
Data-Intensive Distributed Computing

Part 2: From MapReduce to Spark (2/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/461 451/651 (Fall 2019)

Ali Abedi

These slides are available at http://roegiest.com/bigdata-2019w/

YARN

YARN = Yet-Another-Resource-Negotiator
Provides API to develop any generic distributed application

Handles scheduling and resource request
MapReduce (MR2) is one such application in YARN

Hadoop’s (original) limitations:
Can only run MapReduce

What if we want to run other distributed frameworks?

datanode daemon

Linux file system

…

tasktracker daemon

worker node

datanode daemon

Linux file system

…

tasktracker daemon

worker node

datanode daemon

Linux file system

…

tasktracker daemon

worker node

namenode (NN)

namenode daemon

jobtracker (JT)

jobtracker daemon

Hadoop MapReduce Architecture

Hadoop v1.0

Hadoop v1.0

Hadoop v2.0

Spark Architecture

Algorithm
Design

Closure

Takes type X and returns type X

• 3 + 4 = 7 (int + int = int)

• 5 / 2 = 2.5 (int + int != float)

Identity

“concept of nothing”

• 5 + 0 = 5

• 5 * 1 = 5

• {3, 11, 9} + {} = {3, 11, 9}

• Initializing a counter to zero

Associativity

Add parenthesis anywhere

• 1 + 2 + 3 = (1 + 2) + 3

• 10 / 2 / 5 != 10 / (2 / 5)

• Huge jobs can become many small jobs

Commutativity

Reordering

• 1 + 2 + 3 = 2 + 3 + 1

• 10 / 2 != 2 /10

Monoid

• Closure (int + int = int)

• Identity (1 + 0 = 1)

• Associativity (1 + 2 + 3 = (1 + 2) + 3)

• Commutative Monoid

Commutative Monoid and MapReduce

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1() () ()

3 7 4

14

3

4 7

Two superpowers:

Associativity
Commutativity

(sorting)

Implications for distributed processing?

You don’t know when the tasks begin
You don’t know when the tasks end

You don’t know when the tasks interrupt each other
You don’t know when intermediate data arrive

…

Word Count: Baseline

class Mapper {
def map(key: Long, value: String) = {

for (word <- tokenize(value)) {
emit(word, 1)

}
}

}

class Reducer {
def reduce(key: String, values: Iterable[Int]) = {

for (value <- values) {
sum += value

}
emit(key, sum)

}
}

Computing the Mean: Version 1

class Mapper {
def map(key: String, value: Int) = {

emit(key, value)
}

}

class Reducer {
def reduce(key: String, values: Iterable[Int]) {

for (value <- values) {
sum += value
cnt += 1

}
emit(key, sum/cnt)

}
}

Computing the Mean: Version 3
class Mapper {
def map(key: String, value: Int) =

emit(key, (value, 1))
}
class Combiner {
def reduce(key: String, values: Iterable[Pair]) = {

for ((s, c) <- values) {
sum += s
cnt += c

}
emit(key, (sum, cnt))

}
}
class Reducer {
def reduce(key: String, values: Iterable[Pair]) = {

for ((s, c) <- values) {
sum += s
cnt += c

}
emit(key, sum/cnt)

}
}

Co-occurrence Matrix: Stripes

class Mapper {
def map(key: Long, value: String) = {

for (u <- tokenize(value)) {
val map = new Map()
for (v <- neighbors(u)) {

map(v) += 1
}
emit(u, map)

}
}

}

class Reducer {
def reduce(key: String, values: Iterable[Map]) = {

val map = new Map()
for (value <- values) {
map += value

}
emit(key, map)

}
}

Synchronization: Pairs vs. Stripes

Approach 1: turn synchronization into an ordering problem
Sort keys into correct order of computation

Partition key space so each reducer receives appropriate set of partial results
Hold state in reducer across multiple key-value pairs to perform computation

Illustrated by the “pairs” approach

Approach 2: data structures that bring partial results together
Each reducer receives all the data it needs to complete the computation

Illustrated by the “stripes” approach

…

…

But commutative monoids help

Because you can’t avoid this…

Synchronization: Pairs vs. Stripes

Approach 1: turn synchronization into an ordering problem
Sort keys into correct order of computation

Partition key space so each reducer receives appropriate set of partial results
Hold state in reducer across multiple key-value pairs to perform computation

Illustrated by the “pairs” approach

Approach 2: data structures that bring partial results together
Each reducer receives all the data it needs to complete the computation

Illustrated by the “stripes” approach

(a, b1) → 3
(a, b2) → 12
(a, b3) → 7
(a, b4) → 1
…

(a, *) → 32

(a, b1) → 3 / 32
(a, b2) → 12 / 32
(a, b3) → 7 / 32
(a, b4) → 1 / 32
…

Reducer holds this value in memory

f(B|A): “Pairs”

For this to work:
Emit extra (a, *) for every bn in mapper
Make sure all a’s get sent to same reducer (use partitioner)
Make sure (a, *) comes first (define sort order)
Hold state in reducer across different key-value pairs

Two superpowers:

Associativity
Commutativity

(sorting)

…

…

Sequence your computations by sorting

When you can’t “monoidify”

Exploit associativity and commutativity
via commutative monoids (if you can)

Source: Wikipedia (Walnut)

Exploit framework-based sorting to
sequence computations (if you can’t)

Algorithm design in a nutshell…

