Introduction to
Generative Programming

Michal Antkiewicz
mantkiew(@swen.uwaterloo.ca

Overview

* What 1s Generative Programming?
* GP Process

* Technology Projections

* Object Technology

* Component Technology

* Feature Modeling

* Exercise

* Specialization

* MDA

What 1s Generative Programming?

" .. 1s a software engineering paradigm based on
*modeling software system families such that,
*oiven a particular requirements specification, a
*highly customized and optimized intermediate or
*cnd-product can be automatically manufactured
°on demand from elementary, reusable
*implementation components by means of

*configuration knowledge" [Cza02]

Generative Programming Process

* Two parallel processes:

— development for reuse

— development with reuse

* Introducing GP 1s not always profitable

Development For Reuse

Create generative domain model (means of specification of
members, implementation components and configuration

knowledge)
Capture the scope of system family

Capture commonalities and variation points — feature
modeling

Design and implement a system family model

— Choose common architecture,
— Provide means of specifying family members,
— Capture configuration knowledge in a generator,

- Implement a model using generative technologies.

Technology Projections

Solution Space

Configuration Knowledge + Elementary

Problem Space

i 25 y = lllegal feature combinations components
E;n”g]”;gﬁgﬁc » [Default settings] « Maximum

v Panfira « [Default dependencies combinability
+ Construction rules « Minirmum

Optimizations redundancy
DSL Technologies Generator Technologies Component Technologies
* Programming language = Simple traversal = (Generic components
» Extendible languages » Templates and frames + Component models
* New textual languages = Transformation systems = AQP approaches
» Graphical languages » Programming languages with
» Interactive wizards and GUIs metaprogramming support
* Any mixture of the above * Extendible programming
systems

This 1s a recursive process. One's solution space may be someone's
else problem space.

Object Technology

* Why it does not suffice?

— classes are too small units of reuse,

- frameworks are sufficiently large units of reuse, but
frameworks from different vendors do not integrate
well,

— design patterns are pieces of reusable knowledge, but
they do not exist as executable code.

* GP supports better software and knowledge reuse.

Component Technology

* Ongoing development improves component
interoperability

* Reusing small components does not have a large
impact on software development, and large
components require high customization efforts,

* Problem with “fat components”,

* In GP, rather than having to search for needed
components by name, they are generated to
support required features.

Feature Modeling

* Part of the Development for Reuse process,

* The goal 1s to find commonalities and variation
points 1n system family,

* Feature diagrams are the basis for deriving the
categories of implementation components,

* Choosing a concrete member of system family 1s
called specialization and provides input for
generator.

Feature Modeling: Mandatory Feature

A mandatory feature is

part of a concept
iInstance description only
If its parent is also part of
the description

Mandatory features are
pointed to by edges with
a filled circle, e.g.
f1,f2,f3, and f4

All instances of C are
described by the feature
set {C,f1,f2,f3,f4}

Feature Modeling: Optional Feature

e An optional feature can
be part of a concept
c instance description only

if the parent node is also
part of the description

e Optional features are
pointed to by edges with

f f2 an empty circle (e.g.,
l f1,f2, and f3)

e The following sets
describe instances of C:
{C}, {C,f1}, {C,f1,f3},
{C,f2}, {C,f1,f2},
{CF1.F3.12%

Feature Modeling: Exclusive-Or

e Exactly one from a set of
exclusive-or features is part of
a concept instance description
if its parent node is also part
of the description

e Edges pointing to exclusive-or
features of one set are
connected by an empty arc

e The following sets describe
instances of C:
{C 1,3}, {Cf1,4},
{C,f1,5}, {C 2,3},
{C,f2,f4}, {Cf2,5}

Feature Modeling: Inclusive-Or

e Any non-empty subset
from a set of inclusive-or
features can be part of a
concept instance
description if the parent
node is also part of it

e Edges pointing to
inclusive-or features of
one set are connected by
a filled arc

 The diagram denotes
((2¥2) -1)*((2*2* 2)
-1) = 21 different
concept instances

Feature Modeling: Open Feature

e An open feature is

Matrix expected to be refined
with further sub-features
e In a feature diagram,

brackets [] are used to
indicate openness

e We can also show
selected examples of
sub-features (not part of
the formal notation)

[ElementTyp]

Exercise: Family of Counters

* Detailed requirements:

— support a fixed and variable increment,

- the value of fixed increment can be 'statically' specified,
— support different counter value types (short, int, long),
— assume, that more value types can be added,

— may optionally support manual or automatic reset (or
both); automatic reset 1s activated, when the counter
value exceeds a reset limit,

— the reset limit can be 'statically’ specified.

* Draw feature diagram for family of counters and
count the number of valid family members.

Counter Family Feature Diagram

Ccuﬂfer
— & ——o
increment [value type] reset
./<>\ (‘\.
fixed variable manual automatic
. '
[incr. value] [limit]

This diagram denotes 2*2*4=16 different counter configurations.

Specialization

T

Partial
4 specialization
2 | |13

& = Full specialization
L i _I':J E f
f4 f5 || 6 f7
|fz

Variability
- f3 is optional ‘ ‘ i L
- Inclusive-or . E .

group f4/f5 N 2 £3
- Exclusive-or Uanabll]ty .

group f6/f7 - Inclus%eh:gr ‘

group f4
- Exclusive-or . ﬁ

group fo/f7

Model Driven Architecture

* MDA is a significant, emerging part of GP

* MDA 1s about transformations of models
— PIM — platform independent model
- PSM — platform specific model

* Transformations:

- PIM to PIM
- PIM to PSM — changing the level of abstraction
— PSM to PSM -> End-product

MDA Pattern

-¢E-00-00

¥

Benefits of MDA

* Preserving the investment in knowledge

— Independent of implementation platform

— Tacit knowledge 1s made explicit
* Speed of development

— Most of the code 1s generated
* Quality of implementation

— Experts provide transformation templates
* Maintenance and documentation

— Design and analysis models are not abandoned after writing

- 100% of traceability from specification to implementation

