
Data-Intensive Distributed Computing

Part 1: MapReduce Algorithm Design (2/4)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Fall 2019)

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451/

Source: Google

MapReduce

What’s different?

Data-intensive vs. Compute-intensive
Focus on data-parallel abstractions

Coarse-grained vs. Fine-grained parallelism
Focus on coarse-grained data-parallel abstractions

Logical vs. Physical

Different levels of design:
“Logical” deals with abstract organizations of computing
“Physical” deals with how those abstractions are realized

Examples:
Scheduling
Operators

Data models
Network topology

Why is this important?

f f f f fMap

Roots in Functional Programming

We need something more for sharing partial results across records!

Simplest data-parallel abstraction
Process a large number of records: “do” something to each

g g g g g

f f f f fMap

Fold

Roots in Functional Programming

Let’s add in aggregation!

MapReduce = Functional programming + distributed computing!

scala> val t = Array(1, 2, 3, 4, 5)
t: Array[Int] = Array(1, 2, 3, 4, 5)

scala> t.map(n => n*n)
res0: Array[Int] = Array(1, 4, 9, 16, 25)

scala> t.map(n => n*n).foldLeft(0)((m, n) => m + n)
res1: Int = 55

Imagine parallelizing the map and fold across a cluster…

Functional Programming in Scala

A Data-Parallel Abstraction

Process a large number of records

“Do something” to each

Group intermediate results

“Aggregate” intermediate results

Write final results

Key idea: provide a functional abstraction for these two operations

Waterloo is a city

in Ontario,

Canada. It is the

smallest of three

cities in the

Regional

Municipality of

Waterloo (and

previously in

Waterloo County,

Ontario), and is

adjacent to the

city of Kitchener.

…

Big document

(waterloo,1)

(is, 1)

(a, 1) …

(smallest, 1)

(of,1)

(three, 1) …

(municipality,1)

(of,1)

(waterloo, 1) …

(waterloo, 1)

(county, 1)

(ontario, 1)

…

(waterloo, [1,1,1])

(is, [1])

(smallest, [1])

(of, [1,1])

(municipality, [1])

(county, [1])

(a,1)

(three, [1])

(ontario, [1])

…

(waterloo, 3)

(is, 1)

(smallest, 1)

(of, 2)

(municipality, 1)

(county, 1)

(a, 1)

(three, 1)

(ontario, 1)

…

Map Group by key Reduce

MapReduce “word count” example

def map(key: Long, value: String) = {
for (word <- tokenize(value)) {
emit(word, 1)

}
}

def reduce(key: String, values: Iterable[Int]) = {
for (value <- values) {
sum += value

}
emit(key, sum)

}

MapReduce “word count” pseudo-code

MapReduce

Programmer specifies two functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

What does this actually mean?

The execution framework handles everything else…

mapmap map map

group values by key

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

MapReduce

The execution framework handles everything else…
What’s “everything else”?

Programmer specifies two functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

MapReduce “Runtime”

Handles scheduling
Assigns workers to map and reduce tasks

Handles “data distribution”
Moves processes to data

Handles synchronization
Groups intermediate data

Handles errors and faults
Detects worker failures and restarts

Everything happens on top of a distributed FS (later)

MapReduce

Programmer specifies two functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

The execution framework handles everything else…
Not quite…

mapmap map map

group values by key

reduce reduce reduce

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

What’s the most complex and slowest operation here?

Programmer specifies two functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

MapReduce

partition (k', p) → 0 ... p-1

Often a simple hash of the key, e.g., hash(k') mod n

Divides up key space for parallel reduce operations

combine (k2, List[v2]) → List[(k2, v2)]

Mini-reducers that run in memory after the map phase

Used as an optimization to reduce network traffic

✗

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

group values by key

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

* Important detail: reducers
process keys in sorted order

MapReduce can refer to…

The programming model

The execution framework (aka “runtime”)

The specific implementation

Usage is usually clear from context!

MapReduce Implementations

Google has a proprietary implementation in C++

Bindings in Java, Python

Hadoop provides an open-source implementation in Java

Development begun by Yahoo, later an Apache project
Used in production at Facebook, Twitter, LinkedIn, Netflix, …

Large and expanding software ecosystem
Potential point of confusion: Hadoop is more than MapReduce today

Lots of custom research implementations

Source: Google

Tackling Big Data

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

group values by key

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3 * Important detail: reducers
process keys in sorted order

Logical View

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

worker

Master

User

Program

output

file 0

output

file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input

files

Map

phase

Intermediate files

(on local disk)

Reduce

phase

Output

files

Adapted from (Dean and Ghemawat, OSDI 2004)

Physical View

Source: Google

The datacenter is the computer!

The datacenter is the computer!

It’s all about the right level of abstraction
Moving beyond the von Neumann architecture

What’s the “instruction set” of the datacenter computer?

Hide system-level details from the developers
No more race conditions, lock contention, etc.

No need to explicitly worry about reliability, fault tolerance, etc.

Separating the what from the how
Developer specifies the computation that needs to be performed

Execution framework (“runtime”) handles actual execution

The datacenter is the computer!

Scale “out”, not “up”
Limits of SMP and large shared-memory machines

Move processing to the data
Cluster have limited bandwidth, code is a lot smaller

Process data sequentially, avoid random access
Seeks are expensive, disk throughput is good

“Big ideas”

Assume that components will break
Engineer software around hardware failures

*

*

Seek vs. Scans

Consider a 1 TB database with 100 byte records
We want to update 1 percent of the records

Scenario 2: Rewrite all records
Assume 100 MB/s throughput

Time = 5.6 hours(!)

Scenario 1: Mutate each record
Each update takes ~30 ms (seek, read, write)

108 updates = ~35 days

Source: Ted Dunning, on Hadoop mailing list

Lesson? Random access is expensive!

Source: Wikipedia (Mahout)

So you want to drive the elephant!

org.apache.hadoop.mapreduce
org.apache.hadoop.mapred

Source: Wikipedia (Budapest)

A tale of two packages…

MapReduce API*
Mapper<Kin,Vin,Kout,Vout>

Called once at the start of the task
void setup(Mapper.Context context)

Called once for each key/value pair in the input split
void map(Kin key, Vin value, Mapper.Context context)

Called once at the end of the task
void cleanup(Mapper.Context context)

*Note that there are two versions of the API!

Reducer<Kin,Vin,Kout,Vout>/Combiner<Kin,Vin,Kout,Vout>

Called once at the start of the task
void setup(Reducer.Context context)

Called once for each key
void reduce(Kin key, Iterable<Vin> values, Reducer.Context context)

Called once at the end of the task
void cleanup(Reducer.Context context)

MapReduce API*

Partitioner<K, V>

Returns the partition number given total number of partitions
int getPartition(K key, V value, int numPartitions)

*Note that there are two versions of the API!

Job

Represents a packaged Hadoop job for submission to cluster
Need to specify input and output paths

Need to specify input and output formats
Need to specify mapper, reducer, combiner, partitioner classes

Need to specify intermediate/final key/value classes
Need to specify number of reducers (but not mappers, why?)

Don’t depend on defaults!

Writable Defines a de/serialization protocol.
Every data type in Hadoop is a Writable.

WritableComprable Defines a sort order.
All keys must be of this type (but not values).

IntWritable
LongWritable
Text
…

Concrete classes for different data types.
Note that these are container objects.

SequenceFile Binary-encoded sequence of key/value pairs.

Data Types in Hadoop: Keys and Values

“Hello World” MapReduce: Word Count

def map(key: Long, value: String) = {
for (word <- tokenize(value)) {

emit(word, 1)
}

}

def reduce(key: String, values: Iterable[Int]) = {
for (value <- values) {

sum += value
}
emit(key, sum)

}

private static final class MyMapper
extends Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable ONE = new IntWritable(1);
private final static Text WORD = new Text();

@Override
public void map(LongWritable key, Text value, Context context)

throws IOException, InterruptedException {
for (String word : Tokenizer.tokenize(value.toString())) {

WORD.set(word);
context.write(WORD, ONE);

}
}

}

Word Count Mapper

private static final class MyReducer
extends Reducer<Text, IntWritable, Text, IntWritable> {

private final static IntWritable SUM = new IntWritable();

@Override
public void reduce(Text key, Iterable<IntWritable> values,

Context context) throws IOException, InterruptedException {
Iterator<IntWritable> iter = values.iterator();
int sum = 0;
while (iter.hasNext()) {

sum += iter.next().get();
}
SUM.set(sum);
context.write(key, SUM);

}
}

Word Count Reducer

Getting Data to Mappers and Reducers

Configuration parameters
Pass in via Job configuration object

“Side data”
DistributedCache

Mappers/Reducers can read from HDFS in setup method

Complex Data Types in Hadoop

The easiest way:
Encode it as Text, e.g., (a, b) = “a:b”

Use regular expressions to parse and extract data
Works, but janky

The hard way:
Define a custom implementation of Writable(Comprable)

Must implement: readFields, write, (compareTo)
Computationally efficient, but slow for rapid prototyping
Implement WritableComparator hook for performance

How do you implement complex data types?

Somewhere in the middle:
Bespin (via lin.tl) offers various building blocks

Anatomy of a Job

Job submission:
Client (i.e., driver program) creates a job,

configures it,
and submits it to jobtracker

That’s it! The Hadoop cluster takes over…

Hadoop MapReduce program = Hadoop job
Jobs are divided into map and reduce tasks

An instance of a running task is called a task attempt
Each task occupies a slot on the tasktracker

Multiple jobs can be composed into a workflow

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

worker

Master

User

Program

output

file 0

output

file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input

files

Map

phase

Intermediate files

(on local disk)

Reduce

phase

Output

files

Adapted from (Dean and Ghemawat, OSDI 2004)

Anatomy of a Job

Behind the scenes:
Input splits are computed (on client end)

Job data (jar, configuration XML) are sent to jobtracker
Jobtracker puts job data in shared location, enqueues tasks

Tasktrackers poll for tasks
Off to the races…

InputSplit

Source: redrawn from a slide by Cloduera, cc-licensed

InputSplit InputSplit

Input File Input File

InputSplit InputSplit

RecordReader RecordReader RecordReader RecordReader RecordReader

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

In
p

u
tF

o
rm

a
t

… …

InputSplit InputSplit InputSplit

Client

Records

Mapper

RecordReader

Mapper

RecordReader

Mapper

RecordReader

Where’s the data actually coming from?

Source: redrawn from a slide by Cloduera, cc-licensed

Mapper Mapper Mapper Mapper Mapper

Partitioner Partitioner Partitioner Partitioner Partitioner

Intermediates Intermediates Intermediates Intermediates Intermediates

Reducer Reducer Reduce

Intermediates Intermediates Intermediates

(combiners omitted here)

Source: redrawn from a slide by Cloduera, cc-licensed

Reducer Reducer Reducer

Output File

RecordWriter

O
u

tp
u

tF
o

rm
a

t

Output File

RecordWriter

Output File

RecordWriter

Input and Output

InputFormat
TextInputFormat

KeyValueTextInputFormat
SequenceFileInputFormat

…

OutputFormat
TextOutputFormat

SequenceFileOutputFormat
…

Spark also uses these abstractions for reading and writing data!

Hadoop Cluster
You

Submit node
(datasci)

Getting data in?
Writing code?
Getting data out?

Hadoop Workflow

Where’s the actual
data stored?

Debugging Hadoop

First, take a deep breath
Start small, start locally

Build incrementally

Code Execution Environments

Different ways to run code:
Local (standalone) mode
Pseudo-distributed mode

Fully-distributed mode

Learn what’s good for what

Hadoop Debugging Strategies

Good ol’ System.out.println
Learn to use the webapp to access logs

Logging preferred over System.out.println
Be careful how much you log!

Fail on success
Throw RuntimeExceptions and capture state

Use Hadoop as the “glue”
Implement core functionality outside mappers and reducers

Independently test (e.g., unit testing)
Compose (tested) components in mappers and reducers

Source: Wikipedia (Japanese rock garden)

Questions?

