~Architectural Blueprints —

" Views of Software
Architecture and You

Presented by Chris Mennie

Lisiherruity od

Waterloo

/TN




Goals

N
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#Clarify different architectural views
> 4+1, Hofmelister, etc

#Some pointers on how to do
architectural document
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About Kruchten

#®Doctorate degree in computer science
from the French Institute of
Telecommunications

#Director of Process Development at
Rational Software

#Led the development of the Rational
Unified Process




Not Enough Clarity

N

#|ssue:
~-One diagram hard to capture everything

> Different stakeholders care about different
ISSuUes

> What to do?

# Solution:
> Look at architecture in different ways




Views

N

# A view Is a different perspective of the
whole system:

1. Logical View - (Object) model of the
system

2. Development View - Static organization of
the software in development

3. Process View — Dynamic view of system
(concurrency and synchronization)

4. Physical View — Mapping software to
hardware
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Logical View

#Focuses on functional requirements
#Mainly of interest to end user
#System decomposed into key

abstractions (in form of
objects/classes)

#Class diagram shows logical
relationships between classes

#May also include internal class
behaviour descriptions




Logical View from Example

Display &
Lisor
interface
Extornal
TN T /o Interfaces
; - ‘*»... o R ‘..‘L Samulgtion Geteways
y ! - - ond Treining

f
I': Conversation {’b‘\r/ Translation y /
- ) T
\‘\ TN \ ‘e, SErvices ‘

Sy 1 f
. o
FEght Al Traific
_ _ - mengagempent Managempnt
{ uy Ead e - y, - e
F ~ 47 ‘-...,_ i S “‘- - ¢ 3]
Fs A g .
' * nnecron
( Terminal ¢ 4 Cgewf;: T
-~ % |
\1 PR . p ‘k\ Agrongu ticel
M e » informgfion
RGN P TN 7 \
’ gt P , T Moch
. +” Numbering Sovicns
( Controller f -
- i \\ P|al"l Beslc
™~ — A glements
A rd b Fi A
L S .
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Logical View (as in SRS)
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Logical View
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#Model function described with state or
activity diagrams (ie: internal behaviour)

#Verification/validation and description
done with sequence/collaboration
diagrams

#Not meant for your architecture
diagrams in this class
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Development View

#Focuses on actual software organization
#Mainly of interest to coders
#:System is decomposed into components and

subcomponents
#All interfaces described

#Serves as basis for resource estimation and
management

#Close to logical view and usually deduced
from It

#Can be abstract or concrete or both

11




Development View
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#Will have many things in common with
Logical View
#More detailed though

> Things like workers, locks, protocol
translators
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Development View from Paper
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Development View Example
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Development View Example
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# Start with a reasonable amount of detail
#Glve diagram and descriptions

#Describe the modules/components and
how they relate to each other

#Give enough, but not too much detalil
(tricky)
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Development View Example
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#“Expand” components to show more
detalls

#Keep doing this “recursively”

#Feel free to use hybrid styles

> May mix styles depending on level of
component

#Feel free to invent notation

> Describe in detail meanings of notation no
matter how obvious

16




Process View
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#Considers non-functional requirements
#Mainly of interest to designer and integrator
#Addresses concurrency and distribution

#Describes dynamic view of system
(processes, threads, etc) and mapping to
them

#Message flow and process loads can be
estimated from this view

#:Covers processes, threads, message
gueues, locks, etc 17
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Process View Example
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Development and Process Views
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# Need to refer process view back to
development view

#Try to keep labels consistent between
these views

> | won't assume something with the same
name Iin both views is the same

> Be explicit in tying views together

#Decompose diagrams if necessary, like
with development view
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Interfaces
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#Every interface needs to be described
> What constitutes an interface? Every line, to
a point
#Both the delivery mechanism and
protocols used
> le: RPC, method calls, XML over TCP, etc

#Glve the schema, API, etc

#®or protocols, give examples of their
typical use 55
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Physical View

#Considers requirements such as
reliability, performance, scalability

#Mainly of interest to system designer

#Details how processes, threads,
objects, etc are mapped to physical
resources

#Closely related and influenced by
process view

21
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Physical View
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#Process view needs to map to physical
view
#0nly include relevant components

> It is Irrelevant that the “Admin Console” has
a keyboard, the architecture isn’t affected

> Conversely, a word processor from the 70’s
might care about the keyboard connected

#Your physical views won't be terribly
Interesting, more for process view map
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+1: Scenarios
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#Unifies all views by providing intent

#Similar to a cross between UML use
cases and scenarios

#|n a sense an abstraction of the most
Important requirements

#Drives discovery of architectural
elements

#Serves as a validation of architecture




Scenarios
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#Scenarios for your logical architecture
are In your SRS

> Use cases and sequence diagrams

#Provide scenarios for development view
and possibly process view

#Don’t provide new information, just
validate and clarify previous views

#Scenarios and interfaces are important
to pulling the overall arch together 25
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Scenarios

#Scenarios could be in the form of
seguence diagrams or collaboration
diagrams
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UML / Rational’s Views
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Hofmeister et al. Views
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1.

Four views from study of large complex
Industrial systems

Code View — Organisation of code into sources,
directories, versioning, etc

Module View — Decomposition of the system
Into modules and layers

Execution View — Decompose system into
processes and resource utilisation

Conceptual View — Logical view of system,;
design elements and relationships among them
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‘Relations Amongst Views
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Kruchten vs. Hofmeister et al.

#Conceptual and Logical views very

simi
#MoC

simi

al

ule and Development views very
ar

#®Execution view similar to Physical
view, and some of Process view

#Code view is nhew
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Code View
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#Describe the structure of the code
#®File / directory hierarchies

#Class inheritance diagrams
> Not detailed class information (members)
#Relate the code view to development
and process views

> What class represents what component, or
vice-versa

> What directory represents a process, etc?;,
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Code View

#Use diagrams, tables, paragraphs,
whatever works

#Be clear In your mappings
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Going about It
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1.Write development view, then process
view (and physical)
2 .Detall all interfaces and do estimates

3.Write your code
> Don’t integrate at the last minute!

4.Write code view, relating It to process
and development views

5.Ensure consistency amongst views
(very important) 34
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Build-Time Architecture View

#Some systems have interesting build-
time behaviour

#Different from other views

#Captures dynamic behaviour
> Build scripts
> Configuration choices

#Model compilation dependencies or
automatic code generation
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‘The Build-Time View of JNI
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Conclusions

#More than one way to look at software
architecture

# Different kinds of architecture

#\Views proposed are reasonable and
used In practice

#Many kinds of views exist and one
shouldn’t hesitate to be creative In
striving for clarity
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Conclusions
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# A guide to architecture documents
written for previous term

> May be helpful for ideas
#An example architecture document is
given

> For ideas only! Don’t follow too closely as it
was for a different class, assignment

> |t wouldn’t do that well for this deliverable
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