~Architectural Blueprints —

" Views of Software
Architecture and You

Presented by Chris Mennie

Lisiherruity od

Waterloo

/TN

Goals

N

%

#Clarify different architectural views
> 4+1, Hofmelister, etc

#Some pointers on how to do
architectural document

N

About Kruchten

#®Doctorate degree in computer science
from the French Institute of
Telecommunications

#Director of Process Development at
Rational Software

#Led the development of the Rational
Unified Process

Not Enough Clarity

N

#|ssue:
~-One diagram hard to capture everything

> Different stakeholders care about different
ISSuUes

> What to do?

Solution:
> Look at architecture in different ways

Views

N

A view Is a different perspective of the
whole system:

1. Logical View - (Object) model of the
system

2. Development View - Static organization of
the software in development

3. Process View — Dynamic view of system
(concurrency and synchronization)

4. Physical View — Mapping software to
hardware

Views

End-user,
Functionality

LogicalView

Programmers,
Software managem ent

Development
View

Process View

Integrators,
Performance,
Scalability

Physical
View

System engineers,
Topology,
Communications

N

Logical View

#Focuses on functional requirements
#Mainly of interest to end user
#System decomposed into key

abstractions (in form of
objects/classes)

#Class diagram shows logical
relationships between classes

#May also include internal class
behaviour descriptions

Logical View from Example

Display &
Lisor
interface
Extornal
TN T /o Interfaces
; - ‘*»... o R ‘..‘L Samulgtion Geteways
y ! - - ond Treining

f
I': Conversation {’b‘\r/ Translation y /
-) T
\‘\ TN \ ‘e, SErvices ‘

Sy 1 f
. o
FEght Al Traific
_ _ - mengagempent Managempnt
{ uy Ead e - y, - e
F ~ 47 ‘-...,_ i S “‘- - ¢ 3]
Fs A g .
' * nnecron
(Terminal ¢ 4 Cgewf;: T
-~ % |
\1 PR . p ‘k\ Agrongu ticel
M e » informgfion
RGN P TN 7 \
’ gt P , T Moch
. +” Numbering Sovicns
(Controller f -
- i \\ P|al"l Beslc
™~ — A glements
A rd b Fi A
L S .

Figure 3— a. Logical blueprint for the Télic PABX . b. Blueprint for an Air Traffic Control System

Logical View (as in SRS)

{{enti't'!.r}}
Student
<<oontrol s>
CourseAdministrator il Students0)
+view Student Information)
+view Courses)
Hmanage Coursel) e
HmanageTopicl
+view Course Calendan) i
+viewTutors() -
+Hmanage Tutorinfomation(Rl
+a=ssignTutorTo Coursel) manage Course Calendar
manage .
manage < Aentity > +wiew Course Calendan)
Tutor <>
I:l..:
CLentity = <Aentity #x
. +wigwTutarinformationi)
Topic H Course +ereate Tutor)
1= cantains 0= Hmodify Tutan])
- - Hremowe Totom)
+uiew Al Topics) +uiewAl Courses)
+viewTopic Infarmation)) +wigw Courselnformation) contains
+zregte Tapic) +eregte Courser)
+Hmiodify Topic) +Hmodify Coursel)
HemoveTopic) Hemove Coursel] 0.

Logical View

N

L

#Model function described with state or
activity diagrams (ie: internal behaviour)

#Verification/validation and description
done with sequence/collaboration
diagrams

#Not meant for your architecture
diagrams in this class

10

N

Development View

#Focuses on actual software organization
#Mainly of interest to coders
#:System is decomposed into components and

subcomponents
#All interfaces described

#Serves as basis for resource estimation and
management

#Close to logical view and usually deduced
from It

#Can be abstract or concrete or both

11

Development View

AN
N

#Will have many things in common with
Logical View
#More detailed though

> Things like workers, locks, protocol
translators

12

Development View from Paper

>

5
CAATS, MAATS, elc... Man-Magchine Interface Off-line tools

External systems Test hamesses

>

HATS Components 4 ATG Functional areas: Flight manag-

ement, Sector Management, etc.

i;ﬁ@m
>4 E

»
ATC Framework 3

Dorrain Soes i

Agronautical classes ?éﬁ
ATC classes &
Ak
> -
Distributed Virtual Machine | 2 Support Mechanisms: =
Communication, Time, Storage, L o
Resource management, etc. % =
> gal
Bagic elements | 1 %’ 5 v
Bindings E

Common utilities

Low-level services

\
HardWare, OS, COTS
Figure 6 — The 5 layers of Hughes Air Traffic Systems (HATS)

13

N

Development View Example

L

High Level:

Lower Levedl:

;

Cl

%ﬂ
=t
=

14

Development View Example

AN
N

Start with a reasonable amount of detail
#Glve diagram and descriptions

#Describe the modules/components and
how they relate to each other

#Give enough, but not too much detalil
(tricky)

15

Development View Example

AN
N

#“Expand” components to show more
detalls

#Keep doing this “recursively”

#Feel free to use hybrid styles

> May mix styles depending on level of
component

#Feel free to invent notation

> Describe in detail meanings of notation no
matter how obvious

16

Process View

N

%

#Considers non-functional requirements
#Mainly of interest to designer and integrator
#Addresses concurrency and distribution

#Describes dynamic view of system
(processes, threads, etc) and mapping to
them

#Message flow and process loads can be
estimated from this view

#:Covers processes, threads, message
gueues, locks, etc 17

N

Process View Example

L

Development and Process Views

AN
N

Need to refer process view back to
development view

#Try to keep labels consistent between
these views

> | won't assume something with the same
name Iin both views is the same

> Be explicit in tying views together

#Decompose diagrams if necessary, like
with development view

19

Interfaces

N

L

#Every interface needs to be described
> What constitutes an interface? Every line, to
a point
#Both the delivery mechanism and
protocols used
> le: RPC, method calls, XML over TCP, etc

#Glve the schema, API, etc

#®or protocols, give examples of their
typical use 55

N

Physical View

#Considers requirements such as
reliability, performance, scalability

#Mainly of interest to system designer

#Details how processes, threads,
objects, etc are mapped to physical
resources

#Closely related and influenced by
process view

21

N

Physical View

%

#Process view needs to map to physical
view
#0nly include relevant components

> It is Irrelevant that the “Admin Console” has
a keyboard, the architecture isn’t affected

> Conversely, a word processor from the 70’s
might care about the keyboard connected

#Your physical views won't be terribly
Interesting, more for process view map

Views

End-user, Programmers,
Functionality Software management
. . Development
L0g|ca|V|ew{j> .p
View
. Physical
PYOCGSSVIGW{j> J
Voiew
ntegrators, System engingers,
Performance, Topology,

Scalability Communications

23

+1: Scenarios

N

L

#Unifies all views by providing intent

#Similar to a cross between UML use
cases and scenarios

#|n a sense an abstraction of the most
Important requirements

#Drives discovery of architectural
elements

#Serves as a validation of architecture

Scenarios

N

%

#Scenarios for your logical architecture
are In your SRS

> Use cases and sequence diagrams

#Provide scenarios for development view
and possibly process view

#Don’t provide new information, just
validate and clarify previous views

#Scenarios and interfaces are important
to pulling the overall arch together 25

AN
N

Scenarios

#Scenarios could be in the form of
seguence diagrams or collaboration
diagrams

26

Views

End-user, Programmers,
Functionality Software management
. . Development
Logical View '
Ve w
ﬂ
<Scenarios >
_//
. Physical
Process View | J
Voiew
Integrators, System engineers,
Performance, Topology,

Scalability Communications

27

/(
o

UML / Rational’s Views

End-user, Programmers,
Functionality Software management
. . Component
Logical View :
Ve w
ﬂ
Use Cases
ST
Scenarios
_//
. Deployment
Process View | $07
Voiew
Integrators, System engineers,
Performance, Topology,

Scalability Communications

28

Hofmeister et al. Views

N

%

®

1.

Four views from study of large complex
Industrial systems

Code View — Organisation of code into sources,
directories, versioning, etc

Module View — Decomposition of the system
Into modules and layers

Execution View — Decompose system into
processes and resource utilisation

Conceptual View — Logical view of system,;
design elements and relationships among them

29

‘Relations Amongst Views

Software Architecture
Conceptual — % O
View I - _5
(&)
| g
5
©
- <
. <
Module View Exeguuon L
— 1 View HE Y
=
| °
| @
i | L
| <«
Code View
| |
\ 2 \ 2
— feedforward
Source Code
< — — feedback 30

N

Kruchten vs. Hofmeister et al.

#Conceptual and Logical views very

simi
#MoC

simi

al

ule and Development views very
ar

#®Execution view similar to Physical
view, and some of Process view

#Code view is nhew

31

N

Code View

%

#Describe the structure of the code
#®File / directory hierarchies

#Class inheritance diagrams
> Not detailed class information (members)
#Relate the code view to development
and process views

> What class represents what component, or
vice-versa

> What directory represents a process, etc?;,

AN
N

Code View

#Use diagrams, tables, paragraphs,
whatever works

#Be clear In your mappings

33

Going about It

N

L

1.Write development view, then process
view (and physical)
2 .Detall all interfaces and do estimates

3.Write your code
> Don’t integrate at the last minute!

4.Write code view, relating It to process
and development views

5.Ensure consistency amongst views
(very important) 34

N

Build-Time Architecture View

#Some systems have interesting build-
time behaviour

#Different from other views

#Captures dynamic behaviour
> Build scripts
> Configuration choices

#Model compilation dependencies or
automatic code generation

35

‘The Build-Time View of JNI

/4

\\\

HelcWaorldlmp.c HelloWorld. java

Code View

compile

f—use javac
HelloWorld. class
compila
& “javah -jni"
HelloWaorld. h
compile Build View
Qoo — LIS e

hello.so "‘i HelloWorld.class Exocution Viow

N

Conclusions

#More than one way to look at software
architecture

Different kinds of architecture

#\Views proposed are reasonable and
used In practice

#Many kinds of views exist and one
shouldn’t hesitate to be creative In
striving for clarity

37

N

Conclusions

%

A guide to architecture documents
written for previous term

> May be helpful for ideas
#An example architecture document is
given

> For ideas only! Don’t follow too closely as it
was for a different class, assignment

> |t wouldn’t do that well for this deliverable

38

