Data-Intensive Distributed Computing
 CS 431/631 451/651 (Fall 2019)

Part 4: Analyzing Graphs (1/2)

October 3, 2019

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451/

Structure of the Course

What's a graph?

$$
\begin{aligned}
& \mathrm{G}=(\mathrm{V}, \mathrm{E}) \text {, where } \\
& \mathrm{V} \text { represents the set of vertices (nodes) } \\
& \mathrm{E} \text { represents the set of edges (links) } \\
& \text { Edges may be directed or undirected }
\end{aligned}
$$

Both vertices and edges may contain additional information

Examples of Graphs

Hyperlink structure of the web
Physical structure of computers on the Internet
Interstate highway system
Social networks

We're mostly interested in sparse graphs!

Partial map of the Internet based on the January 15, 2005 data found on opte.org

Representing Graphs

Adjacency matrices
Adjacency lists
Edge lists

Adjacency Matrices

Represent a graph as an $n \times n$ square matrix M

$$
n=|\mathrm{V}|
$$

$M_{i j}=1$ iff an edge from vertex i to j

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	0	1	0	1
$\mathbf{2}$	1	0	1	1
$\mathbf{3}$	1	0	0	0
$\mathbf{4}$	1	0	1	0

Adjacency Matrices: Critique

Advantages
Amenable to mathematical manipulation Intuitive iteration over rows and columns

Disadvantages
Lots of wasted space (for sparse matrices)

Adjacency Lists

Take adjacency matrix... and throw away all the zeros

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	0	1	0	1
$\mathbf{2}$	1	0	1	1
$\mathbf{3}$	1	0	0	0
$\mathbf{4}$	1	0	1	0

1: 2, 4

2: 1, 3, 4
3: 1
4: 1, 3

Wait, where have we seen this before?

Adjacency Lists: Critique

Advantages
Much more compact representation (compress!)
Easy to compute over outlinks

Disadvantages
Difficult to compute over inlinks

Edge Lists

Explicitly enumerate all edges

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	0	1	0	1
$\mathbf{2}$	1	0	1	1
$\mathbf{3}$	1	0	0	0
$\mathbf{4}$	1	0	1	0

$(1,2)$
$(1,4)$
$(2,1)$
$(2,3)$
$(2,4)$
$(3,1)$
$(4,1)$
$(4,3)$

Edge Lists: Critique

Advantages
Easily support edge insertions

Disadvantages

Wastes spaces

Some Graph Problems

Finding shortest paths
Routing Internet traffic and UPS trucks
Finding minimum spanning trees
Telco laying down fiber
Finding max flow
Airline scheduling
Identify "special" nodes and communities
Halting the spread of avian flu
Bipartite matching
match.com
Web ranking
PageRank

What does the web look like?

Analysis of a large webgraph from the common crawl: 3.5 billion pages, 129 billion links
Meusel et al. Graph Structure in the Web - Revisited. WWW 2014.

Broder's Bowtie (2000) - revisited

What does the web look like?

Very roughly, a scale-free network

Fraction of k nodes having k connections:

$$
P(k) \sim k^{-\gamma}
$$

(i.e., degree distribution follows a power law)

How do we extract the webgraph? The webgraph... is big?!

webgraph from the common crawl: 3.5 billion pages, 129 billion links Meusel et al. Graph Structure in the Web - Revisited. WWW 2014.

Graphs and MapReduce (and Spark)

A large class of graph algorithms involve:
Local computations at each node
Propagating results: "traversing" the graph
Key questions:
How do you represent graph data in MapReduce (and Spark)?
How do you traverse a graph in MapReduce (and Spark)?

Single-Source Shortest Path

Problem: find shortest path from a source node to one or more target nodes Shortest might also mean lowest weight or cost

First, a refresher: Dijkstra's Algorithm...

Dijkstra's Algorithm Example

Single-Source Shortest Path

Problem: find shortest path from a source node to one or more target nodes Shortest might also mean lowest weight or cost

Single processor machine: Dijkstra's Algorithm MapReduce: parallel breadth-first search (BFS)

Finding the Shortest Path

Consider simple case of equal edge weights

Solution to the problem can be defined inductively:
Define: b is reachable from a if b is on adjacency list of a
DISTANCETO(s) $=0$
For all nodes p reachable from s,
DISTANCETO $(p)=1$
For all nodes n reachable from some other set of nodes M,

$$
\operatorname{DISTANCETo}(n)=1+\min (\operatorname{DISTANCETo}(m), m \in M)
$$

Visualizing Parallel BFS

From Intuition to Algorithm

Data representation:
Key: node n
Value: d (distance from start), adjacency list Initialization: for all nodes except for start node, $d=\infty$

> Mapper:
> $\forall m \in$ adjacency list: emit $(m, d+1)$

Sort/Shuffle:

Groups distances by reachable nodes
Reducer:
Selects minimum distance path for each reachable node Additional bookkeeping needed to keep track of actual path

Multiple Iterations Needed

Each MapReduce iteration advances the "frontier" by one hop Subsequent iterations include more reachable nodes as frontier expands Multiple iterations are needed to explore entire graph

Preserving graph structure: Problem: Where did the adjacency list go?
Solution: mapper emits (n, adjacency list) as well

BFS Pseudo-Code

```
class Mapper {
    def map(id: Long, n: Node) = {
        emit(id, n) // emit graph structure
    val d = n.distance
    for (m<- n.adjacencyList) {
        emit(m, d+1)
    }
}
class Reducer {
    def reduce(id: Long, objects: Iterable[Object]) = {
        var min = infinity
    var m = null
    for (d <- objects) {
        if (isNode(d)) m<-d
        else if d< min min=d
    }
    m.distance = min
    emit(id, m)
}
}
```


Stopping Criterion

(equal edge weight)

How many iterations are needed in parallel BFS?

Convince yourself: when a node is first "discovered", we've found the shortest path

What does it have to do with six degrees of separation?

Practicalities of MapReduce implementation...

Frontier size during BFS traversal

Implementation Practicalities

Comparison to Dijkstra

Dijkstra's algorithm is more efficient
At each step, only pursues edges from minimum-cost path inside frontier
MapReduce explores all paths in parallel
Lots of "waste"
Useful work is only done at the "frontier"

Why can't we do better using MapReduce?

Single Source: Weighted Edges

Now add positive weights to the edges
Simple change: add weight w for each edge in adjacency list
Simple change: add weight w for each edge in adjacency list
In mapper, emit $\left(m, d+w_{p}\right)$ instead of ($m, d+1$) for each node m

That's it?

Stopping Criterion

(positive edge weight)

How many iterations are needed in parallel BFS?

Convince yourself: when a node is first "discovered", we've found the shortest path

Additional Complexities

