One way to measure it: consider total afferents relative
to maximum and minimum of the system:

†

responsibility(M) =
AM - Amin

Amax - Amin

CS446 Design Principles

CS446 Design Principles

Abstractness
A class or module is abstract when it

has pure virtual functions (C++, C#, Java)
is an «interface» (Java, C#)
defines a prototype with no implementation (C, C++)
depends on no other class or module (any language)

Hard to quantify at the level of individual modules.
(…stay tuned)

CS446 Design Principles

Dependency
A module or class is more dependent when it depends
more on other classes.

Possible metric: consider total efferents relative to
maximum and minimum of the system:

†

dependency(M) =
EM - Emin

Emax - Emin

CS446 Design Principles

CS446 Design Principles

CS446 Design Principles

A=1 E=1

A=2 E=0
A=1 E=0

A=1 E=3

A=1 E=2

max A = 2
min A = 1
max E = 3
min E = 0

CS446 Design Principles

R=0 D=0.3 S=0.5

R=1 D=0 S=1
R=0 D=0 S=1

R=0 D=1 S=0.25R=0 D=.67 S=0.33

max A = 2
min A = 1
max E = 3
min E = 0

CS446 Design Principles

Open-Closed Principle
[Bertrand Meyer]

OCP
Software entities should be open for extension

but closed for modification.

add new behaviours
extend ‘what the entity can do’
extension points

no change to source code
no need to understand internals
(no need to recompile or even relink)
(no need to change source entity)

CS446 Design Principles

rigid:
replacing the server
requires change to client

CS446 Design Principles

flexible:
replacing the server
requires no change to client

CS446 Design Principles

rigid: adding new shapes requires change to draw

fragile: change to draw is spread all over the code

immobile: can’t be moved (reused) without reusing shapes

CS446 Design Principles

-- shape_type.h --------------------------------
enum shape_type {circle, square};

-- circle.h --------------------------------
struct circle {

enum shape_type type;
double radius;
point centre;

};
void draw_circle (struct circle *);

-- square.h --------------------------------
struct square {

enum shape_type type;
double side;
point top_left;

};
void draw_square (struct square *);

-- draw_shapes.c ------------------------------
#include "shape_type.h"
#include "circle.h"
#include "square.h"

void drawShapes (void *list [], int n)
{

int i;
for (i = 0; i < n; ++i)
switch (* (enum shape_type *) list [i])
{
case square: draw_square ((struct square *) list [i]); break;
case circle: draw_circle ((struct circle *) list [i]); break;
}

}

CS446 Design Principles

CS446 Design Principles

-- drawable.h --------------------------------
/* Add an entry for each new shape type */
DRAWABLE(circle,struct circle,draw_circle)
DRAWABLE(square,struct square,draw_square)

-- shape_type.h --------------------------------
enum shape_type {
define DRAWABLE(type_tag,type,draw_function) type_tag,
include "drawable.h"
undef DRAWABLE
};

define DRAWABLE(type_tag,type,draw_function) void draw_function(void *);
include "drawable.h"
undef DRAWABLE

extern void (*draw_functions []) (void *);

-- shape_type.c ------------------------------
void (*draw_functions []) (void *)= {
define DRAWABLE(type_tag,type,draw_function) draw_function,
include "drawable.h"
};

-- draw_shapes.c ------------------------------

void drawShapes (void *list [], int n)
{

int i;
for (i = 0; i < n; ++i) {

shape_type t = * (enum shape_type *) list [i];
draw_function [t] (list [i]);

}
}

CS446 Design Principles

-- drawable.h --------------------------------
struct Drawable {

virtual void draw () = 0;
}

-- circle.h --------------------------------
struct Circle: public Drawable {

double radius;
point centre;
void draw ();

};

-- square.h --------------------------------
struct Square: public Drawable {

double side;
point top_left;
void draw ();

};

-- draw_shapes.c ------------------------------

void drawShapes (Drawable *list [], int n)
{

int i;
for (i = 0; i < n; ++i)

list [i]-> draw ();
}

}

CS446 Design Principles

Designing for Change, strategically

We can't anticipate all possible changes.

extension point: anticipated change region

But … wait until the extension point is needed.

e.g. “Draw circles first, then squares.”

CS446 Design Principles

CS446 Design Principles

Dependency Inversion Principle
[Robert C Martin]

DIP
Depend upon abstractions

abstractions are more stable

policy and control shouldn’t have to change

policy and control should be reusable

-> let them define the abstractions they assume and need

CS446 Design Principles

CS446 Design Principles

Abstract (high-level, control, policy) is no longer dependent on Concrete (low-level, mechanistic, utility).

CS446 Design Principles

Dependency Inversion Heuristics

Depend on Abstractions

so suspect:

• member variables which refer to concrete classes
• subclasses of concrete classes
• overriding of concrete methods

Depend on stability; so during development, refactoring, and evolution:

• discover the client’s interface needs
• make independent abstractions, or as part of client
• client logic works through its interface
• server conforms to (implements) interface

CS446 Design Principles

CS446 Design Principles

CS446 Design Principles

Interface Segregation Principle
[Robert C. Martin]

ISP
Clients should not be forced to depend

on methods which they do not use.

abstractions help to enforce DIP and OCP

but abstractions have to be cohesive

No “fat” interfaces!

CS446 Design Principles

CS446 Design Principles

CS446 Design Principles

CS446 Design Principles

CS446 Design Principles

Dynamic solution.

Pattern: adapter

Single inheritance; overhead.

CS446 Design Principles

Static solution.

Multiple inheritance.

CS446 Design Principles

CS446 Design Principles

CS446 Design Principles

CS446 Design Principles

-- ui.cc -------------
#include <depositUI.h>
#include <withdrawalUI.h>
#include <transferUI.h>
namespace UIGlobals // can’t be class, must be namespace!
{

static UI theUI;
DepositUI & depositUI = theUI;
WithDrawalUI & withdrawalUI = theUI;
TransferUI & transferUI = theUI;

}
…

-- deposit.{h,cc} -------------

#include <depositUI.h>
namespace UIGlobals
{

extern DepositUI depositUI;
}

Deposit::Execute()
{

…
DepositUI & ui = UIGlobals::depositUI;
…
ui. getDepositAmount ();
…

}

CS446 Design Principles

Closing an inheritance hierarchy
(left open for extension)

CS446 Design Principles

CS446 Design Principles

CS446 Design Principles

CS446 Design Principles

CS446 Design Principles

Closing an inheritance hierarchy
(left open for extension)
•!Decorator

•!Multiple Decorator
• Extension Object
•!Proxy

CS446 Design Principles

Closing event handling
(left open for event type)

CS446 Design Principles

CS446 Design Principles

Not abstract enough:
•!Time Source still depends on Driver as parameter
•!Clock uses Clock Driver (internally) after setting.

CS446 Design Principles

•!now Time Source is reusable
•!Clock no longer uses (concrete) Clock Driver

CS446 Design Principles

•!didn’t really need the Clock Driver...

CS446 Design Principles

•!adding multiple Observers
•!but Clock has to contain code to handle registration and dispatch (not cohesive)
!

CS446 Design Principles

• solution using multiple inheritance
•!exercise: do this using Java

