
Data-Intensive Distributed Computing

Part 1: MapReduce Algorithm Design (1/4)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Fall 2019)

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451/

Agenda for Today

Who am I?
What is big data?

Why big data?
What is this course about?

Administrivia

Who am I?

PhD from Waterloo (2017)
Systems and Networking Research Group

Source: Wikipedia (Hard disk drive)

Big Data

Storage evolution over time

Today1980s1950s

347,955.20

3,348.48

5.99

0.06
0.02

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

1980 1990 2000 2010 2020

$
/G

B

Year

Storage cost over time

Hadoop: 10K nodes, 150K
cores, 150 PB (4/2014)

Processes 20 PB a day (2008)
Crawls 20B web pages a day (2012)
Search index is 100+ PB (5/2014)
Bigtable serves 2+ EB, 600M QPS (5/2014)

300 PB data in Hive +
600 TB/day (4/2014)

400B pages,
10+ PB (2/2014)

LHC: ~15 PB a year

LSST: 6-10 PB a year
(~2020)640K ought to be

enough for
anybody.

150 PB on 50k+ servers
running 15k apps (6/2011)

S3: 2T objects, 1.1M
request/second (4/2013)

SKA: 0.3 – 1.5 EB
per year (~2020)

19 Hadoop clusters: 600
PB, 40k servers (9/2015)

How much data?

Data
generation

Storage
cost

Big Data

Source: Wikipedia (Everest)

Why big data? Science
Business
Society

Emergence of the 4th Paradigm

Data-intensive e-Science
Maximilien Brice, © CERN

Science

Maximilien Brice, © CERN

Maximilien Brice, © CERN

Source: Wikipedia (DNA)

GATGCTTACTATGCGGGCCCC

CGGTCTAATGCTTACTATGC

GCTTACTATGCGGGCCCCTT

AATGCTTACTATGCGGGCCCCTT

TAATGCTTACTATGC

AATGCTTAGCTATGCGGGC

AATGCTTACTATGCGGGCCCCTT

AATGCTTACTATGCGGGCCCCTT

CGGTCTAGATGCTTACTATGC

AATGCTTACTATGCGGGCCCCTT

CGGTCTAATGCTTAGCTATGC

ATGCTTACTATGCGGGCCCCTT

?

Subject
genome

Sequencer

Reads

Human genome: 3 gbp
A few billion short reads
(~100 GB compressed data)

Business
Data-driven decisions

Data-driven products

Source: Wikiedia (Shinjuku, Tokyo)

An organization should retain data that result from carrying
out its mission and exploit those data to generate insights
that benefit the organization, for example, market analysis,
strategic planning, decision making, etc.

Business Intelligence

In the 1990s, Wal-Mart found that customers tended to buy
diapers and beer together. So they put them next to each
other and increased sales of both.*

This is not a new idea!

So what’s changed?

More compute and storage

Ability to gather behavioral data

* BTW, this is completely apocryphal. (But it makes a nice story.)

a useful service

analyze user behavior
to extract insights

transform insights
into action

$
(hopefully)

Google. Facebook. Twitter. Amazon. Uber.

data sciencedata products

Virtuous Product Cycle

Source: https://images.lookhuman.com/render/standard/8002245806006052/pillow14in-whi-z1-t-netflixing.png

Source: https://www.reddit.com/r/teslamotors/comments/6gsc6v/i_think_the_neural_net_mining_is_just_starting/ (June 2017)

Source: Wikipedia (Rosetta Stone)

(Banko and Brill, ACL 2001)

(Brants et al., EMNLP 2007)

No data like more data!

Source: Guardian

Humans as social sensors

Computational social science

Society

Predicting X with Twitter

(Paul and Dredze, ICWSM 2011; Bond et al., Nature 2011)

Political Mobilization on Facebook

2010 US Midterm Elections:
60m users shown “I Voted” Messages

Summary: increased turnout by
60k directly and 280k indirectly

The Political Blogosphere and the 2004 U.S. Election

Source: Popular Internet Meme

What is this course about?

Execution

Infrastructure

Analytics

Infrastructure

Data Science

Tools

Th
is

 C
o

u
rs

e
“big data stack”

Buzzwords

MapReduce, Spark, Flink,
Pig, Dryad, Hive, Dryad,
noSQL, Pregel, Giraph,
Storm/Heron

Execution

Infrastructure

Analytics

Infrastructure

Data Science

Tools

Th
is

 C
o

u
rs

e

Text: frequency estimation,
language models, inverted
indexes

Graphs: graph traversals,
random walks (PageRank)

Relational data: SQL, joins,
column stores

Data mining: hashing,
clustering (k-means),
classification,
recommendations

Streams: probabilistic data
structures (Bloom filters,
CMS, HLL counters)

data science, data analytics,
business intelligence, data
warehouses and data lakes

This course focuses on algorithm design and “thinking at scale”

“big data stack”

Structure of the Course

“Core” framework features and
algorithm design for batch processing

A
n

al
yz

in
g

Te
xt

A
n

al
yz

in
g

G
ra

p
h

s

A
n

al
yz

in
g

R
el

at
io

n
al

 D
at

a

D
at

a
M

in
in

g
an

d

M
ac

h
in

e
Le

ar
n

in
g

What’s beyond batch processing?

Source: Google

Tackling Big Data

“Work”

w1 w2 w3

r1 r2 r3

“Result”

worker worker worker

Partition

Aggregate

Divide and Conquer

What’s the common theme of all of these challenges?

Parallelization Challenges

How do we assign work units to workers?
What if we have more work units than workers?

What if workers need to communicate partial results?
What if workers need to access shared resources?

How do we know when a worker has finished? (Or is simply waiting?)
What if workers die?

Difficult because:

We don’t know the order in which workers run…
We don’t know when workers interrupt each other…

We don’t know when workers need to communicate partial results…
We don’t know the order in which workers access shared resources…

Common Theme?

Parallelization challenges arise from:

Need to communicate partial results
Need to access shared resources

How do we tackle these challenges?

(In other words, sharing state)

“Current” Tools

Basic primitives

Semaphores (lock, unlock)
Conditional variables (wait, notify, broadcast)

Barriers

Awareness of Common Problems

Deadlock, livelock, race conditions...
Dining philosophers, sleeping barbers, cigarette smokers...

“Current” Tools

Programming Models

Message Passing

P1 P2 P3 P4 P5

Shared Memory

P1 P2 P3 P4 P5
M

e
m

o
ry

Design Patterns

coordinator

workers

producer consumer

producer consumer

work queue

When Theory Meets Practices

Now throw in:

The scale of clusters and (multiple) datacenters
The presence of hardware failures and software bugs

The presence of multiple interacting services

The reality:

Lots of one-off solutions, custom code
Write you own dedicated library, then program with it

Burden on the programmer to explicitly manage everything

Concurrency is already difficult to reason about…

Bottom line: it’s hard!

Source: Ricardo Guimarães Herrmann

Source: CS 251

Source: CS 251

Source: Google

The datacenter is the computer!

The datacenter is the computer!

It’s all about the right level of abstraction
Moving beyond the von Neumann architecture

What’s the “instruction set” of the datacenter computer?

Hide system-level details from the developers
No more race conditions, lock contention, etc.

No need to explicitly worry about reliability, fault tolerance, etc.

Separating the what from the how
Developer specifies the computation that needs to be performed

Execution framework (“runtime”) handles actual execution

MapReduce is the first instantiation of this idea… but not the last!

Source: Wikipedia (Japanese rock garden)

Questions?

Source: http://www.flickr.com/photos/artmind_etcetera/6336693594/

Course Administrivia

Four in One!

CS 451/651 431/631 all meet together

CS 451: version for CS ugrads (most students)
CS 651: version for CS grads
CS 431: version for non-CS ugrads
CS 631: version for non-CS grads

Two in One!

Course instructors

Ali Abedi: The guy talking right now
TAs: Ryan Clancy, Zheng Ma, Yuqing Xie, Wei Tu, Abdul Naik

CS 451/651
CS 451: version for CS ugrads (most students)
CS 651: version for CS grads

CS 431/631
CS 431: version for non-CS ugrads
CS 631: version for non-CS grads

Important Coordinates

Course website:
https://www.student.cs.uwaterloo.ca/~cs451/

Bespin
http://bespin.io/

Communicating with us:
Piazza for general/private questions (link on course homepage)

Lots of info there, read it!
(“I didn’t see it” will not be accepted as an excuse)

Course Design

Components of the final grade:

6 (CS 431/631) or 8 (CS 451/651) individual assignments
Final exam

Additional group final project (CS 631/651)

This course focuses on algorithm design and “thinking at scale”

Not the “mechanics” (API, command-line invocations, et.)
You’re expected to pick up MapReduce/Spark with minimal help

Expectations (CS 451)

You are:

Genuinely interested in the topic
Be prepared to put in the time

Comfortable with rapidly-evolving software

Your background:

Pre-reqs: CS 341, CS 348, CS 350
Comfortable in Java and Scala (or be ready to pick it up quickly)

Know how to use Git
Reasonable “command-line”-fu skills

Experience in compiling, patching, and installing open source software
Good debugging skills

MapReduce/Spark Environments (CS 451)

Single-Node Hadoop: Local installations
Install all software components on your own machine

Requires at least 4GB RAM and plenty of disk space
Works fine on Mac and Linux, YMMV on Windows

Important: For your convenience only!
We’ll provide basic instructions, but not technical support

Single-Node Hadoop: Linux Student CS Environment
Everything is set up for you, just follow instructions

We’ll make sure everything works

See “Software” page in course homepage for instructions

Distributed Hadoop: Datasci Cluster

Assignment Mechanics (CS 451)

Note late policy (details on course homepage)

Late by up to 24 hours: 25% reduction in grade
Late 24-48 hours: 50% reduction in grade
Late by more the 48 hours: not accepted

By assumption, we’ll pull and mark at deadline:
If you want us to hold off, you must let us know!

We’ll be using private GitHub repos for assignments

Complete your assignments, push to GitHub
We’ll pull your repos at the deadline and grade

Important: Register for (free) GitHub educational account!
https://education.github.com/discount_requests/new

Assignment Mechanics (CS 431)

Assignments will use Python and Jupyter
Everything you need to know is in the assignment itself

Assignments will generally be submitted using Git
Details are on the course website for the appropriate assignment

Assignment Mechanics (CS 431)

Note late policy (details on course homepage)
Late by up to 24 hours: 25% reduction in grade

Late 24-48 hours: 50% reduction in grade
Late by more the 48 hours: not accepted

By assumption, we’ll pull and mark at deadline:
If you want us to hold off, you must let us know!

Course Materials

One (required) textbook +
Three (optional but recommended) books +

Additional readings from other sources as appropriate

Note: 4th Edition

(optional but recommended)

If you’re not (yet) registered:

Register for the wait list at:

Note: late registration is not an excuse for late assignments

By sending Ali an email at ali.abedi@uwaterloo.ca

Priority for unregistered students

CS students
Have all the pre-reqs

Final opportunity to take the course (e.g., 4B students)
Continue to attend class until final decision

Once the course is full, it is full

