
Introduction to 
Generative Programming

Michal Antkiewicz
mantkiew@swen.uwaterloo.ca



Overview
● What is Generative Programming?
● GP Process
● Technology Projections
● Object Technology
● Component Technology
● Feature Modeling
● Exercise
● Specialization
● MDA



What is Generative Programming?

●"... is a software engineering paradigm based on
●modeling software system families such that,
●given a particular requirements specification, a
●highly customized and optimized intermediate or
●end-product can be automatically manufactured
●on demand from elementary, reusable
●implementation components by means of
●configuration knowledge" [Cza02]



Generative Programming Process

● Two parallel processes:
– development for reuse
– development with reuse

● Introducing GP is not always profitable 



Development For Reuse
● Create generative domain model (means of specification of 

members, implementation components and configuration 
knowledge)

● Capture the scope of system family
● Capture commonalities and variation points – feature 

modeling
● Design and implement a system family model

– Choose common architecture,
– Provide means of specifying family members,
– Capture configuration knowledge in a generator,
– Implement a model using generative technologies.



Technology Projections

This is a recursive process. One's solution space may be someone's 
else problem space.



Object Technology

● Why it does not suffice?
– classes are too small units of reuse,
– frameworks are sufficiently large units of reuse, but 

frameworks from different vendors do not integrate 
well,

– design patterns are pieces of reusable knowledge, but 
they do not exist as executable code.

● GP supports better software and knowledge reuse.



Component Technology

● Ongoing development improves component 
interoperability

● Reusing small components does not have a large 
impact on software development, and large 
components require high customization efforts,

● Problem with “fat components”,
● In GP, rather than having to search for needed 

components by name, they are generated to 
support required features.



Feature Modeling

● Part of the Development for Reuse process,
● The goal is to find commonalities and variation 

points in system family,
● Feature diagrams are the basis for deriving the 

categories of implementation components,
● Choosing a concrete member of system family is 

called specialization and provides input for 
generator.



Feature Modeling: Mandatory Feature



Feature Modeling: Optional Feature 



Feature Modeling: Exclusive-Or



Feature Modeling: Inclusive-Or



Feature Modeling: Open Feature



Exercise: Family of Counters
● Detailed requirements:

– support a fixed and variable increment,
– the value of fixed increment can be 'statically' specified,
– support different counter value types (short, int, long),
– assume, that more value types can be added,
– may optionally support manual or automatic reset (or 

both); automatic reset is activated, when the counter 
value exceeds a reset limit,

– the reset limit can be 'statically' specified.
● Draw feature diagram for family of counters and 

count the number of valid family members.



Counter Family Feature Diagram

This diagram denotes 2*2*4=16 different counter configurations.



Specialization



Model Driven Architecture

● MDA is a significant, emerging part of GP
● MDA is about transformations of models

– PIM – platform independent model
– PSM – platform specific model

● Transformations:
– PIM to PIM 
– PIM to PSM – changing the level of abstraction
– PSM to PSM -> End-product



MDA Pattern



Benefits of MDA
● Preserving the investment in knowledge

– Independent of implementation platform
– Tacit knowledge is made explicit

● Speed of development
– Most of the code is generated

● Quality of implementation
– Experts provide transformation templates

● Maintenance and documentation
– Design and analysis models are not abandoned after writing
– 100% of traceability from specification to implementation


