
1

Architectural Blueprints –
Views of Software
Architecture and You

Presented by Chris Mennie

2

Goals

Clarify different architectural views
➢ 4+1, Hofmeister, etc

Some pointers on how to do
architectural document

3

About Kruchten

Doctorate degree in computer science
from the French Institute of
Telecommunications

Director of Process Development at
Rational Software

Led the development of the Rational
Unified Process

4

Not Enough Clarity

Issue:
➢ One diagram hard to capture everything
➢ Different stakeholders care about different

issues
➢ What to do?

Solution:
➢ Look at architecture in different ways

5

Views

A view is a different perspective of the
whole system:

1. Logical View - (Object) model of the
system

2. Development View - Static organization of
the software in development

3. Process View – Dynamic view of system
(concurrency and synchronization)

4. Physical View – Mapping software to
hardware

6

Views

L o g i c a l V i e w
D e v e l o p m e n t

V i e w

P r o c e s s V i e w
P h y s i c a l

V i e w

E n d - u s e r ,
F u n c t i o n a l i t y

I n t e g r a t o r s ,
P e r f o r m a n c e ,
S c a l a b i l i t y

P r o g r a m m e r s ,
S o f t w a r e m a n a g e m e n t

S y s t e m e n g i n e e r s ,
T o p o l o g y ,

C o m m u n i c a t i o n s

7

Logical View

Focuses on functional requirements
Mainly of interest to end user
System decomposed into key
abstractions (in form of
objects/classes)
Class diagram shows logical
relationships between classes
May also include internal class
behaviour descriptions

8

Logical View from Example

9

Logical View (as in SRS)

10

Logical View

Model function described with state or
activity diagrams (ie: internal behaviour)

Verification/validation and description
done with sequence/collaboration
diagrams

Not meant for your architecture
diagrams in this class

11

Development View

Focuses on actual software organization
Mainly of interest to coders
System is decomposed into components and
subcomponents
All interfaces described
Serves as basis for resource estimation and
management
Close to logical view and usually deduced
from it
Can be abstract or concrete or both

12

Development View

Will have many things in common with
Logical View

More detailed though
➢ Things like workers, locks, protocol

translators

13

Development View from Paper

14

Development View Example

High Level:

Lower Level:

15

Development View Example

Start with a reasonable amount of detail

Give diagram and descriptions

Describe the modules/components and
how they relate to each other

Give enough, but not too much detail
(tricky)

16

Development View Example

“Expand” components to show more
details

Keep doing this “recursively”
Feel free to use hybrid styles
➢ May mix styles depending on level of

component

Feel free to invent notation
➢ Describe in detail meanings of notation no

matter how obvious

17

Process View

Considers non-functional requirements

Mainly of interest to designer and integrator

Addresses concurrency and distribution

Describes dynamic view of system
(processes, threads, etc) and mapping to
them

Message flow and process loads can be
estimated from this view

Covers processes, threads, message
queues, locks, etc

18

Process View Example

Client

Server

Listener

Worker

Process

Thread

Message Q

Lock

19

Development and Process Views

 Need to refer process view back to
development view

Try to keep labels consistent between
these views
➢ I won’t assume something with the same

name in both views is the same
➢ Be explicit in tying views together

Decompose diagrams if necessary, like
with development view

20

Interfaces

Every interface needs to be described
➢ What constitutes an interface? Every line, to

a point

Both the delivery mechanism and
protocols used
➢ ie: RPC, method calls, XML over TCP, etc

Give the schema, API, etc

For protocols, give examples of their
typical use

21

Physical View

Considers requirements such as
reliability, performance, scalability

Mainly of interest to system designer

Details how processes, threads,
objects, etc are mapped to physical
resources

Closely related and influenced by
process view

22

Physical View

Process view needs to map to physical
view

Only include relevant components
➢ It is irrelevant that the “Admin Console” has

a keyboard, the architecture isn’t affected
➢ Conversely, a word processor from the 70’s

might care about the keyboard connected

Your physical views won’t be terribly
interesting, more for process view map

23

Views

L o g i c a l V i e w
D e v e l o p m e n t

V i e w

P r o c e s s V i e w
P h y s i c a l

V i e w

E n d - u s e r ,
F u n c t i o n a l i t y

I n t e g r a t o r s ,
P e r f o r m a n c e ,
S c a l a b i l i t y

P r o g r a m m e r s ,
S o f t w a r e m a n a g e m e n t

S y s t e m e n g i n e e r s ,
T o p o l o g y ,

C o m m u n i c a t i o n s

24

+1: Scenarios

Unifies all views by providing intent
Similar to a cross between UML use
cases and scenarios
In a sense an abstraction of the most
important requirements
Drives discovery of architectural
elements
Serves as a validation of architecture

25

Scenarios

Scenarios for your logical architecture
are in your SRS
➢ Use cases and sequence diagrams

Provide scenarios for development view
and possibly process view

Don’t provide new information, just
validate and clarify previous views

Scenarios and interfaces are important
to pulling the overall arch together

26

Scenarios

Scenarios could be in the form of
sequence diagrams or collaboration
diagrams

27

Views

L o g i c a l V i e w
D e v e l o p m e n t

V i e w

P r o c e s s V i e w
P h y s i c a l

V i e w

E n d - u s e r ,
F u n c t i o n a l i t y

I n t e g r a t o r s ,
P e r f o r m a n c e ,
S c a l a b i l i t y

P r o g r a m m e r s ,
S o f t w a r e m a n a g e m e n t

S y s t e m e n g i n e e r s ,
T o p o l o g y ,

C o m m u n i c a t i o n s

S c e n a r i o s

28

UML / Rational’s Views

L o g i c a l V i e w
C o m p o n e n t

V i e w

P r o c e s s V i e w
D e p l o y m e n t

V i e w

E n d - u s e r ,
F u n c t i o n a l i t y

I n t e g r a t o r s ,
P e r f o r m a n c e ,
S c a l a b i l i t y

P r o g r a m m e r s ,
S o f t w a r e m a n a g e m e n t

S y s t e m e n g i n e e r s ,
T o p o l o g y ,

C o m m u n i c a t i o n s

U s e C a s e s
a n d

S c e n a r i o s

29

Hofmeister et al. Views

Four views from study of large complex
industrial systems

1. Code View – Organisation of code into sources,
directories, versioning, etc

2. Module View – Decomposition of the system
into modules and layers

3. Execution View – Decompose system into
processes and resource utilisation

4. Conceptual View – Logical view of system;
design elements and relationships among them

30

Relations Amongst Views

C o n c e p t u a l
V i e w

M o d u l e V i e w

C o d e V i e w

E x e c u t i o n
V i e w

H
ar

dw
ar

e
A

rc
hi

te
ct

ur
e

S o u r c e C o d e
f e e d f o r w a r d

f e e d b a c k

S o f t w a r e A r c h i t e c t u r e

31

Kruchten vs. Hofmeister et al.

Conceptual and Logical views very
similar

Module and Development views very
similar

Execution view similar to Physical
view, and some of Process view

Code view is new

32

Code View

Describe the structure of the code

File / directory hierarchies

Class inheritance diagrams
➢ Not detailed class information (members)

Relate the code view to development
and process views
➢ What class represents what component, or

vice-versa
➢ What directory represents a process, etc?

33

Code View

Use diagrams, tables, paragraphs,
whatever works

Be clear in your mappings

34

Going about it

1.Write development view, then process
view (and physical)

2.Detail all interfaces and do estimates

3.Write your code
➢ Don’t integrate at the last minute!

4.Write code view, relating it to process
and development views

5.Ensure consistency amongst views
(very important)

35

Build-Time Architecture View

Some systems have interesting build-
time behaviour
Different from other views
Captures dynamic behaviour
➢ Build scripts
➢ Configuration choices

Model compilation dependencies or
automatic code generation

36

The Build-Time View of JNI

37

Conclusions

More than one way to look at software
architecture
Different kinds of architecture
Views proposed are reasonable and
used in practice
Many kinds of views exist and one
shouldn’t hesitate to be creative in
striving for clarity

38

Conclusions

A guide to architecture documents
written for previous term
➢ May be helpful for ideas

An example architecture document is
given
➢ For ideas only! Don’t follow too closely as it

was for a different class, assignment
➢ It wouldn’t do that well for this deliverable

