
An Iterative Design Methodology
for User-Friendly Natural Language
Information Applications
J. F. KELLEY
IBM Thomas J. Watson Research Center

Office

A six-step, iterative, empirical human factors design methodology was used to develop CAL, a natural
language computer application to help computer-naive business professionals manage their personal
calendars. Input language is processed by a simple, nonparsing algorithm with limited storage
requirements and a quick response time. CAL allows unconstrained English inputs from users with
no training (except for a five minute introduction to the keyboard and display) and no manual (except
for a two-page overview of the system). In a controlled test of performance, CAL correctly responded
to between 86 percent and 97 percent of the storage and retrieval requests it received, according to
various criteria. This level of performance could never have been achieved with such a simple
processing model were it not for the empirical approach used in the development of the program and
its dictionaries. The tools of the engineering psychologist are clearly invaluable in the development
of user-friendly software, if tha t software is to accommodate the unruly language of computer-naive,
first-time users. The key is to elicit the cooperation of such users as partners in an iterative, empirical
development process.

Categories and Subject Descriptors: D.m [Sof tware] : software psychology; H.1.2 [Models and
Principles]: User/Machine Systems--human factors; 1.2.1 [Artificial Intelligence]: Applications
and Expert Systems--natural language interfaces; 1.2.7 [Artificial Intelligence]: Natural Language
Processing--language parsing and understanding; 1.6.3 [Simulation and Modeling]: Applications;
K.6.3 [Management of Computing and Information Systems]: Software Management--software
development

General Terms: Experimentation, Human Factors

Additional Key Words and Phrases: Natural language, limited context, naive user, discretionary user,
iterative design, simulation, user-friendly, ease-of-use, empirical grammar, task analysis, engineering
psychology.

1. INTRODUCTION

Computerized office applications employ one of three modes of input: menus,
command languages, or natural language. According to one view. the suitability
of a particular mode of input depends on the "semantic" and "syntactic knowl-

This work was mostly supported by a research agreement with the IBM Corporation Systems
Products Division, under the supervision of Prof. A. Chapanis, Dept. of Psychology, The Johns
Hopkins University. Portions of this material appeared in the Proceedings of the CHI '83 Conference
on Human Factors in Computing Systems, Dec. 1983.
Author's address: IBM, Thomas J. Watson Research Center, Room ST-K40, P.O. Box 218, Yorktown
Heights, NY 10598.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0734-2047/84/0300-026. $00.75

ACM Transactions on Office Information Systems, Vol. 2, No. 1, March 1984, Pages 26-41.

An Iterative Design Methodology 27

edge" of the user [11]. Menus might best serve a person who is not familiar with
the computer's command structure (low syntactic knowledge) and who is uncer-
tain how to proceed in solving his particular problem (low semantic knowledge);
the menu tells the person which responses to make at any given time, leading
him through the problem-solving process. Command languages are good for
people who know what steps they want to undertake to solve a problem and are
familiar with the computer's syntax for accomplishing each step. This view holds
that a natural language interface might be appropriate for people who have a
high level of semantic knowledge in a problem domain, but aren't familiar with
any special computer syntax for achieving their goals.

While experts are pessimistic about the general implementation of a program
that can "understand" and respond meaningfully to unrestricted natural utter-
ances on a range of topics from naive users, such a program would certainly
entice "a large number of people who are potential computer users [but] are
unwilling to learn and then use a formal machine language." ([9], p. 314).

The principal purpose of the research reported here was to design and test a
systematic, empirical methodology for developing context-dependent natural
language computer applications. This paper describes that methodology and its
successful use in the development of a natural language computer application:
CAL, Calendar Access Language. The limited context or domain in which the
application operates is the management of a personal calendar, or office appoint-
ment database by computer-naive business professionals.

Designers of natural language systems have, in the past, begun with a compre-
hensive model of the language expected in a particular domain and have built up
recognition systems from there (see, for example [10, 13, 14, 15]). Contrary to
that "armchair" method of program development, this research involves an
iterative empirical development approach (which has recently been aptly dis-
cussed in [3]).

2. METHODOLOGY

The development process for CAL comprised six steps [5]. Central to the
methodology is an experimental simulation which I call the OZ paradigm, in
which experimental participants are given the impression that they are interact-
ing with a program that understands English as well as another human would.
In fact, at least in the earlier stages of development, the program is limping
along, only partly implemented. The experimenter surreptitiously intercepts
communications between participant and program, supplying answers and new
inputs as needed. The six steps of program development are follows:

(1) Task analysis. Twenty-three business professionals were interviewed ex-
tensively to discover how they keep their appointment calendars. That informa-
tion provided a starting point for the functional specification of a computerized
calendar [4]. For the majority of the persons interviewed, calendars are indis-
pensable to the conduct of their business and, in some cases, their personal lives.
The data from this step show an unexpectedly large amount of diversity in the
kinds of calendars people use and in the ways they use them. Substantially more
than half of the respondents have more than one calendar, with two persons
using as many as six calendars at once. Portability and access from diverse

ACM Transactions on Office Information Systems, Vol. 2, No. 1, March 1984.

28 • J.F. Kelley

locations are important for many. Concerns about privacy vary widely: some
keep their calendars closely guarded, others allow free access to them. Relevant
time spans covered by calendars are enormous. Some few people are concerned
only with the current day and the day following, others may plan appointments
a year or more in advance. A substantial number of appointments are changed
after they have been made and, once again, the range is large, from about 2
percent for some persons to about 80 percent for others. Archiving, query
patterns, and the insertion of correlated information into calendars also vary
greatly among users.

(2) Deep structure development. In this second step of program development,
the database manipulating functions were written in APL.

(3) First run of OZ (simulation). Here, no language processing components
were in place. The experimenter simulated the system in toto. This simulation is
similar to the ones used in [2] and [12].

(4) First-approximation language processor. The corpus of inputs obtained in
step three was used to develop a first approximation of the language processing
subroutines (described in [6]).

(5) Second run o[OZ (intervention). This was the iterative design phase of
program development. Fifteen participants used the program, and the experi-
menter intervened as necessary to keep the dialog flowing. As this step progressed,
and as the dictionaries and functions were augmented, the experimenter was
phased out of the communications loop.

(6) Cross-validation. The final program was tested with six additional partic-
ipants to see how well it performed. In this step the program ran without any
assistance from the experimenter. Various measures of program speed, "under-
standing," and efficiency were combined with the results of postsession interviews
to evaluate CAL's success.

2.1 Apparatus

Participants and experimenter communicated via IBM 3277 displays and key-
boards to an APLSV program residing in an IBM 370/168 host system. During
the simulation and intervention steps of the development (first and second runs
of OZ), all communications between the participant and the program were
channeled via shared variables and appropriate software through the experimen-
ter's workspace. Both participant and experimenter, working in separate rooms,
communicated with the host system via a Bell System 4800 baud modem and an
IBM 3271 controller. A two-way push-to-talk intercom was provided for voice
communication between the participant and the experimenter. The keyboard
used by the participants in the iterative design phase of OZ and in the cross-
validation was modified by abbreviating the available editing functions to include
only backspace, forward cursor motion, and deletion of one character at a time.
Aside from the RESET and ENTER keys, all other function keys were masked
and disabled.

In addition to his own communications terminal, the experimenter had a
tandem terminal which was slaved to the participant's own and which echoed
his or her keystrokes and displays. The slave terminal was useful in two ways.
Its primary use was to prepare the experimenter by giving him an advanced view

ACM Transactions on Office Information Systems, Vol. 2, No. 1, March 1984.

An Iterative Design Methodology • 29

of the message being composed by the participant. On a few occasions, the slaye
terminal allowed the experimenter to rescue the participant from certain difficult
situations surreptitiously (e.g., correcting the cursor position and pressing the
RESET key when the participant attempted to type in a nontyping area and had
consequently "locked" the keyboard).

2.2 Problem Solving Task

Participants were asked to tell the computer about whatever routine and nonrou-
tine appointments they had in the next two weeks or so. They were asked to try
and get at least ten appointments into the computer. Pilot work showed that this
minimal goal was sufficient to provide some focus for the participant in "trying
out" the system. If the participants did not do so on their own, the experimenter
called them on the intercom and dictated changes to, or searches of, their
appointment calendars (e.g., "let's pretend that Bob Jones just called and wants
to reschedule his 3 o'clock appointment with you to sometime on Thursday; when
would be good?"). Thus the experimenter assured that each participant would
attempt database retrieval, manipulation, and storage using his or her own data.
Aside from the minimal goal provided for the participants, and the minimum
prompting required to solicit changes to the data when necessary, an effort was
made to avoid giving too much task structure to the participants for fear of
priming them with language that was not their own. A two-page overview of the
system was provided showing examples of how CAL could be used to store,
retrieve, and change appointments. To control for the possibility that material
in the overview might affect the language generated by the participants, questions
about the form and frequency of manual use were included in the postsession
interviews.

2.3 Participants

Consonant with the purpose of this research, an attempt was made to sample
participants from various walks of life. Examples of professions included in the
participant pool were Jesuit priest, symphony conductor, auto repair manager,
real estate saleswoman, clothing store owner, clinical psychologist, architect,
dental assistant, flight instructor, homemaker, bank manager, attorney, and an
appointments secretary to a US senator. The participants represented a range of
computer experience, with most having little or no experience whatsoever. In
addition to these laboratory/interview participants, two computer industry
professionals at the sponsoring organization were given access to the develop-
mental versions of CAL. They used the program at their leisure, in an unmoni-
tored mode (no experimenter, no interventions). Some of their dictionary entries
and suggestions for improving the program were implemented during the iterative
design phase of development.

2.4 Procedure

Each participant took part in a single experimental session. After a background
questionnaire was filled out, a short (5 minute) interactive keyboard tutorial was
run by the experimenter and the participant together. This introduced the
participant to the concept of communicating with a computer program (e.g.,

ACM Transac t ions on Office Information Systems, Vol. 2, No. 1, March 1984.

30 • J.F. Kelley

"what is an E N T E R key?") and to the abbreviated editing functions available
on the modified 3277 keyboard. After the introductory tutorial, the participants
were advised that the experimenter would be in the next room "keeping more or
less of an eye on the printout of the session," and that they could call him on the
intercom if they had any questions. They were not told of any potential partici-
pation on the part of the experimenter in the communication loop, nor were they
advised of the existence of the slaved tandem terminal echoing their every
keystroke in the experimenter's room.

During the iterative design (intervention) phase of OZ, the experimenter
intervened in the session when the fledgling system made mistakes. After each
of the intervention iterations (sessions), the dictionaries and programming of
CAL were augmented and enhanced to accommodate the grammatical structures
and functional requirements of the inputs from that session. In addition, a batch-
type program was written allowing CAL to be subjected to a large corpus of
difficult inputs from previous sessions to make sure that changes made in the
programming or dictionaries would not interfere with the previous capabilities of
the system.

After each of the 15 participants took part in an intervention session during
the iterative design phase of CAL's development, the experimenter made the
decision that the development had reached the point of diminishing returns (a
judgment that was borne out in examination of the approach to asymptote
dictionary growth, discussed in the Results section below). Very few interventions
were required at this point, and the experimenter removed himself entirely from
the communications loop, switching over to step 6 of the development (i.e., the
cross-validation). Six participants were exposed to the same procedure as before,
but CAL was no longer enhanced or augmented after each session. It was on the
basis of data collected during this step that the performance of the program was
assessed.

3. RESULTS

3.1 Participants' Performance

In the cross-validation phase of CAL's development project, six experimental
participants spent an average of 65 minutes interacting with the program,
entering a total of 2,429 words to perform 155 actions: describe a total of 87
appointments, ask for 32 displays of portions of the database, and initiate 36
changes in old appointments, among other things. Some actions required more
than one message or input. The participants typed in 59, 50, 41, 80, 43, and 54
messages, respectively. Within those 327 messages, a total of 457 time phrases
were recognized. A total of 161 context-establishing phrases (e.g., "I have an
appointment " "Change my appointment with " "When do I," "Never
mind") were recognized as well. Appendix A gives examples of user inputs that
were correctly processed by CAL. Appendix B shows some inputs that the
program failed to correctly process either during the iterative or cross-validation
phases. A straightforward extension of the development methodology would have
made CAL able to handle most of the examples. Some of them {such as the one-
step change request) would have required a more extensive effort.

ACM Transac t ions on Office Information Systems, Vol. 2, No. 1, March 1984.

An Iterative Design Methodology • 31

200

150-

Dictionary
Size

100-

DICTIONARY GROWTH
RECOGNIZED WORDS

J

50- ~- oo ~ 2 ~ ~ ~ ~ ~ ~

O0 O0 O3 {D 00 09 09 ~ 09 09= 03
' ! ! =

300 400 50o 60o 700 8bo 900

Total Words Used

Word dict ionary size as a function of t ime (total number of word types entered into the

] {M I CO ~" tr} ¢O

g g g g g g

160 260

Fig. 1.
sys tem). The vertical divisions in th is char t represent par t ic ipant boundaries .

The participants took an average of 58 seconds to compose and enter a message;
CAL responded within a few seconds.

3.2 Program Growth

Including all of the dictionaries and the programs for data collection and com-
munications intervention, CAL occupied about 100K bytes of computer storage.

Only ten one-hour sessions or iterations brought dictionary growth to the point
of diminishing returns during the iterative development phase, as evidenced by
Figure 1. The figure shows the growth in number of unique, recognized words
(types) in the master word dictionary as a function of time (as measured by the
total number of word types entered into the system) as the development phase
progressed through its iterations. The vertical divisions in the chart of Figure 1
represent participant {session, iteration) boundaries. Thus we can see that the
first participant used 55 unique words (types) and added that many to the word
dictionary; the second participant used 40 unique words, contributing 22 new
entries to the dictionary. A chart of the growth of recognized word synonym
categories would show a similar quick approach to asymptote.

Figure 2 shows a similar growth pattern for the number of recognized time
phrases used by participants as the development proceeded. Another perspective
on dictionary growth comes from the analysis of overlaps among the sets of words
used in each session. Each participant contributed, on the average, 1.91 unique
words to the total pool (mode = 1). This represents a measure of the acceleration
of dictionary growth at asymptote; it means that most people used only one or
two words that no one else used during the development and cross-validation
phases. Kelley [6] contains a comprehensive description of CAL's word and
phrase dictionaries.

ACM Transactions on Office Information Systems, Vol. 2, No. 1, March 1984.

32 J.F. Kelley

DICTIONARY GROWTH
RECOGNIZED TIME PHRASES

40,

Dictionary
Size

30

20

10

09 09 09 09 ¢D 0g {D 09

2"0 40 60 80 100 120 140 160

Total Time Phrases Used

Fig. 2. Ph rase dict ionary size as a funct ion ot" t ime (total n u m b e r of word types en tered into the
sys tem). T h e vertical divisions in th is cha r t represen t par t ic ipant boundar ies .

3.3 Program Performance

Errors. The participants' task was to enter some appointments into the computer
and then query and update that database. The six participants in the cross-
validation group stored 87 appointments in all. During that process, there were
three occasions on which the program's failure to correctly process an unambig-
uous input resulted in the storage of an incorrect appointment. These all occurred
when one participant typed in times without colons (e.g., "630" instead of "6:30").
I consider this a program error rather than a user error because I feel that this
input would be unambiguous to a human being. As such, it should have been
clear to CAL. A liberal estimate of CAL's "understanding"1 based on this metric
would be 97 percent.

More conservative estimates of the program's performance would take into
account less serious breakdowns in understanding (i.e., those which do not result
in incorrectly stored data). There were two times that the program actually
stored an incorrectly processed appointment, but the user noticed the error (CAL
displays its interpretation when it stores an appointment, even if it has no
clarification questions) and subsequently corrected it. The two errors would bring
the estimate of CAL's failure rate up from 3 percent to 5.7 percent. On two
occasions the program failed to correctly process the time description in an
unambiguous input, recognized that it was confused, and abandoned the attempt
to store the appointment. In the first case, the user left out a space between two
words: the month and the date. In the second case, CAL caught its own error
when a participant entered a multiday appointment in an unrecognized format.
It happened that none of the development participants had ever typed in a phrase

1 1 use the t e rm here in the restr ic ted sense used by Winograd [14] and others. COmputers don ' t really
"unders t and" any t h i ng in the same way people do.

ACM Transactions on Office Information Systems, Vol. 2, No. 1, March 1984.

An Iterative Design Methodology • 33

in the form month date to date (e.g., July 15 to 29) before, and the time phrase
dictionary had no corresponding entry. Including these as program errors brings
the performance level down from 94 percent to 92 percent. There were five
occasions when CAL made errors of varying magnitude, but, accommodating the
possibility that there might be something wrong in its interpretation, engaged
the user in a successful clarification dialog. This represents a cumulative error
rate total of 14 percent. It is not clear whether these represent errors on the part
of CAL, since the program acted just as one would expect a competent human
appointments secretary to act when faced with a communications failure.

Efficiency. An analysis of the printouts of the cross-validation sessions showed
that, on the average, 1.68 inputs were required to successfully store an appoint-
ment and 2.96 inputs were required to locate and change one (simple retrieval
requests were typically one-step operations). A simplistic view of these numbers
is as follows: about half of the times that an appointment is entered, CAL engages
the user in further dialog in order to confirm its understanding of the input or,
in a few cases, to warn of a potential scheduling conflict. Also, a change of an
appointment usually requires three inputs, except for the few times (seven, to be
precise) that users figured out how to skip a step taking only two inputs, and the
fewer times (four) that the change became complicated requiring four or five
steps.

3.4 Postsession Interviews

After each session, the 15 developmental participants in the intervention phase
of OZ and the six cross-validation participants were interviewed on 16 topics.
Not every participant had a response for every question. Due to the open-ended
and in-depth nature of these interviews, the respondent was free to skip around
or go off on a tangent. The interviewer's job was to try to bring the discussion
back to the issues or categories at hand. In cases where statistics are provided--
summarizing the participants' feelings about a topic--they are based on a
subjective analysis of the transcripts of the audio tapes of interview sessions.
Where the cross-validation participants' opinions, as a group, seem to differ from
the attitudes expressed by the developmental participants (and where that
difference is deemed relevant), the discrepancy is described.

The interview results are presented here with several goals in mind. First,
comments on reaction to "bugs," response time, and experimenter interference
could act as pointers for others contemplating use of the simulation techniques
reported here. Second, individual comments on CAL's style and mode of operation
might prove useful in the design of other office applications. Third, some of the
comments point to potential strengths and weaknesses of natural language as a
mode of input.

Effectiveness of simulation. One of the interesting things to come out of the
less formal postsession interviews in the simulation phase of OZ (step 3 in the
methodology), and borne out in the later steps, is the fact that participants quite
readily accept the low-level deception inherent in the OZ paradigm. In spite of
an occasional spelling error or other human fault in the "computer output"
simulated by the experimenter, no subject ever seriously questioned the propo-

ACM Transac t ions on Office Information Systems, Vol. 2, No. 1, March 1984.

34 • J . F . Kelley

sition that there was a computer acting alone on the other end of the line. This
relates to Weizenbaum's observation [13] that human parties to a communication
interaction attribute all sorts of world knowledge and understanding to their
partners. It almost seems to require a positive effort to convince participants
that there is less to the computer program than meets the eye.

Utility. Three respondents felt that their old paper and pencil way of doing
things was better than a computerized approach could ever be ("I think my little
calendar that I have at home is much easier."). Seven saw advantages to CAL,
but would want changes made (such as portable terminals and/or daily printouts)
before using it for themselves. Nine participants were unequivocal in their praise
of CAL's potential.

Keyboard and display. Thirteen participants volunteered their dismay with the
locations of the E N T E R and RESET keys on the IBM 3277 keyboards--right
where their fingers expected to find the SHIFT keys. The other six respondents
in this category did not. Aside from this, and a problem a few people had in
hitting the carriage return (next line key) instead of the E N T E R key, most
participants found the pared-down keyboard/display system "real easy." One
participant suggested that CAL allow semicolons in place of colons in times
because shifting to upper case is "just one extra step that I like to take out."
(This suggestion was accommodated in a later revision of the program.)

Output language style. The consensus was that CAL's output language was
"very polite" and "friendly." "The friendliness level was appropriate, not overly
unctuous." One computer-unsophisticated participant thought that CAL "was
kind."

Input flexibility. "I was surprised when I said 'show calendar' and it did it. I
thought I might have to say 'write calendar' or 'print calendar', but 'show' worked.
'Print ' was the established term [on the one other computer I have used]." "It 's
more flexible than I thought it would b e . . . I found i t . . . refreshing that it is on
a more human level [than other computers I have used]." The prevailing view
was that CAL was flexible in terms of the variations it would accept. A few
people (none in the cross-validation group) found the program "fairly demand-
i n g . . , if you didn't have it just right, it said 'I don't know what you're talking
about'."

Perceived comprehension. In this category (which interacts somewhat with the
previous one), three respondents (including one cross-validation participant) felt
that CAL's comprehension of the English language left something to be desired
("I think that the [presence or absence of a] colon should not make that much
difference. . . '630 pm' can't be anything but a time." (see page 32). Three cross-
validation participants and one other were impressed with the program's per-
formance ("It seemed to understand English very well"), and five people (includ-
ing one cross-validation participant) were equivocal, seeing both good points and
bad.

Perceived accuracy. Four members of the cross-validation group and four
others said they were confident enough in CAL's accuracy to entrust their

ACM Transactions on Office Information Systems, Vol. 2, No. 1, March 1984.

An Iterative Design Methodology • 35

appointments to the computer. One cross-validation participant and four others
suggested that they would prefer a little more experience with the program first.
One developmental participant was worried about finding "quite a few inaccur-
acies."

Use of "manual"/examples. While there was no manual provided per se, the
two-page overview of the system contained some examples of language. Thirteen
people (including the entire cross-validation group) mentioned that they felt
good about experimenting with the system and trying out different ways of
entering things (for other relevant work on exploration in learning, see [1] and
[7]). One developmental participant specifically stated that he did not feel like
experimenting with the system and would rather read about it ahead of time.
Half of the participants in both groups indicated that they relied on the examples
in the two-page printout. The other half "didn't look at it once," or turned to the
examples on the rare occasion when they couldn't figure out how to phrase some
input (usually one of the less frequently used inputs, such as the change or query
requests). Though few were specifically asked, many of the participants seemed
to find it reassuring to have a short description of the program, even if they
didn't use it. Four cross-validation participants and three others mentioned
modeling parts of their inputs on CAL's output language. One cross-validation
participant specifically said that he did not do that.

Estimated training time. Most participants acknowledged that they were learn-
ing about the system as the one-hour session progressed. Three people said that
they were comfortable enough with the system by the end of the session to use
it (one felt that way after "10 or 15 minutes"). Seven thought that anywhere
from 30 minutes to a couple of hours or half a day more would do the trick. Three
people seemed to think it would take a week or two of regular use before they
were comfortable with the system. No one thought that remembering how to use
CAL after an absence of a week or so would pose any problems.

Reaction to "bugs" Seven participants commented that the "bugs" or unex-
plainable problems that sometimes crop up with computers didn't affect their
attitudes much. Three people who encountered system or application software
problems during their session volunteered that "my first impression was I must
have typed in something wrong. I didn't blame the computer." Two people said
that they were made "frustrated" or "nervous" by problems with the computer.

Response time. Half of the cross-validation participants and ten others found
CAL's response time "too slow," several feeling that the response "really should
be instantaneous." (The response times during the iterative development phase
were longer than in the cross-validation, owing to the time lag involved in
interventions.) The other half of the cross-validation group and four members of
the developmental group felt that "it didn't bother me at all." One cross-validation
member said, "it didn't really leave me waiting. It said 'please wait,' it 's a nice
machine."

Program assumptions. Human parties to communication are able to make
inferences and assumptions, thus filling in missing pieces of information. CAL
is endowed with some minor examples of the same ability. In order to lighten the

ACM Transactions on Office Information Systems, Vol. 2, No. 1, March 1984.

36 J.F. Kelley

load on the user, CAL can proceed with an incomplete specification of a time
interval, inferring the missing pieces on the basis of knowledge in its own world
model (e.g., one such item of knowledge is that an appointment from "11 till 2
tomorrow" is probably from 11 am till 2 pro). While this feature of CAL might
save user keystrokes, there is one potential negative impact in the exercise of
this ability: CAL may guess wrong in some instances. The program could have
been designed to double check each assumption it makes with the user, but that
would add more work than it would save. How do users of the program feel about
this? Five respondents are of a negative opinion: "I don't like a machine telling
me what I think, which is what it 's doing." Twelve felt that "it doesn't bother
me at all" and "I definitely prefer the shorthand" of being able to specify times
incompletely. One even went so far as to say: "I kind of like its spunk."

Dialog initiative. "I did begin to feel that I, after a while, could control it
instead of it controlling me." "Often you have the computer print out 'is the time
right?' or 'is this day correct?' and that 's a good idea." Many people noticed the
places where CAL would assume more control over the dialog (when it needed
specific, mandatory, pieces of information, for instance), but that was not felt to
be intimidating. In fact, some people appreciated the increased structure at
confusing moments: "Actually, it's easier because it makes you think in patterns
and whenever you think in patterns, you think faster; and the faster you can
think, the more work you can get done."

Experimenter interference. The participants were told at the beginning of the
session that the experimenter would be keeping an eye on the printout, but none
of the participants maintained that awareness, or, if they were conscious of the
indirect presence of the experimenter watching their progress, it did not affect
them: "Once I got into CAL, I didn't think, really, about too much else. I was
having too much fun."

Ease-of-Use. "It was very comfortable to use." "Once they know what they're
doing with it, I think it would be very easy to use."

Grammatical quirks. Due to the simplicity of CAL's grammatical model, it
sometimes makes minor errors in extracting the descriptions of an appointment
once the time references are removed (i.e., the occasional stray comma or word
finds its way into the description). In addition, there is sometimes a confusion of
plurality when lists are printed ("Here are appointments number 1 . . . ") . Three
members of the development group and one member of the cross-validation group
mentioned that they would probably go back and correct minor problems in the
appearance of their stored appointments. Three people (one of whom was from
the cross-validation group) did not notice CAL's "pidgin English" and 14 people
did not care one way or the other. As the computer-naive psychiatrist put it: "I
guess I don't expect a whole lot of sophistication from a computer."

General favorable comments. "I don't feel very comfortable with video games
or anything like that. It makes me feel very tense, but this--I didn't feel tense
at all." "I love it. At least it listens, it's better than most people! I really enjoyed
it, thoroughly enjoyed it." "In fact," one computer-naive psychiatrist commented,
"I was sitting here t h ink ing . . , for the first time I thought it might be sort of fun
to have a home computer."

ACM Transac t ions on Office Infbrmation Systems, Vol. 2, No. 1, March 1984.

An Iterative Design Methodology • 37

4. DISCUSSION

CAL is a relatively small program that operates with a very unsophisticated
language model. Yet, it did well in a controlled test of many aspects of its
performance. This success is directly attributable to the empirical nature of the
design process that gave birth to the program. How did the key phases of the
design process contribute to this success?

The task analysis was indispensable for everything that followed. Its purpose
was to determine what functions the computer application must have (i.e., what
exactly the program is supposed to do). A single designer cannot adequately
anticipate the needs of a population of users without consulting representatives
of that group. For example, from the perspective of software design, it was easy
to think of a program that, for the sake of advanced function, might require an
ending time, however tentative, for each appointment entered by the user.
However, it turned out that the participants in the task analysis found the
prospect of such a demand totally unacceptable. Some people simply refused to
think about the possible ending times for future appointments, at least until the
appointment times drew near. Thus, I had to rethink my notions of the absolute
nature of time specifications right from the outset.

A key role of the simulation phase was to provide a basis upon which to build
the initial grammar. In contrast to previous natural language programs (e.g.,
LUNAR [15], SHRDLU [14]), CAL was not built on a model of a prespecified
grammar. Rather, CAL uses what I have chosen to describe as an empirically
derived grammar.

An unanswered question at the beginning of this project was whether this
simplistic method of building a language model would be a never ending process
of bringing people into the lab and augmenting the model to accommodate their
new ways of saying things. It turns out that such is not necessarily the case, as
evidenced by the limited number of iterations (10) that were required to reach
asymptote.

It was surprising that a point of diminishing returns was reached after so few
iterations (i.e., that each participant used only one to two words that no one else
used). This result was not obvious in light of previous findings by Michaelis,
Chapanis, Weeks, and Kelly [8] in their study of human-to-human problem-
solving communications in three other contexts. That study showed a very small
common vocabulary used by participants in each problem-solving domain. Among
the many potential explanations for this difference (e.g., substantive differences
between their problem domain and the calendar-keeping domain) there are two
compelling possibilities: first, the participants in the Michaelis, et al. study were
probably operating in a less familiar problem-solving area and, having lower
levels of "semantic knowledge," tended to be more erratic in their language
behaviors. Another possibility is that when people are (or think they are)
communicating with a machine, as they were in the CAL study, they might tend
to "normalize" their language (i.e., use fewer uncommon words).

It appears, at least in the calendar-keeping context, that people engaged in
person-computer problem-solving tend to say things in predictable, systematic
ways (witness the fact that the empirical approach was sufficient to prepare the
computer for future inputs). However, a brief look at the unruly examples in

ACM Transac t ions on Office Information Systems, Vol. 2, No. 1, March 1984.

38 • J.F. Kelley

Appendix A shows that those predictable, systematic ways don't necessarily
coincide with what is traditionally thought of as grammatically proper. The
structure in these inputs is accessible from the empirical approach described
here, but wouldn't necessarily be amenable to analysis by more traditional
grammatical processing routines.

A natural consequence of the use of an empirical grammar is the inability to
generalize the obtained language model beyond the context in which it was
developed. 2 However, though CAL's grammar cannot be generalized, the sys-
tematic approach used to generate it can. The six steps of program development
used here can just as easily, and presumably with comparably little investment
in participant-hours, be applied to other office applications where natural lan-
guage is appropriate.

During the iterative design phase, breakdowns in communications were not
blamed on "user error," but were thought of as failures of CAL (or, more
appropriately, of CAL's designer) to anticipate all the necessary variations in
input structure. If people find it natural to express times with semi-colons rather
than colons (and thus avoid the SHIFT function of the keyboard), and if that
usage doesn't generate any unresolvable ambiguity (it doesn't), why force them
to use colons? It doesn't cost anything to add that flexibility to the program.

While there were some informal long-term users of CAL, a more formal
longitudinal study would be necessary to shed more light on how this natural
language interface holds up with dedicated users over time. This would also
provide an opportunity to give more thorough consideration to information
retrieval in a realistic setting (e.g., the ways in which people check their calendars
at the beginning of each day).

5. CONCLUSION

This study has shown several things about calendars, natural language, and
software design. The task analysis [4] showed that calendars are indispensable
in the office environment and that they are good candidates for computerization.
While no controlled comparison was made with other modes of input, the
interview results do indicate that natural language does hold some promise as an
input mode, at least for the semantically knowledgeable, computer-naive business
professionals represented in this study. Finally, the objective program perform-
ance results show that the object of CAL's design was met. Computer-naive users
were indeed able to sit down at a terminal and have meaningful interactions with
a computer, in their own natural language, from the very outset. Most of the
participants in this experiment, including those who had expressed much trepi-
dation over the prospect of dealing with computers, went out of their way to tell
me how enthusiastic they were about the program and their accomplishments
with it.

APPENDIX A. Inputs Correctly Processed by CAL

Comments (surrounded by angle brackets ()) follow some of these examples. An
asterisk ((*)) denotes inputs that were correctly understood by CAL but that

2 Actually, that component of CAL's language model which deals with the interpretation of natural
language date and time inputs would, in some degree, be generalizable to other contexts that involve
dates and times (i.e., inventory control, payroll).

ACM Transactions on Office Information Systems, Vol. 2, No. 1, March 1984.

An Iterative Design Methodology • 39

caused the p rogram to double-check its unders tanding (e.g., "Please check the
following t ime p e r i o d . . , are the t imes of day correct?") . The use of lower-case
'T ' for "1" is noted by upper-case "Lo"

Storing Appointments with Beginning Time Only
July 13 9:45 Bob Jones (*)
Weds, July 14,1982 Meet Susan Johnson at 2 p.m.
7/11/82 BSC Concert at 7 pm
get Missy from school at 3:30 pm on 4/29/82
Pick up Missy at 3:30, afternoon of April 29, L982
Tues: July 13, 1982 10:A.M.Call John Wilson at 555-3545
1:00 PM on Monday 6/14/82: production meeting
6/2/82,11:30 am ,lunch
tomorrow, call john at 7:30am
"Pick up Card" Vern's Birthday, Jul 11,1982 11:00 A.M.
July 13 5:00 PM Bill Jones "Prft Shrng"
Meeting with boss next Thurs. 9am
jon for dinner ,5:30 pm, tommorow (note anticipated misspelling of "tomorrow".)
Appt, also July 15 See Dr. Wilson at 6:45 pm for dentist appt. (be sure to take papers)
3:30 p.m. Check with Valley Lighting to see if they need an order (This input caused
CAL, quiet properly, to ask for a date. The participant responded with the following:)
This appointment is for Tues.July 13, L982
Mon, Sep L3 Classes and lessons begin at Peabody;Orch. Rep. Session at 4:00 p.m.,
North Hall EP

Storing Appointments with Beginning and Ending Times
voice lesson 5:00 pm until 6:00 pm on 6/22/82, tuesday
6/15 "bsc" 7;30 to 10 pm
7/17/82 9:30 am till 12;30 pm Meet with Andy and Pete to see Walton load (Note the use
of a semi-colon in the second time.)
Mon 7/19/82 Call Bob Stevens 9:00 am till 9:30 am
"Chamber Singers Rehearsal" 7/19/82 from 7;30-10pm (*)
7/15/82 13:00 THRU 15:00 GENERAL STAFF MEETING; 202-99 EEA
Wed meet in room 2-3 from 4 til 5
Friday, July 16, all day: dad's birthday

Storing Routine Appointments and Reminders
"Advanced Concepts Seminar" 3-4:15pm every thursday 9/2/82 through 5/26/83
"Lunch with the chief resident" every tuesday from 12-1pm beginning 7/13/82 and ending
6/28/83 (*)
every Thursday from July 1 thru September 30, 1982; BME lab seminar--l:00 pm to 2:00
p m .
"bsc at trinity" 6:30 pm-10 pm every tue tomorrow through jun 12, 1984
Please enter every Friday from 8:00 p.m. to 9:30 p.m. for the remainder of the year that
Angel has Girl Scouts.
7/17/82am "Vacation until sometime 7/24/82 (*)
remind me send parents anniversary card
remind me 8/11/82 send birthday card to mama
remind me to "go to bank" on Friday
remind me to "buy birthday card for Pauline" next week
4/29/83 reminder to call Walt Anglo's potential tenant

Query and Change Requests
show cal
show cal Tuesday
show me July Appointments

ACM Transactions on Office Information Systems, Vol. 2, No. 1, March 1984.

40 J.F. Kelley

show me my calendar from 7/11/82 until 8/31/82
show me all t r in i ty dates
show meeting with boss
when is prft shrng
change 10
change 2 and 3
change Thomas
cancel 7 8 9 10 11 12
help
what day is it?

APPENDIX B. Inputs That Were Not Recognized by CAL

C o m m e n t s (s u r r o u n d e d by ang le b r a c k e t s ()) fol low some o f t h e s e e x a m p l e s ,
wh ich r e p r e s e n t f a i lu res of C A L in b o t h t he c r o s s - v a l i d a t i o n p h a s e a n d t h e
d e v e l o p m e n t phase .

Tues July 13 9:45 AM Bob Jones 13 10:AM Bob Jones
change handball to no known ending t ime
show me the appointments so far for this year
July 15 ii:30 "handball Smith"
change Prf t Shrng to Sept 12 10:AM
supervision with Dr. Smith every monday from 10 AM-11AM beginning 8/30/82 and
ending after 6/83 (No entry existed in the t ime phrase dict ionary for the syntactic
structure "6/83" because none of the development par t ic ipants used tha t form (and the
developer did not th ink of it). This is one of the very few times this occurred in the cross-
validation.)
july 16 730-10 pm chamber rehearsal Tr in i ty
change3 to read friday july 16 730 p m - 1 0 - p m chamber rehearsal t r in i ty
Tues Jul l3 , 7:00 a m - l l : 0 0 a m - - h a v e computer signed out. (CAL is usually pret ty good at
separating numbers from words when spaces are inadvertent ly left out. However, the
program is also pret ty good at accepting "L" for "1" (many people have learned to type on
machines which have no "1" at all and have learned tha t they must use lower case "L")
and those two provisions interact in this peculiar example.)
4/30/82 at 4:30 pm take Dick Jones back thru 3830-22 Latvia Rd (To CAL,
"22" looks a lot like "until 22:00".)
remind me the last day of every month through 4/30/2007 "mail mortgage check"
"Conference on the Ward: Tuesday 7.13.82 4:00 P.M.

REFERENCES
1. CARROLL, J.M., AND MACK, R.L. Learning to use a word processor: by doing, by thinking, and

by knowing. In Human Factors in Computer Systems. J.C. Thomas and M. Schneider, Eds.,
Ablex, Norwood, N.J., 1984.

2. GOULD, J.D., CONTI, J., AND HOVANYECZ, T. Composing letters with a simulated listening
typewriter. Commun. ACM 26, 4 (1983), 295-308.

3. GOULI), J.D. AND LEWIS, C. Designing for usability: key principles and what designers think.
Res. Rep., IBM Thomas J. Watson Research Center, 1983.

4. KELLEY, J.F., AND CHAPANIS, A. How professional persons keep their calendars: implications
for computerization. J. Occupational Psychol. 55 (1982), 241-256.

5. KELLEY, J.F. Natural language and computers: six empirical steps for writing an easy-to-use
computer application. Unpublished PhD dissertation, The Johns Hopkins Univ., 1983 (Can be
obtained from University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.)

6. KELLEY, J.F. CAL--Calendar Access Language: an APL program for processing natural lan-
guage. IBM Res. Rep., in preparation, 1983.

7. MACK, R.L., LEWIS, C.H., AND CARROLL, J.M. Learning to use word processors: problems and
prospects. ACM Trans. Office Inf. Syst. 1, 3 (1983), 254-271.

8. MiCHAELIS, P.R., CHAPANIS, A., WEEKS, G.D., AND KELLY, M.J. Word usage in interactive

ACM Transac t ions on Office Information Systems, Vol. 2, No. 1, March 1984.

An Iterative Design Methodology 41

dialog with restricted and unrestricted vocabularies. IEEE Trans. Professional Commun. PC-20,
4 {1977), 214-221.

9. PETRICK, S.R. On natural language based computer systems. IBM J. Res. Dev. 20 (1976), 326-
334.

10. RAPHAEL, B. SIR: a computer program for semantic information retrieval. In Semantic Infor-
mation Processing. M. Minsky, Ed., MIT Press, Cambridge, 1968.

11. SHNEIDERMAN, B. Software Psychology: Human Factors Aspects of Computers and People.
Winthrop, Cambridge, 1980.

12. THOMAS, J.C. A method for studying natural language dialog. Res. Rep. RC 5882, IBM Thomas
J. Watson Research Center, 1976.

13. WEIZENBAUM, J. Contextual understanding by computers. Commun. ACM. 10 {1967), 474-480.
14. WINOGRAD, T. Understanding Natural Language. Academic Press, New York, 1976.
15. WooDs, W.A. The LUNAR Sciences Natural Language Information Processing System: Final

Report. Bolt, Beranek & Newman, Inc., Cambridge, 1972.

Received September 1983; revised November 1983; accepted December 1983

ACM Transactions on Office Information Systems, Vol. 2, No. 1, March 1984.

