
Data-Intensive Distributed Computing

Part 2: From MapReduce to Spark (1/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Fall 2019)

Ali Abedi

September 19, 2019

These slides are available at http://roegiest.com/bigdata-2019w/

Source: Google

The datacenter is the computer!
What’s the instruction set?

Source: Wikipedia (ENIAC)

So you like programming in assembly?

Design a higher-level language

Write a compiler

What’s the solution?

Hadoop is great, but it’s really waaaaay too low level!

What we really need is SQL!
What we really need is a

scripting language!

Answer: Answer:

SQL Pig Scripts

Both open-source projects today!

HDFS

MapReduce

Hive Pig

Source: Wikipedia (Pig)

Pig!

User Url Time

Amy cnn.com 8:00

Amy bbc.com 10:00

Amy flickr.com 10:05

Fred cnn.com 12:00

Url Category PageRank

cnn.com News 0.9

bbc.com News 0.8

flickr.com Photos 0.7

espn.com Sports 0.9

Visits URL Info

Task: Find the top 10 most visited pages in each category

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: Example

visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: Example Script

load visits

group by url

foreach url
generate count load urlInfo

join on url

group by category

foreach category
generate top(urls, 10)

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig Query Plan

load visits

group by url

foreach url
generate count load urlInfo

join on url

group by category

foreach category
generate top(urls, 10)

Map1

Reduce1 Map2

Reduce2

Map3

Reduce3

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: MapReduce Execution

visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

But isn’t Pig slower?
Sure, but c can be slower than assembly too…

Pig: Basics

Data model
atoms
tuples
bags
maps

Sequence of statements manipulating relations

Pig: Common Operations

LOAD: load data (from HDFS)

FOREACH … GENERATE: per tuple processing

FILTER: discard unwanted tuples

GROUP/COGROUP: group tuples

JOIN: relational join

STORE: store data (to HDFS)

(1, 2, 3)
(4, 2, 1)
(8, 3, 4)
(4, 3, 3)
(7, 2, 5)
(8, 4, 3)

A = LOAD 'myfile.txt’ AS (f1: int, f2: int, f3: int);

X = GROUP A BY f1;

(1, {(1, 2, 3)})
(4, {(4, 2, 1), (4, 3, 3)})
(7, {(7, 2, 5)})
(8, {(8, 3, 4), (8, 4, 3)})

Pig: GROUPing

A:
(1, 2, 3)
(4, 2, 1)
(8, 3, 4)
(4, 3, 3)
(7, 2, 5)
(8, 4, 3)

B:
(2, 4)
(8, 9)
(1, 3)
(2, 7)
(2, 9)
(4, 6)
(4, 9)

X = COGROUP A BY $0, B BY $0;

(1, {(1, 2, 3)}, {(1, 3)})
(2, {}, {(2, 4), (2, 7), (2, 9)})
(4, {(4, 2, 1), (4, 3, 3)}, {(4, 6),(4, 9)})
(7, {(7, 2, 5)}, {})
(8, {(8, 3, 4), (8, 4, 3)}, {(8, 9)})

Pig: COGROUPing

X = JOIN A BY $0, B BY $0;

(1,2,3,1,3)
(4,2,1,4,6)
(4,3,3,4,6)
(4,2,1,4,9)
(4,3,3,4,9)
(8,3,4,8,9)
(8,4,3,8,9)

Pig: JOINing

A:
(1, 2, 3)
(4, 2, 1)
(8, 3, 4)
(4, 3, 3)
(7, 2, 5)
(8, 4, 3)

B:
(2, 4)
(8, 9)
(1, 3)
(2, 7)
(2, 9)
(4, 6)
(4, 9)

Pig UDFs

User-defined functions:
Java

Python
JavaScript

Ruby
…

UDFs make Pig arbitrarily extensible
Express “core” computations in UDFs

Take advantage of Pig as glue code for scale-out plumbing

Source: Google

The datacenter is the computer!

What’s the instruction set?
Okay, let’s fix this!

reduce

map

HDFS

HDFS

reduce

map

HDFS

reduce

map

HDFS

reduce

map

HDFS

What’s wrong?

MapReduce Workflows

map

HDFS

HDFS

map

HDFS

map

HDFS

map

HDFS

✔ ✗

Want MM?

reduce

map

HDFS

HDFS

reduce

map

HDFS

reduce

map

reduce

HDFS

HDFS

✔ ✗

Want MRR?

Source: Google

The datacenter is the computer!

Let’s enrich the instruction set!

Spark
Answer to “What’s beyond MapReduce?”

Brief history:
Developed at UC Berkeley AMPLab in 2009

Open-sourced in 2010
Became top-level Apache project in February 2014

Google Trends

Source: Datanami (2014): http://www.datanami.com/2014/11/21/spark-just-passed-hadoop-popularity-web-heres/

November 2014

Spark vs. Hadoop

