
Data-Intensive Distributed Computing

Part 1: MapReduce Algorithm Design (4/4)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Fall 2019)

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451/

MapReduce Algorithm Design

How do you express everything in terms of m, r, c, p?

Toward “design patterns”

Source: Google

MapReduce

Programmer specifies four functions:
map (k1, v1) → List[(k2, v2)]

reduce (k2, List[v2]) → List[(k3, v3)]

All values with the same key are sent to the same reducer

MapReduce

partition (k', p) → 0 ... p-1

Often a simple hash of the key, e.g., hash(k') mod n

Divides up key space for parallel reduce operations

combine (k2, List[v2]) → List[(k2, v2)]

Mini-reducers that run in memory after the map phase

Used as an optimization to reduce network traffic

The execution framework handles everything else…

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

group values by key

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3 * Important detail: reducers
process keys in sorted order

“Everything Else”

Handles scheduling
Assigns workers to map and reduce tasks

Handles “data distribution”
Moves processes to data

Handles synchronization
Gathers, sorts, and shuffles intermediate data

Handles errors and faults
Detects worker failures and restarts

But…

You have limited control over data and execution flow!
All algorithms must be expressed in m, r, c, p

You don’t know:
Where mappers and reducers run

When a mapper or reducer begins or finishes
Which input a particular mapper is processing

Which intermediate key a particular reducer is processing

Tools for Synchronization

Preserving state in mappers and reducers
Capture dependencies across multiple keys and values

Cleverly-constructed data structures
Bring partial results together

Define custom sort order of intermediate keys
Control order in which reducers process keys

Two Practical Tips

Avoid object creation
(Relatively) costly operation

Garbage collection

Avoid buffering
Limited heap size

Works for small datasets, but won’t scale!

Importance of Local Aggregation

Ideal scaling characteristics:
Twice the data, twice the running time

Twice the resources, half the running time

Why can’t we achieve this?
Synchronization requires communication

Communication kills performance

Thus… avoid communication!
Reduce intermediate data via local aggregation

Combiners can help

Mapper

Reducer

other mappers

other reducers

circular buffer
(in memory)

spills (on disk)

merged spills
(on disk)

intermediate files
(on disk)

Combiner

Combiner

Distributed Group By in MapReduce

What’s the impact of combiners?

Word Count: Baseline

class Mapper {
def map(key: Long, value: String) = {

for (word <- tokenize(value)) {
emit(word, 1)

}
}

}

class Reducer {
def reduce(key: String, values: Iterable[Int]) = {

for (value <- values) {
sum += value

}
emit(key, sum)

}
}

Are combiners still needed?

Word Count: Mapper Histogram

class Mapper {
def map(key: Long, value: String) = {

val counts = new Map()
for (word <- tokenize(value)) {
counts(word) += 1

}

for ((k, v) <- counts) {
emit(k, v)

}
}

}

Performance

Baseline

Histogram

Word count on 10% sample of Wikipedia

~140s

~140s

246m

203m

Running Time # Pairs

Can we do even better?

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

group values by key

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3 * Important detail: reducers
process keys in sorted order

Logical view

MapReduce API*
Mapper<Kin,Vin,Kout,Vout>

Called once at the start of the task
void setup(Mapper.Context context)

Called once for each key/value pair in the input split
void map(Kin key, Vin value, Mapper.Context context)

Called once at the end of the task
void cleanup(Mapper.Context context)

*Note that there are two versions of the API!

Reducer<Kin,Vin,Kout,Vout>/Combiner<Kin,Vin,Kout,Vout>

Called once at the start of the task
void setup(Reducer.Context context)

Called once for each key
void reduce(Kin key, Iterable<Vin> values, Reducer.Context context)

Called once at the end of the task
void cleanup(Reducer.Context context)

Mapper object

setup

map

cleanup

state
one object per task

Reducer object

setup

reduce

cleanup

state

one call per input
key-value pair

one call per
intermediate key

API initialization hook

API cleanup hook

Preserving State

Pseudo-Code

class Mapper {
def setup() = {

...
}

def map(key: Long, value: String) = {
...

}

def cleanup() = {
...

}
}

class Mapper {
val counts = new Map()

def map(key: Long, value: String) = {
for (word <- tokenize(value)) {
counts(word) += 1

}
}

def cleanup() = {
for ((k, v) <- counts) {
emit(k, v)

}
}

}

Word Count: Preserving State

Are combiners still needed?

Design Pattern for Local Aggregation

“In-mapper combining”
Fold the functionality of the combiner into the mapper

by preserving state across multiple map calls

Advantages
Speed

Why is this faster than actual combiners?

Disadvantages
Explicit memory management required

Potential for order-dependent bugs

Performance

Baseline

Histogram

Word count on 10% sample of Wikipedia

IMC

~140s

~140s

~80s

246m

203m

5.5m

Running Time # Pairs

Combiner Design

Combiners and reducers share same method signature
Sometimes, reducers can serve as combiners

Often, not…

Remember: combiner are optional optimizations
Should not affect algorithm correctness

May be run 0, 1, or multiple times

Example: find average of integers associated with the same key

Why can’t we use reducer as combiner?

Computing the Mean: Version 1

class Mapper {
def map(key: String, value: Int) = {

emit(key, value)
}

}

class Reducer {
def reduce(key: String, values: Iterable[Int]) {

for (value <- values) {
sum += value
cnt += 1

}
emit(key, sum/cnt)

}
}

class Mapper {
def map(key: String, value: Int) =

emit(key, value)
}
class Combiner {
def reduce(key: String, values: Iterable[Int]) = {

for (value <- values) {
sum += value
cnt += 1

}
emit(key, (sum, cnt))

}
}
class Reducer {
def reduce(key: String, values: Iterable[Pair]) = {

for ((s, c) <- values) {
sum += s
cnt += c

}
emit(key, sum/cnt)

}
}

Why doesn’t this work?

Computing the Mean: Version 2

class Mapper {
def map(key: String, value: Int) =

emit(key, (value, 1))
}
class Combiner {
def reduce(key: String, values: Iterable[Pair]) = {

for ((s, c) <- values) {
sum += s
cnt += c

}
emit(key, (sum, cnt))

}
}
class Reducer {
def reduce(key: String, values: Iterable[Pair]) = {

for ((s, c) <- values) {
sum += s
cnt += c

}
emit(key, sum/cnt)

}
}

Computing the Mean: Version 3

Fixed?

Computing the Mean: Version 4

class Mapper {
val sums = new Map()
val counts = new Map()

def map(key: String, value: Int) = {
sums(key) += value
counts(key) += 1

}

def cleanup() = {
for (key <- counts.keys) {
emit(key, (sums(key), counts(key)))

}
}

}

Are combiners still needed?

Performance

V1

V3

200m integers across three char keys

V4

~120s

~90s

~60s

~120s

~120s

~90s

Java Scala

~70s

(default HashMap)

(optimized HashMap)

MapReduce API*
Mapper<Kin,Vin,Kout,Vout>

Called once at the start of the task
void setup(Mapper.Context context)

Called once for each key/value pair in the input split
void map(Kin key, Vin value, Mapper.Context context)

Called once at the end of the task
void cleanup(Mapper.Context context)

*Note that there are two versions of the API!

Reducer<Kin,Vin,Kout,Vout>/Combiner<Kin,Vin,Kout,Vout>

Called once at the start of the task
void setup(Reducer.Context context)

Called once for each key
void reduce(Kin key, Iterable<Vin> values, Reducer.Context context)

Called once at the end of the task
void cleanup(Reducer.Context context)

Algorithm Design: Running Example

Term co-occurrence matrix for a text collection
M = N x N matrix (N = vocabulary size)

Mij: number of times i and j co-occur in some context
(for concreteness, let’s say context = sentence)

Why?
Distributional profiles as a way of measuring semantic distance
Semantic distance useful for many language processing tasks

Applications in lots of other domains

MapReduce: Large Counting Problems

Term co-occurrence matrix for a text collection
= specific instance of a large counting problem

A large event space (number of terms)
A large number of observations (the collection itself)

Goal: keep track of interesting statistics about the events

Basic approach
Mappers generate partial counts

Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: “Pairs”

Each mapper takes a sentence:
Generate all co-occurring term pairs

For all pairs, emit (a, b) → count

Reducers sum up counts associated with these pairs
Use combiners!

Pairs: Pseudo-Code

class Mapper {
def map(key: Long, value: String) = {

for (u <- tokenize(value)) {
for (v <- neighbors(u)) {

emit((u, v), 1)
}

}
}

}

class Reducer {
def reduce(key: Pair, values: Iterable[Int]) = {

for (value <- values) {
sum += value

}
emit(key, sum)

}
}

Pairs: Pseudo-Code

class Partitioner {
def getPartition(key: Pair, value: Int, numTasks: Int): Int = {

return key.left % numTasks
}

}

One more thing…

“Pairs” Analysis

Advantages
Easy to implement, easy to understand

Disadvantages
Lots of pairs to sort and shuffle around (upper bound?)

Not many opportunities for combiners to work

Another Try: “Stripes”

Idea: group together pairs into an associative array

Each mapper takes a sentence:
Generate all co-occurring term pairs

For each term, emit a → { b: countb, c: countc, d: countd … }

(a, b) → 1

(a, c) → 2

(a, d) → 5

(a, e) → 3

(a, f) → 2

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

Reducers perform element-wise sum of associative arrays

a → { b: 1, d: 5, e: 3 }

a → { b: 1, c: 2, d: 2, f: 2 }

a → { b: 2, c: 2, d: 7, e: 3, f: 2 }
+

Stripes: Pseudo-Code

class Mapper {
def map(key: Long, value: String) = {

for (u <- tokenize(value)) {
val map = new Map()
for (v <- neighbors(u)) {

map(v) += 1
}
emit(u, map)

}
}

}

class Reducer {
def reduce(key: String, values: Iterable[Map]) = {

val map = new Map()
for (value <- values) {
map += value

}
emit(key, map)

}
}

a → { b: 1, c: 2, d: 5, e: 3, f: 2 }

a → { b: 1, d: 5, e: 3 }

a → { b: 1, c: 2, d: 2, f: 2 }

a → { b: 2, c: 2, d: 7, e: 3, f: 2 }
+

“Stripes” Analysis

Advantages
Far less sorting and shuffling of key-value pairs

Can make better use of combiners

Disadvantages
More difficult to implement

Underlying object more heavyweight
Overhead associated with data structure manipulations
Fundamental limitation in terms of size of event space

Cluster size: 38 cores

Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3),

which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

Pairs

Stripes

Tradeoffs

Pairs:
Generates a lot more key-value pairs

Less combining opportunities
More sorting and shuffling

Simple aggregation at reduce

Stripes:
Generates fewer key-value pairs

More opportunities for combining
Less sorting and shuffling

More complex (slower) aggregation at reduce

Relative Frequencies

How do we estimate relative frequencies from counts?

Why do we want to do this?

How do we do this with MapReduce?

a → {b1:3, b2 :12, b3 :7, b4 :1, … }

f(B|A): “Stripes”

Easy!
One pass to compute (a, *)

Another pass to directly compute f(B|A)

f(B|A): “Pairs”

What’s the issue?
Computing relative frequencies requires marginal counts

But the marginal cannot be computed until you see all counts
Buffering is a bad idea!

Solution:
What if we could get the marginal count to arrive at the reducer first?

(a, b1) → 3
(a, b2) → 12
(a, b3) → 7
(a, b4) → 1
…

(a, *) → 32

(a, b1) → 3 / 32
(a, b2) → 12 / 32
(a, b3) → 7 / 32
(a, b4) → 1 / 32
…

Reducer holds this value in memory

f(B|A): “Pairs”

For this to work:
Emit extra (a, *) for every bn in mapper
Make sure all a’s get sent to same reducer (use partitioner)
Make sure (a, *) comes first (define sort order)
Hold state in reducer across different key-value pairs

“Order Inversion”

Common design pattern:
Take advantage of sorted key order at reducer to sequence computations
Get the marginal counts to arrive at the reducer before the joint counts

Additional optimization
Apply in-memory combining pattern to accumulate marginal counts

Synchronization: Pairs vs. Stripes

Approach 1: turn synchronization into an ordering problem
Sort keys into correct order of computation

Partition key space so each reducer receives appropriate set of partial results
Hold state in reducer across multiple key-value pairs to perform computation

Illustrated by the “pairs” approach

Approach 2: data structures that bring partial results together
Each reducer receives all the data it needs to complete the computation

Illustrated by the “stripes” approach

Secondary Sorting

What if we want to sort value also?
E.g., k → (v1, r), (v3, r), (v4, r), (v8, r)…

MapReduce sorts input to reducers by key
Values may be arbitrarily ordered

Secondary Sorting: Solutions

Solution 2
“Value-to-key conversion” : form composite intermediate key, (k, v1)

Let the execution framework do the sorting
Preserve state across multiple key-value pairs to handle processing

Anything else we need to do?

Solution 1
Buffer values in memory, then sort

Why is this a bad idea?

Recap: Tools for Synchronization

Preserving state in mappers and reducers
Capture dependencies across multiple keys and values

Cleverly-constructed data structures
Bring partial results together

Define custom sort order of intermediate keys
Control order in which reducers process keys

