
Data-Intensive Distributed Computing

Part 4: Analyzing Graphs (1/2)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Fall 2019)

Ali Abedi

October 3, 2019

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451/

Structure of the Course

“Core” framework features

and algorithm design

A
n
a
ly

z
in

g
T

e
x
t

A
n
a
ly

z
in

g
G

ra
p
h
s

A
n
a
ly

z
in

g

R
e

la
ti
o
n
a
l
D

a
ta

D
a
ta

 M
in

in
g

What’s a graph?

G = (V,E), where
V represents the set of vertices (nodes)

E represents the set of edges (links)
Edges may be directed or undirected

Both vertices and edges may contain additional information

vertex (node)

edges (links)

edges (links)

outgoing
(outbound) edges

incoming
(inbound) edges

out-degree

in-degree

outlinks

inlinks

Examples of Graphs

Hyperlink structure of the web
Physical structure of computers on the Internet

Interstate highway system
Social networks

We’re mostly interested in sparse graphs!

Partial map of the Internet based on the

January 15, 2005 data found on opte.org

http://www.opte.org/maps/

Representing Graphs

Adjacency matrices

Adjacency lists

Edge lists

1 2 3 4

1 0 1 0 1

2 1 0 1 1

3 1 0 0 0

4 1 0 1 0

1

2

3

4

Adjacency Matrices

Represent a graph as an n x n square matrix M
n = |V|

Mij = 1 iff an edge from vertex i to j

Adjacency Matrices: Critique

Advantages
Amenable to mathematical manipulation
Intuitive iteration over rows and columns

Disadvantages
Lots of wasted space (for sparse matrices)

1: 2, 4
2: 1, 3, 4
3: 1
4: 1, 3

1 2 3 4

1 0 1 0 1

2 1 0 1 1

3 1 0 0 0

4 1 0 1 0

Adjacency Lists

Take adjacency matrix… and throw away all the zeros

1

2

3

4

Adjacency Lists: Critique

Advantages
Much more compact representation (compress!)

Easy to compute over outlinks

Disadvantages
Difficult to compute over inlinks

(1, 2)
(1, 4)
(2, 1)
(2, 3)
(2, 4)
(3, 1)
(4, 1)
(4, 3)

1 2 3 4

1 0 1 0 1

2 1 0 1 1

3 1 0 0 0

4 1 0 1 0

Edge Lists

Explicitly enumerate all edges

Edge Lists: Critique

Advantages
Easily support edge insertions

Disadvantages
Wastes spaces

Some Graph Problems

Finding shortest paths
Routing Internet traffic and UPS trucks

Finding minimum spanning trees
Telco laying down fiber

Finding max flow
Airline scheduling

Identify “special” nodes and communities
Halting the spread of avian flu

Bipartite matching
match.com

Web ranking
PageRank

What does the web look like?

Meusel et al. Graph Structure in the Web — Revisited. WWW 2014.

Analysis of a large webgraph from the common crawl: 3.5 billion pages, 129 billion links

Broder’s Bowtie (2000) – revisited

What does the web look like?
Very roughly, a scale-free network

Fraction of k nodes having k connections:

(i.e., degree distribution follows a power law)

How do we extract the webgraph?
The webgraph… is big?!

Meusel et al. Graph Structure in the Web — Revisited. WWW 2014.

webgraph from the common crawl: 3.5 billion pages, 129 billion links

Graphs and MapReduce (and Spark)

A large class of graph algorithms involve:
Local computations at each node

Propagating results: “traversing” the graph

Key questions:
How do you represent graph data in MapReduce (and Spark)?

How do you traverse a graph in MapReduce (and Spark)?

Single-Source Shortest Path

Problem: find shortest path from a
source node to one or more target nodes
Shortest might also mean lowest weight or cost

First, a refresher: Dijkstra’s Algorithm…

0

10

5

2 3

2

1

9

7

4 6

Example from CLR

Dijkstra’s Algorithm Example

0

10

5

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

8

5

14

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

8

5

13

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

8

5

9

7

1

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

0

8

5

9

7

Example from CLR

10

5

2 3

2

1

9

7

4 6

Dijkstra’s Algorithm Example

Single-Source Shortest Path

Problem: find shortest path from a
source node to one or more target nodes
Shortest might also mean lowest weight or cost

Single processor machine: Dijkstra’s Algorithm

MapReduce: parallel breadth-first search (BFS)

Finding the Shortest Path
Consider simple case of equal edge weights

Solution to the problem can be defined inductively:

Define: b is reachable from a if b is on adjacency list of a

DISTANCETO(s) = 0

For all nodes p reachable from s,
DISTANCETO(p) = 1

For all nodes n reachable from some other set of nodes M,

DISTANCETO(n) = 1 + min(DISTANCETO(m), m M)

s

m3

m2

m1

n

…

…

…

d1

d2

d3

Source: Wikipedia (Wave)

n0

n3
n2

n1

n7

n6

n5

n4

n9

n8

Visualizing Parallel BFS

From Intuition to Algorithm

Data representation:
Key: node n

Value: d (distance from start), adjacency list
Initialization: for all nodes except for start node, d =

Mapper:
m adjacency list: emit (m, d + 1)

Sort/Shuffle:
Groups distances by reachable nodes

Reducer:
Selects minimum distance path for each reachable node

Additional bookkeeping needed to keep track of actual path

Preserving graph structure:
Problem: Where did the adjacency list go?

Solution: mapper emits (n, adjacency list) as well

Multiple Iterations Needed

Each MapReduce iteration advances the “frontier” by one hop
Subsequent iterations include more reachable nodes as frontier expands

Multiple iterations are needed to explore entire graph

BFS Pseudo-Code
class Mapper {
def map(id: Long, n: Node) = {

emit(id, n) // emit graph structure
val d = n.distance
for (m <- n.adjacencyList) {
emit(m, d+1)

}
}

class Reducer {
def reduce(id: Long, objects: Iterable[Object]) = {

var min = infinity
var m = null
for (d <- objects) {
if (isNode(d)) m <- d
else if d < min min = d

}
m.distance = min
emit(id, m)

}
}

Stopping Criterion

How many iterations are needed in parallel BFS?

Convince yourself: when a node is first “discovered”,
we’ve found the shortest path

What does it have to do with
six degrees of separation?

Practicalities of MapReduce implementation…

(equal edge weight)

Frontier size during BFS traversal

reduce

map

HDFS

HDFS

Convergence?

Implementation Practicalities

Comparison to Dijkstra

Dijkstra’s algorithm is more efficient
At each step, only pursues edges from minimum-cost path inside frontier

MapReduce explores all paths in parallel
Lots of “waste”

Useful work is only done at the “frontier”

Why can’t we do better using MapReduce?

Single Source: Weighted Edges

Now add positive weights to the edges
Simple change: add weight w for each edge in adjacency list

Simple change: add weight w for each edge in adjacency list
In mapper, emit (m, d + wp) instead of (m, d + 1) for each node m

That’s it?

How many iterations are needed in parallel BFS?

Stopping Criterion

Convince yourself: when a node is first “discovered”,
we’ve found the shortest path

(positive edge weight)

s

p
q

r

search frontier

10

n1

n2

n3

n4

n5

n6 n7

n8

n9

1

1
1

1

1

1

1

1

Additional Complexities

