Data-Intensive Distributed Computing
 CS 431/631 451/651 (Fall 2019)

Part 3: Analyzing Text (1/2)
September 26, 2019

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451

Structure of the Course

"Core" framework features and algorithm design

Structure of the Course

Count

 (Efficiently)```
class Mapper {
 def map(key: Long, value: String) = {
 for (word <- tokenize(value)) {
 emit(word, 1)
 }
}
}
class Reducer {
 def reduce(key: String, values: Iterable[Int]) = {
 for (value <- values) {
 sum += value
 }
 emit(key, sum)
 }
}
```


## Pairs. Stripes. <br> Seems pretty trivial...

More than a "toy problem"?
Answer: language models

## Language Models

$P\left(w_{1}, w_{2}, \ldots, w_{T}\right) \quad$ Assigning a probability to a sentence
Why?

- Machine translation
- $P($ High winds tonight $)>P($ Large winds tonight $)$
- Spell Correction
- $\mathrm{P}($ Waterloo is a great city $)>\mathrm{P}($ Waterloo is a grate city $)$
- Speech recognition
- $P$ (I saw a van) > P(eyes awe of an)


## Language Models

$$
\begin{aligned}
& P\left(w_{1}, w_{2}, \ldots, w_{T}\right) \\
& \quad=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1}, w_{2}\right) \ldots P\left(w_{T} \mid w_{1}, \ldots, w_{T-1}\right) \\
& \quad[\text { [chain rule] }
\end{aligned}
$$

$P($ "Waterloo is a great city") $=$ P (Waterloo) $\times \mathrm{P}$ (is | Waterloo) $\times \mathrm{P}($ a $\mid$ Waterloo is $)$ $\mathrm{xP}($ great | Waterloo is a) xP (city | Waterloo is a great)

## Approximating Probabilities: $N$-Grams

Basic idea: limit history to fixed number of $(N-1)$ words
(Markov Assumption)

$$
P\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right) \approx P\left(w_{k} \mid w_{k-N+1}, \ldots, w_{k-1}\right)
$$

$N=1$ : Unigram Language Model

$$
\begin{aligned}
P\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right) & \approx P\left(w_{k}\right) \\
\Rightarrow & P\left(w_{1}, w_{2}, \ldots, w_{T}\right) \approx P\left(w_{1}\right) P\left(w_{2}\right) \ldots P\left(w_{T}\right)
\end{aligned}
$$

## Approximating Probabilities: $N$-Grams

Basic idea: limit history to fixed number of $(N-1)$ words
(Markov Assumption)
$P\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right) \approx P\left(w_{k} \mid w_{k-N+1}, \ldots, w_{k-1}\right)$
$N=2$ : Bigram Language Model

$$
\begin{aligned}
& P\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right) \approx P\left(w_{k} \mid w_{k-1}\right) \\
\Rightarrow & P\left(w_{1}, w_{2}, \ldots, w_{T}\right) \approx P\left(w_{1} \mid<\mathrm{S}>\right) P\left(w_{2} \mid w_{1}\right) \ldots P\left(w_{T} \mid w_{T-1}\right)
\end{aligned}
$$

## Approximating Probabilities: $N$-Grams

Basic idea: limit history to fixed number of $(N-1)$ words
(Markov Assumption)

$$
P\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right) \approx P\left(w_{k} \mid w_{k-N+1}, \ldots, w_{k-1}\right)
$$

$N=3$ : Trigram Language Model

$$
\begin{aligned}
& P\left(w_{k} \mid w_{1}, \ldots, w_{k-1}\right) \approx P\left(w_{k} \mid w_{k-2}, w_{k-1}\right) \\
\Rightarrow & P\left(w_{1}, w_{2}, \ldots, w_{T}\right) \approx P\left(w_{1} \mid<\mathrm{S}><\mathrm{S}>\right) \ldots P\left(w_{T} \mid w_{T-2} w_{T-1}\right)
\end{aligned}
$$

## Building $N$-Gram Language Models

Compute maximum likelihood estimates (MLE) for Individual $n$-gram probabilities
$\begin{array}{lll}\text { Unigram } & P\left(w_{i}\right)=\frac{C\left(w_{i}\right)}{N} & \text { Fancy way of saying: } \\ \text { Bigram } & P\left(w_{i}, w_{j}\right)=\frac{C\left(w_{i}, w_{j}\right)}{N} & \text { count + divide } \\ & P\left(w_{j} \mid w_{i}\right)=\frac{P\left(w_{i}, w_{j}\right)}{P\left(w_{i}\right)}=\frac{C\left(w_{i}, w_{j}\right)}{\sum_{w} C\left(w_{i}, w\right)} ? \frac{C\left(w_{i}, w_{j}\right)}{C\left(w_{i}\right)}\end{array}$
Minor detail here...
Generalizes to higher-order n-grams
State of the art models use $\sim 5$-grams

We already know how to do this in MapReduce!

The two commandments of estimating probability distributions...

## Probabilities must sum up to one




## Example: Bigram Language Model

```
<s> Iam Sam </s>
<s> Samlam </s>
<s> I do not like green eggs and ham </s>
```

Training Corpus

```
P(I| <s>) = 2/3 = 0.67
P(am | I) = 2/3 = 0.67
\[
\mathrm{P}(</ \mathrm{s}>\mid \mathrm{Sam})=1 / 2=0.50
\]
```

$$
\begin{aligned}
& P(\text { Sam } \mid \text { <s }\rangle=1 / 3=0.33 \\
& P(\text { do } \mid 1)=1 / 3=0.33 \\
& P(\text { Sam } \mid \text { am })=1 / 2=0.50
\end{aligned}
$$

Bigram Probability Estimates
Note: We don't ever cross sentence boundaries

## Data Sparsity

$$
\begin{aligned}
& P(I \mid\langle s\rangle)=2 / 3=0.67 \\
& P(\operatorname{am} \mid I)=2 / 3=0.67 \\
& P(\langle/ s>| \text { Sam })=1 / 2=0.50
\end{aligned}
$$

$$
\begin{aligned}
& P(\text { Sam } \mid\langle s\rangle)=1 / 3=0.33 \\
& P(\text { do } \mid I)=1 / 3=0.33 \\
& P(\text { Sam } \mid \text { am })=1 / 2=0.50
\end{aligned}
$$

## Bigram Probability Estimates

$P($ I like ham $)$

$$
\begin{aligned}
& =P(I \mid\langle s\rangle) P(\text { like } \mid I) P(\text { ham } \mid \text { like }) P(\langle/ s\rangle \mid \text { ham }) \\
& =0
\end{aligned}
$$

Why is this bad?

## Thou shalt smooth!

Zeros are bad for any statistical estimator
Need better estimators because MLEs give us a lot of zeros A distribution without zeros is "smoother"

The Robin Hood Philosophy: Take from the rich (seen $n$-grams) and give to the poor (unseen $n$-grams)
Need better estimators because MLEs give us a lot of zeros


A distribution without zeros is "smoother"

Lots of techniques:
Laplace, Good-Turing, Katz backoff, Jelinek-Mercer Kneser-Ney represents best practice

## Laplace Smoothing

Learn fancy words for simple ideas!

Simplest and oldest smoothing technique
Just add 1 to all $n$-gram counts including the unseen ones
So, what do the revised estimates look like?

## Laplace Smoothing

Unigrams

$$
P_{M L E}\left(w_{i}\right)=\frac{C\left(w_{i}\right)}{N} \quad \longrightarrow \quad P_{L A P}\left(w_{i}\right)=\frac{C\left(w_{i}\right)+1}{N+V}
$$

Bigrams

$$
P_{M L E}\left(w_{i}, w_{j}\right)=\frac{C\left(w_{i}, w_{j}\right)}{N} \longrightarrow P_{L A P}\left(w_{i}, w_{j}\right)=\frac{C\left(w_{i}, w_{j}\right)+1}{N+V^{2}}
$$

## Jelinek-Mercer Smoothing: Interpolation

Mix higher-order with lower-order models to defeat sparsity
Mix = Weighted Linear Combination

$$
\begin{aligned}
& P\left(w_{k} \mid w_{k-2} w_{k-1}\right)= \\
& \lambda_{1} P\left(w_{k} \mid w_{k-2} w_{k-1}\right)+\lambda_{2} P\left(w_{k} \mid w_{k-1}\right)+\lambda_{3} P\left(w_{k}\right) \\
& 0<=\lambda_{i}<=1 \quad \sum_{i} \lambda_{i}=1
\end{aligned}
$$

## Kneser-Ney Smoothing

Interpolate discounted model with a special "continuation" $n$-gram model

## Based on appearance of $n$-grams in different contexts

Excellent performance, state of the art

$$
\begin{aligned}
P_{K N}\left(w_{k} \mid w_{k-1}\right) & =\frac{C\left(w_{k-1} w_{k}\right)-D}{C\left(w_{k-1}\right)}+\beta\left(w_{k}\right) P_{C O N T}\left(w_{k}\right) \\
P_{C O N T}\left(w_{i}\right) & =\frac{N\left(\bullet w_{i}\right)}{\sum_{w^{\prime}} N\left(\bullet w^{\prime}\right)}
\end{aligned}
$$

$N\left(\bullet w_{i}\right)=$ number of different contexts $w_{i}$ has appeared in

# Kneser-Ney Smoothing: Intuition 

I can't see without my
"San Francisco" occurs a lot
I can't see without my Francisco?

## Stupid Backoff

## Let's break all the rules:

$$
\begin{aligned}
S\left(w_{i} \mid w_{i-k+1}^{i-1}\right) & = \begin{cases}\frac{f\left(w_{i-k+1}^{i}\right)}{f\left(w_{i-k+1}^{i-1}\right)} & \text { if } f\left(w_{i-k+1}^{i}\right)>0 \\
\alpha S\left(w_{i} \mid w_{i-k+2}^{i-1}\right) & \text { otherwise }\end{cases} \\
S\left(w_{i}\right) & =\frac{f\left(w_{i}\right)}{N}
\end{aligned}
$$

But throw lots of data at the problem!

What the...

## Stupid Backoff Implementation: Pairs!

Straightforward approach: count each order separately

| A B | $\longleftarrow$ remember this value |
| :--- | :--- |
| A B C | $S(C \mid A B)=f(A B C) / f(A B)$ |
| $A B C$ | $S(D \mid A B)=f(A B C) / f(A B)$ |
| $A B E$ | $S(E \mid A B)=f(A B C) / f(A B)$ |

More clever approach: count all orders together

```
AB}\quad\longleftarrow remember this valu
A BC }\longleftarrow\mathrm{ remember this value
A BCP
ABCQ
ABD
ABDX
A B D Y
```


# Stupid Backoff: Additional Optimizations 

Replace strings with integers
Assign ids based on frequency (better compression using vbyte)
Partition by bigram for better load balancing
Replicate all unigram counts

State of the art smoothing (less data)


## Statistical Machine Translation

covyr
 Erivalyg



## Statistical Machine Translation

| Training Data |
| :--- |
| i saw the small table |
| vi la mesa pequeña |
| Parallel Sentences |
| he sat at the table |
| the service was good |
| Target-Language Text |

Word Alignment Phrase Extraction

maria no daba una bofetada a la bruja verde Foreign Input Sentence
mary did not slap the green witch English Output Sentence

$$
\hat{e}_{1}^{I}=\underset{e_{1}^{I}}{\arg \max } P\left(e_{1}^{I} \mid f_{1}^{J}\right)=\underset{e_{1}^{I}}{\arg \max } P\left(e_{1}^{I}\right) P\left(f_{1}^{J} \mid e_{1}^{I}\right)
$$

## Translation as a Tiling Problem



$$
\hat{e}_{1}^{I}=\underset{e_{1}^{I}}{\arg \max } P\left(e_{1}^{I} \mid f_{1}^{J}\right)=\underset{e_{1}^{I}}{\arg \max } P\left(e_{1}^{I}\right) P\left(f_{1}^{J} \mid e_{1}^{I}\right)
$$

## Results: Running Time

|  | target | webnews | web |
| :--- | :--- | :--- | :--- |
| \# tokens | 237 M | 31 G | 1.8 T |
| vocab size | 200 k | 5 M | 16 M |
| \# $n$-grams | 257 M | 21 G | 300 G |
| LM size (SB) | 2 G | 89 G | 1.8 T |
| time (SB) | 20 min | 8 hours | 1 day |
| time (KN) | 2.5 hours | 2 days | - |
| \# machines | 100 | 400 | 1500 |

## Results: Translation Quality






## Neural Networks

Have taken over...

## The Central Problem in Search



## Abstract IR Architecture



# How do we represent text? <br> Remember: computers don't "understand" anything! 

"Bag of words"<br>Treat all the words in a document as index terms Assign a "weight" to each term based on "importance"<br>(or, in simplest case, presence/absence of word)<br>Disregard order, structure, meaning, etc. of the words<br>Simple, yet effective!

## Assumptions

Term occurrence is independent
Document relevance is independent
"Words" are well-defined

## What＇s a word？

天主教教宗若望保祿二世因感冒再度住進醫院。這是他今年第二度因同樣的病因住院。

$$
\begin{aligned}
& \text { الناطق باسم -وقال مارك ريجيف } \\
& \text { إن شارون قبّل -الخارجية الإسرائيلية } \\
& \text { الاعوة وسيقوم للمرة الأولى بزيارة } \\
& \text { تونس، التي كانت لفترة طويلة المقر }
\end{aligned}
$$ 1982الرسمي لمنظمة التحرير الفلسطينية بعد خروجها من لبنان عام

Выступая в Мещанском суде Москвы экс－глава ЮКОСа заявил не совершал ничего противозаконного，в чем обвиняет его генпрокуратура России．

भारत सरकार ने आर्थिक सर्वेक्षण में वित्तीय वर्ष 2005－06 में सात फ़ीसदी विकास दर हासिल करने का आकलन किया है और कर सुधार पर ज़ोर दिया है

日米連合で台頭中国に対処．．．アーミテージ前副長官提言
조재영 기자＝서울시는 25 일 이명박 시장이｀행정중심복합도시＂건설안 에 대해｀군대라도 동원해 막고싶은 심정＂이라고 말했다는 일부 언론의 보도를 부인했다．

## Sample Document

## McDonald's slims down spuds

Fast-food chain to reduce certain types of fat in its french fries with new cooking oil.

NEW YORK (CNN/Money) - McDonald's Corp. is cutting the amount of "bad" fat in its french fries nearly in half, the fast-food chain said Tuesday as it moves to make all its fried menu items healthier.
But does that mean the popular shoestring fries won't taste the same? The company says no. "It's a win-win for our customers because they are getting the same great french-fry taste along with an even healthier nutrition profile," said Mike Roberts, president of McDonald's USA.

But others are not so sure. McDonald's will not specifically discuss the kind of oil it plans to use, but at least one nutrition expert says playing with the formula could mean a different taste.

Shares of Oak Brook, III.-based McDonald's (MCD: down $\$ 0.54$ to $\$ 23.22$, Research, Estimates) were lower Tuesday afternoon. It was unclear Tuesday whether competitors Burger King and Wendy's International (WEN: down $\$ 0.80$ to $\$ 34.91$, Research, Estimates) would follow suit. Neither company could immediately be reached for comment.

## "Bag of Words"

$14 \times$ McDonalds
$12 \times$ fat
$11 \times$ fries
$8 \times$ new
$7 \times$ french
$6 \times$ company, said, nutrition
$5 \times$ food, oil, percent, reduce, taste, Tuesday
...

## Counting Words...


case folding, tokenization, stopword removal, stemming


Doc 1
one fish, two fish

Doc 2
red fish, blue fish

Doc 3
cat in the hat

Doc 4 green eggs and ham


## What goes in each cell?

boolean count positions

## Abstract IR Architecture


one fish, two fish

Doc 2
red fish, blue fish

Doc 3
cat in the hat

Doc 4 green eggs and ham

| 1 |  | 2 | 3 | 4 |
| :---: | :--- | :---: | :---: | :---: |
| blue |  | 1 |  |  |
| cat |  |  | 1 |  |
| egg |  |  |  | 1 |
| fish | 1 | 1 |  |  |
| green |  |  |  | 1 |
| ham |  |  |  | 1 |
| hat |  |  | 1 |  |
| hat |  |  |  |  |
| one | 1 |  |  |  |
| red |  | 1 |  |  |
| two | 1 |  |  |  |

# Indexing: building this structure <br> Retrieval: manipulating this structure 

Where have we seen this before?

Doc 1
one fish, two fish

Doc 2
red fish, blue fish

Doc 3
cat in the hat

Doc 4
green eggs and ham

|  | $1 \begin{array}{llll}1 & 2 & 3\end{array}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| blue |  | 1 |  |  |
| cat |  |  | 1 |  |
| egg |  |  |  | 1 |
| fish | 1 | 1 |  |  |
| green |  |  |  | 1 |
| ham |  |  |  | 1 |
| hat |  |  | 1 |  |
| one | 1 |  |  |  |
| red |  | 1 |  |  |
| two | 1 |  |  |  |



## Indexing: Performance Analysis

Fundamentally, a large sorting problem
Terms usually fit in memory
Postings usually don't

How is it done on a single machine? How can it be done with MapReduce?

First, let's characterize the problem size:
Size of vocabulary
Size of postings

## Vocabulary Size: Heaps' Law

$$
M=K \prod^{b} \begin{aligned}
& M \text { is vocabulary size } \\
& T \text { is collection size (number of documents) } \\
& k \text { and } b \text { are constants }
\end{aligned}
$$

Typically, $k$ is between 30 and $100, b$ is between 0.4 and 0.6

Heaps' Law: linear in log-log space

Surprise: Vocabulary size grows unbounded!

## Heaps' Law for RCV1



Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

## Postings Size: Zipf's Law

$$
f(k ; s, N)=\frac{1 / k^{s}}{\sum_{n=1}^{N}\left(1 / n^{s}\right)} \quad \begin{aligned}
& N \text { number of elements } \\
& k
\end{aligned}
$$

Zipf's Law: (also) linear in log-log space Specific case of Power Law distributions

In other words:
A few elements occur very frequently
Many elements occur very infrequently

## Zipf's Law for RCV1



Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

## Zipf's Law for Wikipedia



Rank versus frequency for the first 10 m words in 30 Wikipedias (dumps from October 2015)


Figure from: Newman, M. E. J. (2005) "Power laws, Pareto distributions and Zipf's law." Contemporary Physics 46:323-351.

# MapReduce: Index Construction 

Map over all documents<br>Emit term as key, (docid, $t f$ ) as value Emit other information as necessary (e.g., term position)

Sort/shuffle: group postings by term

Reduce<br>Gather and sort the postings (typically by docid) Write postings to disk

MapReduce does all the heavy lifting!

## Inverted Indexing with MapReduce



Shuffle and Sort: aggregate values by keys


## Inverted Indexing: Pseudo-Code

```
class Mapper {
 def map(docid: Long, doc: String) = {
 val counts = new Map()
 for (term <- tokenize(doc)) {
 counts(term) += 1
 }
 for ((term, tf) <- counts) {
 emit(term,(docid, tf))
 }
}
}
class Reducer {
 def reduce(term: String, postings: Iterable[(docid, tf)]) = {
 val p = new List()
```



```
 p.&ppend((docid, tf))
 }
 p.sort()
 emit(term, p)
}
}
```



