
1

The Mouse and the Desktop

Interviews with Doug Engelbart, Stu Card,Tim Mott,
and Larry Tesler

• Apple mouse
2002

Photo
Courtesy of Apple

When you were interacting considerably with the screen, you

needed some sort of device to select objects on the screen, to

tell the computer that you wanted to do something with them.

Douglas C. Engelbart, 2003, referring to 1964

Why a Mouse?
Who would choose to point, steer, and draw with a blob of
plastic as big and clumsy as a bar of soap? We spent all those years
learning to write and draw with pencils, pens, and brushes.
Sharpen the pencil to a fine point and you can create an image
with the most delicate shapes and write in the tiniest letters; it’s
not so easy to do that with a mouse.

Doug Engelbart1 tells the story of how he invented the
mouse.When he was a student, he was measuring the area under
some complex-shaped curves, using a device with wheels that
would roll in one direction and slide sideways in the axis at ninety
degrees. He was bored at a conference, and wrote in his notebook
about putting two wheels at right angles to track movement on a
plane. Years later, when he was searching for a device to select
objects on a computer screen, he remembered those notes, and
together with Bill English, he built the first mouse. We use the
mouse not just because Doug Engelbart invented it, but because
it turned out to be the pointing device that performed best for

The Mouse and the Desktop | 17

• Apple Mac OSX
desktop with
images of Apple
mouse

Photo
Author’s screen
capture

pointing and clicking on a display, outperforming light pens,
cursor keys, joysticks, trackballs, and everything else that was tried
in early tests with users.The mouse won because it was the easiest
to use.

We understand the reasons for the triumph of the mouse
much more clearly from the story of developing the early designs
told by Stu Card,2 who joined Xerox Palo Alto Research Center
(PARC) in 1974 and has spent much of his time there perfecting
scientific methods to integrate with creative design. He has
developed a process to predict the behavior of a proposed design,
using task analysis, approximation, and calculation. His idea is to
accelerate the movement through the design space by a
partnership between designers and scientists, by providing a
science that supports design. He tells the story of applying this
science to the development of the mouse.

Why a Desktop?
It seems surprising to find a “desktop” on the spherical surface
of a glowing glass display, housed in a bulky plastic box that in
itself takes up half your desk. Or is it on the cramped flat screen
of your laptop? Who came up with that idea? What were they
thinking about, and why did they choose to design a desktop
rather than a floor, or a playing field, or a meadow, or a river? Why
does this desktop have windows in it? You usually think of
windows being on the wall, not all over the surface of your desk.
Why does it have a trashcan on it? It would seem more natural to
put the trashcan on the floor.

In 1974 Tim Mott3 was an outsider at Xerox PARC, working
for a Xerox subsidiary on the design of a publishing system. He
describes how the idea of a desktop came to him as part of an
“office schematic” that would allow people to manipulate entire
documents, grabbing them with a mouse and moving them
around a representation of an office on the screen. They could
drop them into a file cabinet or trashcan, or onto a printer. One
of the objects in the office was a desktop, with a calendar and
clock on it, plus in- and out-baskets for electronic mail.

The Mouse and the Desktop | 19

There were lots of other people at Xerox PARC at that time
thinking about desktops and other metaphors for use in the
design of graphical user interfaces (GUIs), but Tim was working
most closely with Larry Tesler,4 and the two of them worked out
processes for understanding users by talking to them, using guided
fantasies, participatory design, and usability testing. Larry
describes how he developed these processes and how icons
arrived on the desktop. Larry insisted on simplicity and designed
interactions that were easy to learn as well as easy to use. He went
on to Apple and formed another partnership in the development
of the desktop, working with Bill Atkinson5 to create the designs
for Lisa, including the pull-down menus, dialog boxes, and the
one-button mouse. These ideas stayed in place as the user’s
conceptual model for the Macintosh and all of the GUIs that
followed, stretching the desktop metaphor almost beyond the
breaking point.

NLS, Alto, and Star
When Doug Engelbart invented the mouse, he arrived at the
dominant design for input devices in a single leap from the light
pen, and the development of the mouse since has been more in
the nature of evolution than revolution.6 Engelbart also invented
the point-and-click text editor for the NLS system (oNLine
System) that he developed at the Stanford Research Institute
(SRI), and that system migrated with members of his design team
to the fledgling Xerox PARC and became the foundation of the
Alto, the first computer with a GUI. In the versions of NLS that
were built at PARC for the Alto, the text-editing demonstrations
were impressively fast, with a clattering of keystrokes that sounded
businesslike and productive. Direct manipulation made it so easy
to pick things up and move them that people would often find an
instance of a word they wanted in the text and move it into place,
instead of typing it. For programmers, this was a wonderful
interaction, but the patience needed to acquire the skills proved a

20 | Chapter 1

fatal barrier for novice consumers when computers became
accessible to ordinary people. It took the influence of Larry Tesler
and Tim Mott to create a text editor and page layout design
system that was really easy to use, and this was based on rigorous
user testing and rapid iterative prototyping. They came close to
the desktop metaphor that survives today.

One of the major innovations of the Alto was the bitmap
display, making it easy to show graphics.You could make any dot
be black or white, allowing you to put any image, whether a font
or a picture, onto the whole screen.The memory to do that for a
full-page display was exorbitantly expensive at the time, but it
meant that you could translate the tradition of graphic and
typographic design to the computer. Earlier computers had
primitive and pixelated type fonts, but the bitmap display meant
that what was on the display of the computer could look exactly
like a book, except that it was only 72 pixels per inch instead of
about three times as high a resolution for the printed page. A
white background and dark text was used on the screen, so that
the displayed image was like the printed result, and the screen size
was chosen to be exactly the same as a page of text, enabling the
concept of WYSIWYG (What You See Is What You Get).

The idea of the desktop was floating around Xerox PARC as
part of the communal consciousness. David Canfield Smith had
devised an office metaphor as part of his PhD thesis,“Pygmalion:
A Creative Programming Environment,” published in 1975. His
icons looked like mathematical symbols and boxes that you could
type into but defined the characteristics of the icons that have
become commonplace. Here is his explanation:

The entities with which one programs in Pygmalion are what I call
“icons.” An icon is a graphic entity that has meaning both as a visual
image and as a machine object. Icons control the execution of
computer programs, because they have code and data associated with
them, as well as their images on the screen. This distinguishes icons
from, say, lines and rectangles in a drawing program, which have no
such semantics. Pygmalion is the origin of the concept of icons as it
now appears in graphical user interfaces on personal computers. After
completing my thesis, I joined Xerox’s “Star” computer project. The

The Mouse and the Desktop | 21

first thing I did was recast the programmer-oriented icons of
Pygmalion into office-oriented ones representing documents, folders,
file cabinets, mailboxes, telephones, wastebaskets, etc. These icons
have both data (e.g., document icons contain text) and behavior
(e.g., when a document icon is dropped on a folder icon, the folder
stores the document in the file system). This idea has subsequently
been adopted by the entire personal computer and workstation
industry.7

When Dave Smith had finished his PhD, he was hired to join
PARC to work on the Star system. Alan Kay had always talked
about the desktop metaphor and he came up with the idea of
overlapping windows, from a metaphor of papers on a desktop.
“You can have a lot more papers on a desk if they overlap each
other, and you can see the corner of one, pull it out and put it on
top.”

Detailed accounts have been written8 about how long it took
to convince a copier company to commercialize the Alto, but
Xerox did make a major effort to develop and market an “Office
of the Future” machine. They did a thorough analysis of the
business potential to find what the requirements of that machine
should be, concluding that people would pay a lot for the Alto
technology. Star was conceived in response to this; based on the
combination of Smalltalk and Alto, it became a design that fit all
of the requirements. Star was a very futuristic machine; when they
were asked in the market research surveys, people responded that
they would not give up that advanced interactive performance for
a much inferior but less expensive machine.After it was launched,
the IBM PC came out, and the people who said in the research
that they would pay a lot for Star proved to be only willing to pay
much less for an inferior interface.

22 | Chapter 1

24 | Chapter 1

Dr. Douglas C. Engelbart

Photo
Author

24 | Chapter 1

Doug Engelbart is best known as the inventor of the mouse. At the time of

writing, in 2004, at the age of seventy-eight, he is still going to work at

his “Bootstrap Alliance,” trying to persuade us of the value of his ideas

about augmenting the human intellect, and evangelizing the virtues of his

“Augment System.” His office is located in the headquarters building of

Logitech, the world’s largest manufacturer of mice. Taking credit as the

inventor of such an ubiquitous product is not enough for Doug; in fact, he

is charmingly modest about that achievement, preferring to discuss other

ideas that have not met with such spectacular success. He has always

wanted to create designs that enhance human performance and is not

interested in ease of use for the novice. He grew up in Oregon, and his

electrical engineering studies were interrupted by service in World War II.

During his stint in the Philippines as a naval radar technician, he came

across an article by Vannevar Bush in the Atlantic Monthly9 and was

inspired to think of a career dedicated to connecting people to knowledge.

This idealistic ambition led him to the Ames Laboratory (later NASA Ames

Research Center) on the edge of the San Francisco Bay, where he worked

on wind tunnel research, and then to the Stanford Research Institute,

where he invented the mouse and built up the Augmentation Research

Center (ARC) with funding from ARPA. In the early seventies he took

several members of his team to Xerox PARC, where he helped put the

mouse and the desktop together.

The Mouse and the Desktop | 25

• Doug Engelbart
conducting a
workshop
circa 1967–68

Photo
Bootstrap
Institute

Doug Engelbart

Inventing the Mouse
In 1995 the International World Wide Web Conference
committee presented the first SoftQuad Web Award to Dr.
Douglas C. Engelbart, to commemorate a lifetime of imagination
and achievement and to acknowledge his formative influence on
the development of graphical computing, in particular for his
invention of the mouse.This is the contribution for which Doug
is universally acclaimed. In spite of this, he himself is inclined to
give credit to the trackball:

When I was a senior in electrical engineering, some of the
experiments we had to do in the laboratory would end up resulting in
funny shaped curves that curled back on themselves, and it was the
area under the curve that we were experimenting with. They had an
elbow shaped device there, a platform sort of thing that would set
down on the table. You would run the pointer around that area, and
there was a small wheel next to the pointer, resting on the tabletop,
and the other side of the joint there was another one. I couldn’t
figure out how that would produce the area under the curve.

“I’m not sure myself about the mathematics,” said the professor,
“but it is a fact that the little wheels will only roll in the axis of the
rolling direction, and will slide sideways.”

The Mouse and the Desktop | 27

• Graficon experimental pointing
device

I began to understand that the wheel would roll only as far as
you went in the one direction, irrespective of how many sideways
movements you made.

I thought of that again one time during a conference on
computer graphics, when I was feeling rebellious and bored, so I
wrote in my notes about putting two wheels at right angles to each
other, so that one would always be measuring how far you went north
and south, and the other east and west. It would be easy to convert
that into potentiometers and things so that the computer could pick
up that signal. It was a very simple idea. At the time I was unaware
that that same thing was sitting underneath the tracking ball, and
that was how a tracking ball worked. Later on the manufacturers put
the wheels against the table, which is exactly like an upside down
tracking ball. There should be credit given to the tracking ball, except
for my ignorance about it at the time.

It says a great deal about Engelbart’s extraordinary modesty
that he makes so light of his achievement. It also says a lot about
his methodical persistence that he used his moments of boredom
at that conference to fill a notebook with ideas and that he
remembered what was in that notebook when he was looking for
the best input device solutions many years later:

When you were interacting considerably with the screen, you needed
some sort of device to select objects on the screen, to tell the
computer that you wanted to do something with them. We got some
funding in the early sixties, I think it was from NASA, and set up an
experimental environment with several different kinds of devices; a
tracking ball, a light pen, and things of that sort that were available
at the time.

As we were setting up the experiments, I happened to remember
some notes that I had made in a pocket notebook some years before,
and sketched that out to Bill English, who was the engineer setting
up the experiments, and he put one together, with the help of a few
draftsmen and machinists. That one was put in the experiments, and
happened to be winning all the tests. That became the pointing
device for our user interface. Somebody, I can’t remember who,
attached the name “mouse” to it. You can picture why, because it was
an object about this big, and had one button to use for selection,
and had a wire running out the back.

28 | Chapter 1

First mouse in hand, 1963–64 •
First mouse •

First production mouse •

“It looks like a one-eared mouse!” someone said. Soon all of us
just started calling it a mouse.

Thinking of the possible relevance of those orthogonal
wheels was the first step; working with Bill English to design an
object to contain them was the second.The recognition that this
idea might be important for interaction came from the tests that
compared the mouse with other possible input devices; it was the
people who used it in the tests who proved the point. The
designers came up with as many alternatives as they could that
seemed plausible, built prototypes and created tasks in the relevant
context, and then ran the tests. Here’s what Doug says about the
testing process:

We listened to everybody who had strong ideas, and it seem to us
worth just testing everything that was available. The light pen had
been used by radar operators for years and years, and that seemed to
most people would be the most natural way to do it. I couldn’t see
that, but why argue with them; why not just test and measure? The
time it takes to grope for it and lift it up to the screen seemed
excessively large, so it didn’t do well in the tests.

For the test we had naive users coming in, and we explained
everything that would happen so that they weren’t surprised. We
asked them to put their hands on the keyboard, and all of sudden an
array of three-by-three objects would appear at an arbitrary place on
the screen, sometimes small objects and sometimes large, and they
had to hit a space bar, access the pointing device and go click on it.
The computer measured time, overshoot, and any other characteristics
we thought were valuable. The assessment just showed the mouse
coming out ahead. It was many years later that I heard from Stuart
Card, a friend at Xerox PARC, what the human factors explanation
was.

There is an objectivity in this process of letting the user
decide, the value of which is a recurring theme in this story of
designing the desktop and the mouse. Come up with an idea,
build a prototype, and try it on the intended users. That has
proved, time and time again, to be the best way to create
innovative solutions.

The Mouse and the Desktop | 29

The Demo that Changed the World
There is a gentle modesty, even diffidence, in the way Doug
Engelbart talks, but he holds your attention much more firmly
than you would expect from his manner of speech. His passion for
philosophy and ideas shines through, with an underlying intensity,
almost fanaticism, that is charismatic. He remembers his early
motivations:

My initial framework for thinking about these questions got
established in 1951. I had realized that I didn’t have any great goals
for my career. I was an electrical engineer with an interesting job,
recently engaged to be married, but had no picture of the future, and
I was embarrassed about this.

“What would be an appropriate career goal for me?” I asked.
“Why don’t I design a career that can maximize its benefit to

mankind?” I ended up saying.
I was an idealistic country boy. Eventually I realized that the

world is getting more complex at an ever more rapid rate, that
complex problems have to be dealt with collectively, and that our
collective ability for dealing with them is not improving nearly as fast
as the complexity is increasing. The best thing I could think of doing
was to try and help boost mankind’s capability for dealing with
complex problems.

By this time he had been working for a couple of years at the
Ames Laboratory, in what is now the heart of Silicon Valley but
was then still a pleasant agricultural countryside full of orchards.
His job researching aerodynamics and wind tunnel testing was
interesting and enjoyable, he was engaged to the girl of his
dreams, and life might have been good enough; then that idealistic
itch to change the world took over, and he started his lifelong
search to develop electronic systems that would augment the
human intellect. He remembered the “Memex” that Vannevar
Bush had described as an “enlarged intimate supplement to a
person’s memory” that can be consulted with “exceeding speed
and flexibility.” He felt a kinship for the vision and optimism that
Bush communicated and set out to find his own way of realizing
an equivalent ambition.

30 | Chapter 1

When I was half way through college, I was drafted for World War II,
and had the good fortune to get accepted in a training program that
the navy was running for electronic technicians, because the advent
of radar and sonar had changed the aspects of navy problems
immensely. They had a year-long program which taught me a lot of
practical things about electronics and exposed me to the fact that
the electronics of radar could put interesting things on the screen, so
I just knew that if a computer could punch cards or send information
to a printer, then electronics could put anything you want on the
screen. If a radar set could respond to operators pushing buttons or
cranking cranks, certainly the computer could! There was no question
in my mind that the engineering for that would be feasible, so you
could interact with a computer and see things on a screen. That
intuitive certainty made me change my career path totally to go after
it, but I had an extremely difficult time conveying that conviction to
anybody else successfully for sixteen years or more.

His first step in that sixteen-year path of dogged
determination was to leave his job and go to the graduate school
at the University of California at Berkeley, where one of the
earliest computers was being constructed. His fixed idea that
people should be able to interact with computers directly did not
fit with the prevailing view, so he started to get a reputation as an
eccentric. Once he had his PhD, he started to look around for a
place that would be more accepting of his vision than the UC
Berkeley community. He talked to Bill Hewlett and David
Packard, but although they were enthusiastic about his ideas, they
were determined to focus on laboratory instruments rather than
computers.

He finally landed a job at SRI, whose leaders were interested
in researching possible uses for computers in both military and
civilian applications. He started there at the end of 1957, soon
after Sputnik had been launched, and the space race was getting
under way. After learning the ropes at SRI for a year and a half,
he started to lobby for the opportunity to start his own lab to
experiment with new ways of creating and sharing knowledge by
combining man and machine. His wish was granted when the
U.S. Air Force Office of Scientific Research provided a small
grant, and he settled down to the task of articulating his views.

The Mouse and the Desktop | 31

“I wrote a paper that was published in 1962 called
‘Augmenting the Human Intellect: A Conceptual Framework’10

that steered my life from that point forward.” In his paper he
defined four areas in which human capabilities could be
augmented:

1. Artifacts—physical objects designed to provide for human comfort,
the manipulation of things or materials, and the manipulation of
symbols.

2. Language—the way in which the individual classifies the picture
of his world into the concepts that his mind uses to model that
world, and the symbols that he attaches to those concepts and uses
in consciously manipulating the concepts (“thinking”).

3. Methodology—the methods, procedures, and strategies with which
an individual organizes his goal-centered (problem-solving) activity.

4. Training—the conditioning needed by the individual to bring his
skills in using augmentation means 1, 2, and 3 to the point where
they are operationally effective.

The system we wish to improve can thus be visualized as
comprising a trained human being, together with his artifacts,
language, and methodology. The explicit new system we contemplate
will involve as artifacts computers and computer-controlled
information storage, information handling, and information display
devices. The aspects of the conceptual framework that are discussed
here are primarily those relating to the individual’s ability to make
significant use of such equipment in an integrated system.

In this short quote one can see the seeds of triumph and
tragedy. The triumph is Doug’s powerful vision of a complete
system, where people and computers are engaged in a symbiotic
relationship for human benefit, working cohesively as an
integrated system. From this came the mouse and the other
elements of interactive computing that he pioneered.The tragedy
is that training is a necessary component of the system. He
developed concepts for experts, and the pursuit of the highest
capability drove the design criteria; it was therefore inevitable that
training would be needed to reach the level of proficiency that

32 | Chapter 1

Bill English •

would let people benefit from this capability. That proved a
barrier to acceptance by ordinary people, and as computers
became less expensive and more accessible, the barrier got in the
way more and more.

But we are getting ahead of ourselves in the story. Let’s go
back to 1964 when, to the surprise of the SRI management,
the Defense Advanced Research Projects Agency (DARPA)
offered to fund the Augmentation Research Center (ARC) to the
tune of half a million dollars a year, as well as providing a new
time-sharing computer system, worth another million. Engelbart’s
energetic lobbying for funding and his flow of papers describing
the high-level potential of automation had not been ignored by
everyone, so now he had the resources he needed to move from
theory to practice. He put together a stellar team of engineers for
both hardware and software and set about developing NLS. Bill
English was a partner for Doug in much of the work they did,
leading the hardware development as the team grew to seventeen
people. He joined ARC in 1964 and was the perfect
complementary talent, having the technical ability to implement
many of the ideas that were expressed by his boss as high-level
abstractions.After four years of development, Doug took a chance
to show the computer science community what he had been
doing:

For the Fall Joint Computer Conference in 1968, I stuck my neck out
and proposed giving a real-time demonstration, if they would give me
a whole hour-and-a-half conference session. We had a timesharing
computer supporting our laboratory, and small five-inch diagonal
screens that were high resolution, but worked by moving the beam
around (vector graphics). We put a TV camera in front of the screen
and used a TV display for a larger size image. We rented microwave
links (from the Menlo Park civic auditorium) up to San Francisco, and
borrowed an enormous video projector, three feet by two feet by six
feet, to project onto a twenty-foot screen for the audience to see,
using a very novel way of converting the video sweep into modulated
light.

Bill English, the genius engineer that I worked with (on the
mouse also) managed to make all this work. He built a backstage
mixing booth, where he could select from four video feeds, one from

The Mouse and the Desktop | 33

each of the linked displays, one looking at me, and one overhead
showing my hands working. He could select from the feeds so you
could see a composite image in real time. He had experience doing
the stage work for amateur plays, so he was the director. I had
written a script for different people to come onto the stage, so he
put a speaker in my ear to let me hear his cues: sometimes it was so
distracting that I would fumble words.

We were able to show high-resolution links, graphics for
schematic diagrams of what was going on, the faces of members of
our team in the Menlo Park Laboratory, as well as the screens that
they were looking at. We had cursors controlled by two people
simultaneously interacting on the screen; one guy started buzzing at
my cursor as if in a fight. The audience all stood up and applauded at
the end of the demo.

This was the demo that changed the world. The computer
science community moved from skepticism to standing ovation in
an hour and a half, and the ideas of direct manipulation of a
graphical user interface became lodged in the communal
consciousness. This was not punched cards and Teletypes. It was
something entirely different. Doug sat alone at a console in the
middle of the stage, with the twenty-foot screen behind him
showing the view from the video feeds. He was wearing a short-
sleeved white shirt and a thin tie, with a microphone dangling on
his chest, and a headset like an aircraft controller’s.The overhead
camera showed his right hand using a mouse, seen for the first
time by most of the audience, to point and select with; a standard
typewriter keyboard in the center and a five-key command pad
under his left hand. In his calm but mesmerizing voice, he
described and demonstrated an amazing array of functions on the
NLS system. Words were manipulated with full-screen text
editing, including automatic word wrap, corrections and
insertions, formatting, and printing. Documents were planned and
formatted using headings and subheadings. Links were
demonstrated between one document and another, and
collaboration between remote participants was demonstrated in
real time:

One of the basic design principles that we started with was that you
want to be able to talk about any other knowledge object out there.

34 | Chapter 1

Demo at Joint Computer Conference, 1968 •

You want your links to point in high resolution, for example to a
given word in another document, so you want a link addressing string
that will let you get there. You also should be able to have optional
alternative views.

“I just want to see that one paragraph,” I might say.
“Okay! When I get there, I’d like to have certain terms

highlighted.”
“Okay! I’d also like to know who else in my group has links to it,

and what they say about it.”
I wrote in 1962 that we are all used to the idea that we can

diagram sentences, based on the syntactical rules for a properly
structured sentence. Now we might want to see a similar set of rules
for the structure of an argument, so the computer has a graphic
diagram of the argument with nodes connected to other arguments,
expressions and statements, and meaningful links connecting them.

The demo was truly amazing, proving that interactive
computing could be used for real-time manipulations of
information in ways that very few people had imagined before.
The assumption that high levels of training would always be
acceptable did not get in the way until ordinary people tried to
become users of NLS.

The demo also positioned Doug and his band at ARC to
receive continuing funding for their research until 1975. His team
grew to thirty-five people at one point. In 1969 they were
connected to ARPAnet as one of the original nodes of the
military research connected network, which eventually developed
into the Internet. NLS grew in sophistication and content as time
went on but remained essentially the same in concept. In 1971 a
group of the best people at ARC, including Bill English, were
tempted away from SRI by the opportunities at the new Xerox
PARC, where so many exciting things seemed to be about to
happen.This was the start of a slide for Doug Engelbart, during
which his long-held dreams seemed to have less and less
influence. You can feel the frustration behind his words as he
describes the determined pursuit of his ideals and bemoans the
success of the desktop:

I’ve been pursuing for fifty years something that required higher and
higher levels of capability. “How do you achieve capability,” I was

The Mouse and the Desktop | 35

asking, “and when you achieve capability levels as high as you can
get, then how do you reduce the learning costs in a reasonable way,
but not try to set what I think of as an artificial level of learnability
ease, and have to keep your capability enhancements within that
level?”

In the business world, I understand, that is awkward to try to do,
because you are competing with other people for sales, and people
will try computer interfaces that will strike customers as easy to use
early on when they purchase them. I don’t object to having a
difference, but I feel that the world should recognize that there are
really high levels of capability there to pursue that will be very
important for society to have reached. That’s been my pursuit.

Many years ago it became clear to me that what you need to do is
develop a basic software structure that will have file designs,
capabilities, and properties that the very expert person could use.
Then it is easy enough to support the beginner, or pedestrian user, by
plugging a very simple user interface with simple operations on the
front, but they can both work on the same materials.

Yes, you can point with a GUI, I admit, but our system had an
indefinite number of verbs and nouns that you could employ.

There’s no way that pointing and clicking at menus can compete
with that. You wouldn’t want to give someone directions by that
limited means.

It is easy to understand the idea of going for the best, of
catering to the expert user, and then providing a path to get there
from a simple user interface designed for the beginner. In
practice, however, this has proved to be the wrong way round, as
it’s not easy to get something right for the beginner when your
design is already controlled by something that is difficult to learn.
Look, for example, at the use of the five-key keypad for typing
text. Like the stenographer’s keyboard used for recording court
proceedings, it enables impressive typing speeds when you have
been trained long enough to become expert.

Quite a few users adopted the chording key set that I built for
myself. You could type any of the characters in the alphabet with one
hand, and give commands with the three-button mouse in the other
hand at the same time as pointing. This gave a much richer
vocabulary and a much more compact way to evoke it than the GUI.

36 | Chapter 1

This is how the interactions were designed. On the mouse,
one button was to click, another was called command accept, and
the third was called command delete. If you wanted to delete a
word, you would hit the middle button on the keypad, which was
the letter d. It was d because it is the fourth letter in the alphabet,
and this was a binary coding, 1, 2, 4, 8, 16. If it was the letter f, it
was the sixth letter, so you’d hit the 2 and the 4 keys at the same
time.Then you pointed at and clicked the beginning of the thing
you wanted deleted, then you pointed at and clicked the end of
the thing you wanted deleted, and if you hadn’t made any
mistakes, you would hit the command accept key on the mouse. It
was d, point/click, point/click, command accept. If you made a
mistake at any point, you would hit the command delete key to back
you up one step.

That process was complicated to learn, and it took a long
time for most people to memorize the binary-based, five-finger
alphabet.Alternatively, they could invoke commands with keypad,
or even the keyboard, the mouse for pointing, and a conventional
keyboard in between for typing text.This would have been a very
good solution for people with four hands, but is not as fast as the
chorded keyboard and three-button mouse, as it takes longer to
move your hands to and from the keyboard.

Doug Engelbart strives consistently toward a goal of the best
possible performance, and his intuitions and insights have set the
scene for the dominance of the mouse and the desktop. His
influence has been limited by his decision to design for people as
determined and proficient as he is himself, rather than for those
who require an easy-to-use system.

The Mouse and the Desktop | 37

Stu Card

Photo
Author

38 | Chapter 1

At first meeting, Stu Card seems to be a serious person. He looks at you

intensely from behind his glasses and speaks in bursts, often veering off

on a new tangent of connected thought. You have to concentrate hard to

keep pace with him, but when you do, the reward is immediate, as he has

thought everything through and arrived at a beautifully balanced view of

the whole picture. Occasionally his face breaks into an impish grin, and

you see that there is a rich sense of humor under the seriousness. He

joined Xerox PARC in 1974, with probably the first-ever degree in human-

computer interaction. As a freshman in high school, Stu built his own

telescope, grinding the mirror himself. His ambition to be an astronomer

led him to study physics, but he was always very interested in computers.

In the eighth grade he read navy circuit manuals about how to build flip-

flops out of vacuum tubes. His first evening course in computing was to

aim the college telescope in the direction defined by a computer program

that he wrote. At graduate school at Carnegie Mellon University he had

designed his own program, studying computer science, artificial

intelligence, and cognitive psychology. After graduation he was offered

three jobs; PARC was the most interesting, had the highest salary, and was

in California, so it was an easy decision. Doug Engelbart and Bill English

had brought the mouse to PARC from SRI, and Stu was assigned to help

with the experiments that allowed them to understand the underlying

science of the performance of input devices.

The Mouse and the Desktop | 39

• Xerox mice;
clockwise from
top right:
existing
concept 1—flat
concept 2—puck
concept 3—pen

Stu Card

A Supporting Science
When Stu joined PARC in 1974, he set out to invent a
supporting science for the design of human-computer
interactions.This made his position somewhat different from the
other researchers. There had been several attempts to develop
similar sciences, for example human factors, but that focused too
much on the evaluative side, waiting until the structure of the
design was already complete and then measuring the result. Stu
was more interested in contributing to the design process at the
beginning, when the significant choices were still in flux and the
science would be able to influence the outcome before much
work was complete:

Newell, who was a consultant at PARC at the time, wanted to try to
do a kind of applied psychology. The idea was that computer science
is a very asymmetrical discipline. If you take things like time-shared
operating systems or programming languages, there is obviously a
computer part to them, like how you parse them and do the
compiling. There is also obviously a human part; what kind of
languages can people program most easily, and what kind of errors do

The Mouse and the Desktop | 41

they make, and how can you make them more efficient? All of the
work that had been done in computer science was on the computer
side and none on the applied psychology side. Information processing
psychology showed real promise as a theory, but there were problems
with psychology; it tends to be faddish and impractical and hard to
build on.

The idea was that any science worth its salt should have practical
applications, allowing you to test the theory in a more pragmatic
context than a journal article. It would really have to work, as you
were not immune to the hostile reactions of the people that you were
trying to do this for. It would be difficult to do this in a university,
because universities, especially psychology departments, would not
tolerate applied work. In order to do basic research, you had to do it
in a place like PARC.

“Design is where all of the action is!” was one of our slogans.
If this was going to work at all, you had to have something that

could be used as you were designing. This did not mean that you
could do all of design from science. You could have the equivalent
role to that of structural engineering in relation to architecture. You
could have a technical discipline that would support the design
activity. In fact, we had a particularly concrete notion of what kind
of supporting science this would be; task analysis, approximation,
and calculation. The idea was that you would be able to look at a
situation, make zero parameter computations about it, and then say
things about what would happen in that situation without running
full experiments to see, rather with just occasional experiments to
spot check. The idea was that this would give you lots of insight that
it would otherwise be hard to have gotten.

“Don’t bug us for ten years,” we said, “and at the end we’ll
deliver this to you.”

The wonderful thing about PARC was that they said, “Sure.” We
had to make arguments up front, but once they were made, we got
ten years to do this. I’ve always appreciated the freedom that I got
to do this at PARC.

To think that design is where all the action is was very
forward-looking at that time, when innovation was usually
thought to come from genius or pure scientific research.The core
skills of design are synthesis, understanding people, and iterative
prototyping. Even now, the idea that these skills are central to
innovation is not very widely accepted, but you will see evidence

42 | Chapter 1

of their significance again and again throughout this book. The
unique contribution that Stu Card made was to create a
supporting science, connecting the theoretical underpinnings of
research to the pragmatic synthesis of design.

Bill English was Stu’s first boss at PARC. Bill and Doug
Englebart had coinvented the mouse when they were at SRI,
with Doug providing the idea and Bill the engineering
development and prototyping.A large part of English’s group had
come over to PARC from SRI. They wanted to do more
experiments on the mouse to determine whether it or some
other device was really the better one. There were devices like
rate-controlled isometric joysticks, almost identical to the one in
the IBM ThinkPad keyboard today; there were various kinds of
trackballs; and there were many versions of buttons and keys. Stu
remembers the experiments:

English was pretty busy, so I agreed to help him do the experiments.
He set up the usual kind of A-versus-B experiments between devices,
but the problem with them was that he did not really know why one
was better than the other, as the results varied when you changed
the context. Since we were trying to do the science of this stuff, I
modeled each one of the devices so that I had the empirical
differences between them, and I was trying to figure out how
numerically to account for why those differences occurred. The most
interesting model was the model of the mouse.

Fitts’s11 law says that the time to point goes up as the log of the
ratio between the distance and the size of the target. What’s
interesting about this law is that the slope of that curve is about ten
bits per second, which is about what had been measured for just
moving the hand alone without a device. What’s interesting about
that is that the limitation of the device is not then in the device
itself, but in the eye-hand coordination system of the human. What
that meant was that the device was nearly optimal. The hand was
showing through the machine instead of operating the machine at a
loss, and so if you were to introduce this onto the market, nobody
would be likely to come up with another device to beat you. We could
know this theoretically once we had this one empirical fact.

Stu went down to El Segundo to meet the Xerox engineers
who were trying to invent a pointing device for the office system

The Mouse and the Desktop | 43

• Xerox Alto
• Xerox Star
• Xerox Star mouse

that was planned.They resisted the idea of something outside the
normal cabinet full of standard electronic racks that needed a
work surface and a connection cable and would have to be
packaged separately. Stu presented the results of his tests, with a lot
of interruptions.

“Why didn’t you run it this way?”
“Who were your subjects?”
“Why didn’t you have eighty-year-old grandmothers try it?”
There was some flack and hostility, but when Stu gave his

theoretical explanation of his supporting science, the room fell
silent and he won the day. Xerox put a mouse on the market, and
what Stu had predicted was true. It is still the most successful
pointing device to this day.

In introducing the Star system, which was the next step after
the Alto toward commercialization, there was a certain circuit in
the machine, and Stu was asked whether the circuit would be fast
enough to track the mouse. If they had to make it faster, they
would have to rip out the existing circuit and put in a more
expensive one. Stu discussed this over lunch one day with a
colleague, and because he had a theory of the mouse he was able
to whip out a napkin and make a calculation,which indicated that
the circuit was going to be too slow. He went into the laboratory
and took a little video of a mocked up task to check the
theoretical curve, and that confirmed the problem, so they had to
change to the more expensive circuit. It was possible to arrive at
this definitive result four hours from the initial formulation of the
problem because there was a theory. There was no need to run
lots of user experiments and counterbalance them and do the
analysis. In a design context you want to very rapidly say, “I
believe it should be thus because of such a thing,” and then do a
little checking to be sure that you didn’t leave something out.

Stu demonstrated that you could use the same theory to
understand how to develop a better pointing device:

Just as we showed the advantages of the mouse, you could use the
same theory to show that you could beat the mouse. The mouse was
optimum, but it was based on movements of the wrist. If you looked
at Langoff’s thesis, he had measured Fitts’s law slopes for different

44 | Chapter 1

Xerox puck and pen mouse •
concept designs

sets of muscles. In particular, when you put the fingers together you
can maybe double the bandwidth.

“That’s where you want to put your transducers!” I said.
If you see these maps of the motor cortex and how much of it is

devoted to different sets of muscles, you want to put you transducer
in an area that is covered by a large volume of motor cortex. You
could probably do one with the tongue too, because there’s a lot of
space devoted to that. That’s another example of how having some
notion of the theory of this thing gives you some structuring of the
design space.

In the mid eighties ID TWO12 was engaged by Xerox to
design the enclosures for a new workstation and wanted to push
the design of the mouse farther. Stu Card was able to help the
designers think about new concepts for pointing devices. He
demonstrated one idea with a pencil stuck onto an eraser, to make
it easier to grasp when you are only seeing it out of the corner of
you eye. He believed that it had become feasible to build a mouse
like this because of the purely optical mouse that had been
developed at PARC by this time.The whole mouse was on a chip,
so most of the case was empty, and that meant that you could
shape the casework to be optimal to the shape of the hand, instead
of needing to make it big enough to cover the mechanism.

As soon as Stu explained how to structure the design space
from his theory, the designers were able to quickly create
alternative designs for pointing devices. They produced three
models, based on progressively more radical assumptions. One was
a conventional mouse that was flatter and more elegant, the next
was a puck shape, like a top hat of about an inch diameter, with a
skirt at the base for the fingers to rest on.The most radical one
was the penlike device with a weighted base, causing it to stand
upright on the desk, giving form to Stu’s idea of the pencil stuck
into the eraser.At the end of the project Stu concluded:

This was my ideal model of how the supporting science could work. It
required good designers to actually do the design, but what we could
do was help structure the design space so that the movement through
that design space was much more rapid. The science didn’t design the
mouse, but it provided the constraints to do it.

The Mouse and the Desktop | 45

Tim Mott

46 | Chapter 1

Tim Mott created the concept of “guided fantasies” to learn about user

needs, and was one of the very first people to apply rigorous user testing

to the design of user interfaces. He studied computer science at

Manchester University in England in the sixties and found a job with a

publishing company called Ginn, near Boston, that was owned by Xerox.

This led him to work with the researchers at Xerox PARC, and he

collaborated with Larry Tesler to design a publishing system that included

a new desktop metaphor; together they invented a user-centered design

process. In the late seventies he became more interested in designing

processes for management and business and honed his management skills

working for Versatec, another Xerox subsidiary that manufactured

electrostatic printers and plotters. In 1982 he cofounded Electronic Arts

(EA) and set about building a set of processes to enable the creation and

production of really rich interactive entertainment experiences—as soon

as the supporting hardware was available. From the very beginning, they

built the company with people who were just crazy about games. Once EA

was successful, Tim went on to run a small company called Macromind,

whose founders had invented a user interface design tool called Director,

leading the company to expand into multimedia and become Macromedia.

He was a founding investor in Audible, setting the precedent for the MP3

players that came later, and moving from “Books on tape” to the spoken

word Web site that supports public radio. He is a pilot, flying jets as well

as the single-engine back-country plane that he loves to fly over wild

mountain scenery.

The Mouse and the Desktop | 47

Tim Mott
Tim put the editors in front of a display with a keyboard and

a mouse. Nothing was on the display and no programs were

running, but he asked them if they could walk him through

the process, imagining what it would be like to use that

hardware to edit. This was 1974, before word processors, so

they were using typewriters, pencils, and erasers.

Guided Fantasy
Ginn was one of several companies in the publishing industry
that Xerox acquired around 1970.They were based in Lexington,
Massachusetts, in one of the first buildings equipped with office
systems furniture from Herman Miller. When the Ginn
management team found out how their contribution to Xerox
corporate finance was being spent, they put in a request:

We’re taxed for your research center; every division of Xerox has to
pay money to support Xerox PARC research, and we want something
back! What are you going to do for us?

This challenge eventually reached Bill English, who assigned
the task of developing a publishing system for them to Larry
Tesler. Larry started working with Ginn and writing specifications
for their system and suggested that they hire somebody; they
could send the new person to PARC for a year or so to work on
the design of the new product. As it moved from design to
implementation, he could write some of the code and then return
to Ginn to provide support. They found Tim Mott at Oberlin
College, where he was working on the help desk for a mainframe.
Larry remembers interviewing Tim:

48 | Chapter 1

• Tim Mott in 1974

When we talked to him, we realized that this was the perfect guy; he
writes good code, he’s really fast, he understands about usability
because he helps customers all the time, he loves doing support and
he loves programming, and he thinks it’s an interesting problem. We
hired Tim Mott, and we got ten times more than we bargained for.

Tim spent a little time at Ginn, observed how they worked,
started thinking about how to make it easier for the publishing
team to get their job done, and then flew out to PARC. He
remembers his first encounter with POLOS (PARC On Line
Office System):

When I got out there, what I found was that, in my judgment at any
rate, the system was completely unusable by anyone other than the
people who built it. Their background was in building editing systems
and design systems for themselves and for other computer
professionals, and at least in my judgment it just wasn’t going to be
usable by editors and graphic designers who worked in a publishing
company, so a month after getting to Palo Alto, I wrote a letter of
resignation to the executive editor back in Boston, saying, “This is
not a project that you should be doing.” That letter found its way to
Bob Taylor, who was running the computer science lab at the time. I
spent some time with Bob, and he said, “Why don’t you figure out
what it is that we should be doing then?”

That was a challenge that Tim couldn’t resist, so he teamed up
with Larry Tesler, and together they set about discovering what
the people who worked at Ginn really needed.Tim went back to
Lexington and put the editors in front of a display with a
keyboard and a mouse. Nothing was on the display and no
programs were running, but he asked them if they could walk him
through the process, imagining what it would be like to use that
hardware to edit.This was 1974, before word processors, so they
were using typewriters, pencils, and erasers. He used the “guided
fantasy” technique that Larry had told him about, explaining that
the mouse could be used to position a pointer on the screen and
that the text would be on the screen. The editors described the
process that they used at that time with paper and pencil.Together
they imagined typing in the text and creating a manuscript, and

The Mouse and the Desktop | 49

then editing that manuscript using the mouse and keyboard in the
same way that they would use a pencil.

The Alto and the POLOS in 1974 both had mice on them
based on the Engelbart mouse developed at SRI, and the Alto
display was already a bitmap display, but the design of editing
programs was still based on the prior generation of character
displays; no one had really thought about how to use the
characteristics of the bitmap display to create a more flexible
editing environment.

None of the text editors that had been designed for
computers up to that point had a space between characters.They
were based on character matrix displays that didn’t allow for an
editing mark to be placed between the character cells. If you
wanted to mark an insertion point in the text, you either selected
the character before where you wanted to add the new text, and
said append, or you selected the character afterwards and said insert.
Tim explains the difficulty that this caused:

That was one of the first things that I got from working with these
editors. One of the concepts that they worked with was the space
between characters, or the space between words.

“I want to use the mouse and put this insertion point or this
caret between these two characters, and then I just want to type in
the new text,” they said.

When it came to deleting text, they talked about wanting to
strike through it, just like they would with a pencil. They wanted to
use the mouse to draw through the text. Up until that point, the way
that a span of text had been selected was to mark the beginning
point, and mark the end point and say “select.” No one had actually
used a mouse to draw through text.

These techniques that we see in all the word processing programs
today came directly from working with people who spent their entire
lives editing text and asking them, “How do you want to do that?”
Once Larry and I hit on this idea of having people talk about how
they would want to do the work, the design itself became pretty
simple. There was a new design methodology that came out of it. We
talked about the design process as one that began with building a
conceptual model that the user had today.

50 | Chapter 1

The Alto didn’t have a user interface; rather, it came with a
toolbox.You could build any kind of program you wanted, based
on this very flexible architecture, and people started building
applications on it.The Smalltalk system incorporated menus and
editing techniques. There was a graphics program that William
Newman built called Markup and a paint program that Bob
Flegal created—applications started springing up.

Tim and Larry took the code base from Bravo,13 a text editor
that already existed at PARC, and put a completely different user
interface on top of it. They called their design “Gypsy”; the
implementation program was straightforward, but they worked
hard. They shared one Alto between them, working fourteen-
hour shifts so that they would overlap by an hour at both ends and
could tell each other what they had done. In this way they could
work on the same code around the clock and could protect their
access to the computer, as there were only four Altos at PARC
when they started.

Using “drag-through” selection for text was not the only
innovation that came out of the work on Gypsy.The origin of the
cut-and-paste metaphor is described by Larry in his interview, as
is Tim’s idea for double-clicking the mouse. There was also the
first dialog box; this was a little bar with a place for typing
commands such as Find. It was more like a noniconic toolbar of
today, as in Apple’s Safari browser.

Gypsy had a file directory system with versions and drafts, not
just a list of files.You could have versions of the document and
drafts of the version; it remembered them all and organized them
all for you. It had bold, italic, and underline—used very much like
they are today.You could select something by dragging through it
or clicking the two ends, and do the equivalent of Control b for
bold. They changed the name of the control key to look with a
paper label, so you said look b for bold.

Larry had come up with the “guided fantasy” technique in
1973, and he and Tim developed other user-centered methods
with frequent usability testing in the fall of 1974 and the spring
of 1975; their work really caught the imagination of the people in
the PARC community. In the spring of 1975 Tim took the text-

The Mouse and the Desktop | 51

editing program back to Lexington to try it out with the people
at Ginn. For the first test he picked the most senior editor,
figuring that, since she was the most entrenched both in her work
habits and the company, if he could win her over, it would be
smooth sailing from then on. After the first day she said, “You
know, I think the quality of my work will be better going
forward, because it’s just so much easier to edit with this than it is
with a typewriter and a pencil!”The approach had proved itself!

The Desktop (Office) Metaphor
In parallel with completing the text editor,Tim and Larry were
pretty far along in designing a page layout system for graphic
designers. They were still struggling with the issue of how to
think about the user interface for documents and files, and the
actions that take place on an entire document, rather than on the
pages or text within a document. Tim describes his moment of
inspiration:

I was in a bar late one afternoon waiting for a friend, doodling on a
bar napkin and thinking about this problem. I was just obsessed with
this design at the time; I was just consumed by it. I was thinking
about what happens in an office. Someone’s got a document and they
want to file it, so they walk over to the file cabinet and put it in the
file cabinet; or if they want to make a copy of it, they walk over to
the copier and they make a copy of it; or they want to throw it away,
so they reach under their desk and throw it in the trash can.

I’m sitting there thinking about this and I’m doodling. What
ended up on the bar napkin was what Larry and I called the “Office
Schematic.” It was a set of icons for a file cabinet, and a copier, or a
printer in this case, and a trash can. The metaphor was that entire
documents could be grabbed by the mouse and moved around on the
screen. We didn’t think about it as a desktop, we thought about it as
moving these documents around an office. They could be dropped into
a file cabinet, or they could be dropped onto a printer, or they could
be dropped into a trashcan.

The Mouse and the Desktop | 53

• Tim Mott’s
reconstruction of
his sketch on the
bar napkin

Photo
Author

The desktop was part of the design, and on it there were those
things that you might normally find on a desktop like a calendar, a
clock, and baskets for incoming and outgoing mail; the notion was
that we would be able to use that as the controlling mechanism for
electronic mail.

When Larry heard about the idea and saw the bar napkin, he
showed Tim the illustrations from “Pygmalion,”14 Dave Canfield
Smith’s thesis. He said that people had tried to implement similar
designs before, but they had always attempted to do very
complex, three dimensional, true-to-life simulations, as opposed
to just a simple two-dimensional iconic representation. The
simplicity of the representation was the breakthrough!
Somewhere in one of Tim’s notebooks in Xerox there is a bar
napkin covered in the doodle of his office metaphor, complete
with a desktop and trash can.

54 | Chapter 1

Larry Tesler

Photo
Author

56 | Chapter 1

When he was at Apple, Larry Tesler had a license plate saying “NO MODES,”

emphasizing his passion for designing software that would be simple and

easy to use. He had been writing code since he was in high school and

worked at the computer center at Stanford while studying there in the

early ‘60s. He founded his own company to offer programming services

while he was in his junior year and soon discovered that his customers had

a different way of thinking from the software engineers in the Computer

Science Department. He realized that the best way to design the software

was with participation from the customer, and he developed techniques for

watching how people did things and designing software that allowed

people to use new technology in familiar ways. He learned to create

prototypes rapidly and to test them with the intended users early and

often. After working at the Stanford Artificial Intelligence Laboratory, he

went to Xerox PARC in 1973 in time to be a key player in the development

of the desktop and desktop publishing. In 1980 he moved to Apple, where

he was core to the design of Lisa. He invented cut-and-paste and editable

dialog boxes, and he designed the Smalltalk browser. He simplified the use

of the mouse by reducing the controls to a single button. He insists on

truth and accuracy and is willing to challenge anybody’s assumptions

about the best way to do things, always thinking from basic principles.

After a three-year stint at Amazon, running the usability and market

research groups, he is now helping Yahoo improve the design of their

online interactions, as VP of user experience and design.

The Mouse and the Desktop | 57

• Larry Tesler’s “No
Modes” license
plates, front and
rear

Photo
Author

Larry Tesler
“Iconic naming systems will be explored. A picture of a room

full of cabinets with drawers and file folders is one approach

to a spatial filing system.”

From a white paper called OGDEN (Overly General Display Environment for Non-programmers),

by Larry Tesler and Jeff Rulifson

Participatory Design
Larry was quick to realize the value of participatory design and
usability testing. His first lesson occurred while he was still
studying at Stanford, when he was asked to get involved with a
project to organize the “card stunts” at football games and to
automate the production of instruction cards. At halftime during
the football game, when the students flipped up the cards, instead
of hand-written instructions they would be computer-generated.
Students from the Computer Science Department had already
written a programming language on punch cards, with all
numeric commands. An art student would draw polygons to
represent the shapes and colors and describe an animation, and
then a computer science student would code all the instructions
to generate the instructions and print out the cards. Finally the
cards would be torn along perforations and set out on the seats.
Larry was persuaded to take over the coding role.

“The trouble is that the art students have a great deal of
difficulty with this language, so you end up coding all the stunts,”
he was warned; “if you don’t want to code all the stunts, you
better find a way of making it easier to use!”

The Mouse and the Desktop | 59

• Larry Tesler at Stanford, 1961

He started talking with the art students and trying to figure
out what they wanted. It was a different world! Over the next
three years, he reworked this language several times, until even the
art students could use it.

In 1963, when he started a software consulting business in
parallel with his studies, he developed a rapport with users and
worked out how to ask them the right questions, so that he could
make programs they could use. He did not have to run the
software for them; they could do it themselves. One of the
programs he wrote was a room-scheduling program for the
Stanford Psychiatry Department.They were trying to arrange for
patients who came in to get assigned to rooms with doctors.
They had scheduling problems because appointments overlapped,
and rooms had to be used at certain times during the week for
other things.

One of the psychiatrists and I designed it together. That worked out
really well, as they needed no help from me at all to use this. That’s
when I realized that the best way to design the software is with the
customer, which is now called participatory design. With the art
students and the card stunts, I would watch how they used it and see
when they got confused. That was my first experience with what we
call usability tests today, observing people and seeing what the
problem was and then going and fixing it, and realizing that I could
make something simpler. That was really the beginning of my interest
in usability.

60 | Chapter 1

Larry Tesler at Stanford AI Lab, 1971 •
Larry Tesler at Xerox PARC, 1974 •

The Future System Will Use Icons
Experience at the Stanford Artificial Intelligence (AI) Lab gave
Larry lots of exposure to the computer science community in the
San Francisco Bay area. He got interested in typography and
developed a publication language called Pub. It was what today
would be called a markup language with embedded tags and
scripting, but this was in 1971. It only ran on the PDP 6, which
limited it to use in universities.A lot of graduate students used it
for their theses in the major universities that were on the
ARPAnet. On request, he distributed it in source-code, so it was
actually one of the first open-source markup languages.

He decided this was really the wrong way to do it, and that
the right way to do it was to have an interactive layout system, not
a language, so that anybody could use it. He was putting together
a catalog for a volunteer group one day in 1970, using X-ACTO
knives and glue, pasting up the pages with type-scripts and
remembers saying to a friend:

You know, this is not the way this is going to be done in the future.
In the future you’re going to have a big screen in front of you, and
you’re going to be taking these excerpts from documents, and you’re
going to be pasting them into pages, without glue, and it’ll be
perfect. We won’t have all these alignment problems! And then when
you’re done you’re going to print on a phototypesetter. It’ll all be
done interactively.

He was looking for the right place and opportunity to turn
this vision into reality, and in 1973 he joined Xerox PARC with
that expectation in mind. When he got there, he said that he
wanted to work on interactive document formatting. “We’ll get
to that, but first you need to work on this distributed office system
we’re building,” Bill English replied. This was disappointing, but
he was allowed to spend about half his time working with Alan
Kay’s team, which was much more exciting as they were starting
to develop Smalltalk. He got involved there developing the first
modeless editor.

The Mouse and the Desktop | 61

• Jeff Rulifson at Doug Engelbart’s 1968 demo

Initially I started working with a guy named Jeff Rulifson, who had
worked with Bill English and Doug Engelbart at SRI. “You two go off
and do some visioning about the office system of the future,” Bill
said. That was pretty exciting, so we went off and wrote a little white
paper on it called OGDEN (Overly General Display Environment for
Non-programmers). A lot of it was kind of nuts and all wrong, but
there were some really good things in there. Jeff had just read a book
about semiotics, and he said that it had talked about signs and
symbols and icons and so on. The author of the book had said that
icons would be a really appropriate thing to use in an interface for a
computer system, because they would remind people of a concept,
and they would grasp the idea quickly by looking at the icon without
having to read a word. Jeff thought that we should incorporate that,
so we put it in our white paper, and said, “Iconic naming systems will
be explored. A picture of a room full of cabinets with drawers and file
folders is one approach to a spatial filing system.”

We had a diagram with an idea of what it might look like. It
didn’t look at all like the Mac or Windows; it looked more like General
Magic, with a 3D, or perspective, desk, a file cabinet in the corner,
and things on the desk, and a trash can next to the desk. The idea
was that you would point at stuff that looked semirealistic,
representational, but not equal-sized icons like we have today. Alan
Kay loved that idea and had been thinking of similar things, and he
passed it on to Dave Canfield Smith when Dave came looking for a
thesis to do, and Dave actually implemented the first thing that’s
more like what we think of as icons today.

62 | Chapter 1

The Five-Minute Learning Curve
With the exception of Jeff Rulifson and Larry, everybody at
PARC was extremely wedded to the NLS interface that was
developed in Engelbart’s team. Jeff was the least wedded to it,
perhaps because he had come up with it.

“Why is everybody so excited about this interface?” Larry
said to Jeff, who laughed.

“I don’t know, because it was never designed!” Jeff replied,
“When they implemented the system, they didn’t have a user
interface; they just knew what they wanted it do.”

Jeff kept asking what the user interface was going to be.
“Well, I haven’t designed that yet,” was the reply,“I’ll do that

later.”
Jeff was assigned the task of testing the system, so he took the

procedures in the language.There were commands like delete, left
parenthesis, character number, right parenthesis, so he made something
that was absolutely literally the same thing, only intended for the
programmers testing the software. They all started using it and
learned it, and then they started getting excited about how you
could type the letters on the keypad by using binary code.What
started as a testing language acquired a mystique; although it was
never designed for end users and never analyzed scientifically, its
aficionados grew to believe that it was an ideal interface for a
system to augment the intellect. Perhaps it was.The trouble was
that it was really hard to learn, and they admitted that.

Larry set out to prove that you could learn something in a
day. He developed a little text-editing program that he called
“Mini Mouse.” It didn’t use the NLS keypad at all and only used
one button on the mouse. Before doing it he decided that he
wanted to observe a user, and used a technique similar to his
“guided fantasy.” He describes working with a secretary who
had just started at PARC and was not yet influenced by the
programs that were being used:

I sat her down in front of a screen, and did what’s now called a
“blank screen experiment.”

The Mouse and the Desktop | 63

“Imagine that there is a page on the screen, and all you’ve got is
this device that you can use to move a cursor around, and you can
type,” I said. “You’ve got to make some changes to this document.
How would you do it?”

I gave her a paper document with lots of markups on it for
reference, and asked her to imagine that is was on the screen. She
just designed it right there!

“I would point there, and then I would hit a delete key,” she
said.

To insert, she would point first and then start typing. She’d never
been contaminated by any computer programs before, so I wrote all
this down, and I thought, “That sounds like a pretty good way to do
it!” Later I also tested other new people like that and got similar
kinds of results. I wrote a report about this. Up to that time, Bill
English had been extremely skeptical about what I was doing. He
seemed offended that I was challenging the “perfect” NLS editing
language, but when he read my document a light went off, and he
came to me and said, “This is really good!”

In the past, the programmers at SRI and PARC had thought
that usability tests would be extremely expensive and time
consuming and had done very few of them. Larry felt that he had
to demonstrate that testing did not have to be difficult or
expensive, so he built Mini Mouse in Smalltalk, like a typewriter.
It turned out to be so easy to use that they could take people who
were walking by in the building, and ask them to try it, and they
were able to learn to operate it in five minutes—compared with
a week to get comfortable doing comparable tasks using NLS.

Double-click, Cut, Paste, and Cursors
The Mini Mouse triumph earned Larry the freedom to work
more independently and to focus on text-editing software.When
the gauntlet was thrown down by Ginn to help them with a
publishing system, he was only too pleased to take on the task. He
found Tim Mott, and they became partners in creating a new state

64 | Chapter 1

of the art for text editing and graphic layout, as described in Tim
Mott’s interview. Larry tells the story of inventing the double-
click:

When I had written up Miki Mouse, which was going to be the next
thing after Mini Mouse, I was trying to decide what to do with all
this hardware. We had three buttons on the mouse. I really wanted it
to be a single-button mouse, because I wanted to be able to use
other things like tablets, touch screens and light pens, and you
couldn’t do that with a multibutton design. Another reason was that
when people were using the software, they thought of the mouse as
being held by the pointing hand, with the other hand being for
commands, either on the keyboard or on the five-key keypad. I
thought if we could separate that out really cleanly we would reduce
the common mistake of hitting the wrong button on the mouse. One
in five times it was, “Oops, hit the wrong button.” This was why you
had to practice a lot to master NLS, as so often you hit the wrong
button.

“Maybe we could use the first button to select the cursor location
between characters,” I thought, “and the second button to select a
word, and the third to select a sentence or something.” I was with
Tim and said, “I really don’t like this, because I’d really rather just
have one button.”

One morning he came in and said, “I’ve got it; double-click! You
click twice in rapid succession in the same place to get a word, and
three times to get a sentence.”

“Twice maybe, but not three times, surely!” I said. I gave him all
the reasons that it wouldn’t work, but when I closed my eyes and
tried to envision it: “Yes it just feels right,” I had to admit, “double-
click to select a word; it just feels right.”

We had already been implementing Gypsy at that point, and some
of it was working enough so that we could try it. We brought in the
secretaries and had them try it, and everybody thought it was good.
There were lots of detailed technical arguments from the
programmers, but basically it became a good thing right away.

One day Larry saw a novel way of handling “delete” and
“insert” that had been developed by Pentti Kanerva, who was a
software expert at Stanford University. It was done by first
selecting what you wanted to delete and then saying escape-d-

The Mouse and the Desktop | 65

return for delete, and then by moving the cursor where you
wanted it and then saying escape-o for “oops,” which meant “undo
last delete.” If you made a mistake, you just hit L, which meant
insert, and it inserted whatever was in the buffer wherever the
cursor was.The cursor was likely to be where it was before, so it
came back.

The magic of this idea was that if you moved the cursor
somewhere else after you said delete, it would move it there, so
you didn’t need a move command.When Larry was working on
Gypsy, he remembered that and thought that he could use it to
avoid a special mode for moving.The trouble was that it was not
good for copying, because you would need to copy it to the
buffer.

We were doing this for a publisher, Ginn and Company, and we were
planning to implement “cut” and “paste” to move things around in
the document.

“Why don’t we use the same words, cut and paste, for this process
of delete and insert,” I said to Tim, “and that way if you want to
copy, you can say copy and paste.”

Tim agreed, so we named our commands, cut/paste and
copy/paste. Because of that, I seem to have the reputation for
originating cut-and-paste, but it was really Pentti Kanerva’s idea that
I renamed and reduced the number of keystrokes from six to two.

There was no cursor in NLS: you just pointed at things and
they became the first item (character, word, and so forth) or the
last item of the selection. Every system that had a cursor took a
character and either underlined it or showed it in reverse video;
normally if you were doing white on green, you’d show green on
white.The problem with that was that if you moved the cursor
somewhere and started typing, it wasn’t clear where the character
would go. The way it worked in most systems was that the
character that you had inverted would change as you typed, so
you would overtype things. If you wanted to insert, you had to go
into a mode, like control-i or an insert key, and then everything
you typed would get inserted before the character. Larry found in
experiments that a lot of people expected it to go after the

The Mouse and the Desktop | 67

• The original
“cut” and “paste”
labels written by
Larry, stuck onto
the NLS keyset to
first test the idea

Photo
Nicolas Zurcher

character, and some people were just confused. He didn’t want
something you had to learn; he wanted it to be obvious. He was
puzzling about this, and brought it up it during a meeting at
PARC.

A few days later he bumped into Peter Deutsch in the
hallway, who was not a user interface guy in any way; he was more
of a systems guy.

“I think I have a solution to your problem of insertion for the
cursor,” he said. “Put the cursor between characters, not on a
character.”

“That’s a nice idea, but how do you know which character
you mean?” Larry said.

“Well, if you click on the right half of the character, the
cursor goes after it, and if you’re on the left half of the character,
it goes before it.”

“Oh, of course, that’s so simple. It’s the answer.” Larry
thought,“I just need a way to show that there’s this place between
characters. In this publishing system they’re used to using this
caret mark to show that something needs to be inserted, so I can
use that.”

He started playing around with the caret mark, and finally
came up with a caret that would work, overcoming the space
management problem, and in the early systems they used a little
caret mark as the symbol. Later, Dan Ingalls came up with the idea
of just doing a vertical line between characters and implemented
that for Smalltalk.They made it easier to see by making it blink
on and off, to avoid confusion with a vertical bar. Larry tried
other alternatives to make it more visible, for example curling the
top and bottom like a sideways H, so that it didn’t obscure the
character you were looking at, was easy to find on the screen, and
had a clear meaning. The vertical line was the design that
survived.

68 | Chapter 1

Smalltalk Browser
Larry had been trying to get into Alan Kay’s group from the
moment he arrived at PARC. As a result of the success of the
Gypsy project, he was given the chance, and he started working
on Smalltalk. He describes his delight in working for Alan and
how he was challenged to design a browser:

Alan was always a great research manager; he would always challenge
us, and would never be satisfied with anything. He was very good at
rewarding people and acknowledging their work.

He would say things like, “We still don’t have a good way to
query databases,” or “We still don’t have a good way to deal with
animation.”

One of his favorites was, “You know, you can go to a library and
you can browse the shelves, but we don’t have any good way to
browse.”

Diana Merry, who had converted from being a secretary and
become a Smalltalk programmer, said to me one day, “You know, we
still don’t have a good way to browse.”

“I’m so tired of hearing that, Diana,” I said, “Alan says that every
month, and I’m so tired of it! It isn’t such a hard problem.”

“Well then, go do it!” she said.
“If I do it, will you promise never to say this again?”
She assured me that she wouldn’t, so I had to figure out how to

browse. I was thinking of graphical metaphors with books on
bookshelves, and then thought that maybe I should start with
something closer to home. We programmers are always trying to
understand other people’s code, scrolling through big files of source
code all the time trying to find stuff, and we don’t know what it’s
called, so we can’t use the search command. I thought that if I could
figure out a way to browse through code, we could maybe generalize
it to work for other things too, plus it would be a cool thing to have
for myself, so I decided to build a code browser.

I think this is one of those things that a lot of designers do. You
just kind of close your eyes and vision, what would it look like?
Instead of putting the secretaries in front of a blank screen, for a
programmer’s tool, I’m designing for myself, so I can be the subject.

The Mouse and the Desktop | 69

Close your eyes. Blank screen: what does it look like? Smalltalk had
classes of objects, and methods, which were routines or procedures.

“Okay, I’ll have a text list of classes, and then when I click one of
them, somewhere it’ll show all the methods,” I thought. “Then when I
click the method, it’ll show me the code for that method. Then I can
scroll through the lists, and browse around. That’s pretty simple!”

I got a piece of paper and drew it out and had the usual width
problems with lack of room for three columns, so I put the two lists
of classes and methods across the top, to allow a full width window
for the code. It was a window broken up into three pieces, so I’ll call
them “panes,” so we can have windows and panes. Each pane will
have its own scroll bar so you can browse before you pick one to see
the code. While we’re at it, once you’re looking at the code, I might
as well let you edit it, using the standard Smalltalk editing facilities
of drag through, cut-and-paste and all. I built it in somewhere
between one and two weeks; it was one of those “Aha” kind of
things, and it immediately started getting used by everyone. There
were over a hundred classes and over a hundred methods; Dan Ingalls
made a big improvement to it by dividing them into categories, so we
ended up with four panes across the top. That became the classic
Smalltalk browser.

This was the first browser design. It was a welcome change
for Larry to design something for himself as a software engineer.
He had become so wedded to the ideas of participatory design
and user testing, that it seemed surprisingly straightforward to be
designing for the user in the mirror. He went on to use the
Smalltalk browser to build a point-and-click debugger and
inspector. Other people have used the same metaphor to browse
around databases. Although Web browsers are fundamentally
more like Engelbart’s NLS, which used links to jump between
documents, frames in Web browsers resemble Larry Tesler’s
browser panes from 1976.

70 | Chapter 1

The Brain Drain from PARC
Around 1980, lots of people started leaving Xerox PARC.15 At
the beginning, when PARC was founded, the most inventive
minds in technology had been attracted by the promise of
creating something that would change the world and by the
chance to work with and learn from each other.They had been
together long enough to be strengthened by their collective
experience, and many of them were itching for the opportunity
to see their ideas move from research to reality. Xerox was
struggling to maintain dominance in the copier market, as
Japanese competitors were overtaking them at the lower end of
the market and gradually moving up.The only part of the research
at PARC that Xerox really took advantage of was the laser
printing technology, and although that produced enough revenue
to justify the investment in the research center many times over,
it was increasingly clear to the people there that concepts for the
“office of the future” were on hold. There was also a sense of
opportunity in Silicon Valley, as the venture capital firms were
starting to fund new-start companies for the development of
products rather than just for chips. It was natural for all those
brilliant researchers to want to take the next step in their careers,
so they were looking around.

As it happened, Larry Tesler,Alan Kay, and Doug Fairbairn all
resigned from Xerox on the same day, for three different reasons,
to go three different places, without knowing one another’s plans.
Larry was headed for Apple,where he started in July 1980.He had
participated in the famous demo of PARC technology to Steve
Jobs and the team from Apple and was getting to know more
about them:

I was blown away by the Apple people. I had been trying to convince
people at Xerox about my belief in the future of personal computers,
but the Apple people appreciated everything in the demo that I
thought was important. I agreed with all the things that they said
should be done next.

“They think more like me than the PARC people do.” I felt, “I’m in
the wrong place! I should join a company like Apple.”

The Mouse and the Desktop | 71

Two years before I joined Apple, when the company had only
thirty employees, a friend had dragged me along to a company picnic,
but they still seemed to me like a bunch of hobbyists. Between the
picnic and the demo, they had hired all these computer scientists and
software engineers who were very sophisticated.

“These guys really know what they’re doing,” I thought, “and they
want to do the right thing!”

When I got to Apple, I said once again, “What I want to work on
is publishing systems,” but they asked me first to work on Lisa. They
put me in the research group consisting of three people: Bruce
Daniels, who was a systems guy; David Hough, who was a numerical
analyst; and me.

“I don’t really understand what kind of research we’re going to
do,” I said after I had been there a week. “We don’t have time to do
research. Apple is not ready to do research. It’s too early in the
history of the company.”

They agreed, so we went to the management.
“We’ve just dissolved our research group,” we said, “so you should

just put us in the Lisa group.”
They did, so I started talking to Bill Atkinson about what I

thought should be different. Bill was a neuro-psychologist by
training, with a great combination of psychology, design (he’s now a
photographer), and programming. He was a great integrator; he was a
sponge. At first I didn’t think he was hearing people’s ideas, but he
was processing them and synthesizing them in a wonderful way. It
would be great to be inside Bill Atkinson’s brain!

This was the start of a great collaboration between Larry
Tesler and Bill Atkinson.They formed a tight bond and creative
partnership and went on to design some of the most significant
and long-lasting interactions in the world of desktops and
windows. An interview with Bill Atkinson follows in chapter 2,
and he and Larry tell some of these stories together.

72 | Chapter 1

