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Structure of the Course

“Core” framework features 

and algorithm design
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 How to organize the Web?
 First try: Human curated

Web directories

▪ Yahoo, DMOZ, LookSmart

 Second try: Web Search

▪ Information Retrieval investigates:
Find relevant docs in a small 
and trusted set

▪ Newspaper articles, Patents, etc.

▪ But: Web is huge, full of untrusted documents, 
random things, web spam, etc.
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2 challenges of web search:
 (1) Web contains many sources of information

Who to “trust”?

▪ Trick: Trustworthy pages may point to each other!

 (2) What is the “best” answer to query 
“newspaper”?

▪ No single right answer

▪ Trick: Pages that actually know about newspapers 
might all be pointing to many newspapers
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 All web pages are not equally “important”

www.joe-schmoe.com vs. www.stanford.edu

 There is large diversity 
in the web-graph 
node connectivity.
Let’s rank the pages by 
the link structure!
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 Idea: Links as votes

▪ Page is more important if it has more links

▪ In-coming links? Out-going links?

 Think of in-links as votes:
▪ www.stanford.edu has 23,400 in-links

▪ www.joe-schmoe.com has 1 in-link

 Are all in-links are equal?

▪ Links from important pages count more

▪ Recursive question! 
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 Each link’s vote is proportional to the 
importance of its source page

 If page j with importance rj has n out-links, 
each link gets rj / n votes

 Page j’s own importance is the sum of the 
votes on its in-links
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 A “vote” from an important 
page is worth more

 A page is important if it is 
pointed to by other important 
pages

 Define a “rank” rj for page j
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“Flow” equations:

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2
𝒅𝒊 … out-degree of node 𝒊



 3 equations, 3 unknowns, 
no constants
▪ No unique solution

▪ All solutions equivalent modulo the scale factor
 Additional constraint forces uniqueness:

▪ 𝒓𝒚 + 𝒓𝒂 + 𝒓𝒎 = 𝟏

▪ Solution: 𝒓𝒚 =
𝟐

𝟓
, 𝒓𝒂 =

𝟐

𝟓
, 𝒓𝒎 =

𝟏

𝟓
 Gaussian elimination method works for 

small examples, but we need a better 
method for large web-size graphs

 We need a new formulation!
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ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2

Flow equations:



 Stochastic adjacency matrix 𝑴
▪ Let page 𝑖 has 𝑑𝑖 out-links

▪ If 𝑖 → 𝑗, then  𝑀𝑗𝑖 =
1

𝑑
𝑖

else   𝑀𝑗𝑖 = 0
▪ 𝑴 is a column stochastic matrix
▪ Columns sum to 1
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 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ 2: 𝑟 = 𝑟′

▪ Goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15
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y ½ ½ 0

a ½ 0 1

m 0 ½ 0

Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2



 Power Iteration:

▪ Set 𝑟𝑗 = 1/N

▪ 1: 𝑟′𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ 2: 𝑟 = 𝑟′

▪ Goto 1

 Example:
ry 1/3 1/3 5/12 9/24 6/15

ra = 1/3 3/6 1/3 11/24 … 6/15

rm 1/3 1/6 3/12 1/6 3/15
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Iteration 0, 1, 2, …

ry = ry /2 + ra /2

ra = ry /2 + rm

rm = ra /2



 Imagine a random web surfer:

▪ At any time 𝒕, surfer is on some page 𝒊

▪ At time 𝒕 + 𝟏, the surfer follows an 
out-link from 𝒊 uniformly at random

▪ Ends up on some page 𝒋 linked from 𝒊

▪ Process repeats indefinitely

 Let:
 𝒑(𝒕) … vector whose 𝒊th coordinate is the 

prob. that the surfer is at page 𝒊 at time 𝒕

▪ So, 𝒑(𝒕) is a probability distribution over pages
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 Where is the surfer at time t+1?

▪ Follows a link uniformly at random

𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕)

 Suppose the random walk reaches a state 
𝒑 𝒕 + 𝟏 = 𝑴 ⋅ 𝒑(𝒕) = 𝒑(𝒕)

then 𝒑(𝒕) is stationary distribution of a random walk

)(M)1( tptp =+

j

i1 i2 i3
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 A central result from the theory of random 
walks (a.k.a. Markov processes):

For graphs that satisfy certain conditions, 
the stationary distribution is unique and 

eventually will be reached no matter what the 
initial probability distribution at time t = 0
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 Does this converge?

 Does it converge to what we want?

 Are results reasonable?
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 Example:
ra 1 0 1 0

rb 0 1 0 1
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 Example:
ra 1 0 0 0

rb 0 1 0 0
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2 problems:
 (1) Some pages are 

dead ends (have no out-links)

▪ Random walk has “nowhere” to go to

▪ Such pages cause importance to “leak out”

 (2) Spider traps:
(all out-links are within the group)

▪ Random walked gets “stuck” in a trap

▪ And eventually spider traps absorb all importance
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Dead end



 Power Iteration:

▪ Set 𝑟𝑗 = 1

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 3/6 7/12 16/24 1
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Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 1

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2 + rm

m is a spider trap

All the PageRank score gets “trapped” in node m.



 The Google solution for spider traps: At each 
time step, the random surfer has two options

▪ With prob. , follow a link at random

▪ With prob. 1-, jump to some random page

▪ Common values for  are in the range 0.8 to 0.9

 Surfer will teleport out of spider trap 
within a few time steps
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 Power Iteration:

▪ Set 𝑟𝑗 = 1

▪ 𝑟𝑗 = σ𝑖→𝑗
𝑟𝑖

𝑑𝑖

▪ And iterate

 Example:
ry 1/3 2/6 3/12 5/24 0

ra = 1/3 1/6 2/12 3/24 … 0

rm 1/3 1/6 1/12 2/24 0
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Iteration 0, 1, 2, …

y

a m

y a m

y ½ ½ 0

a ½ 0 0

m 0 ½ 0

ry = ry /2 + ra /2

ra = ry /2

rm = ra /2

Here the PageRank “leaks” out since the matrix is not stochastic.



 Teleports: Follow random teleport links with 
probability 1.0 from dead-ends

▪ Adjust matrix accordingly
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Why are dead-ends and spider traps a problem 
and why do teleports solve the problem?
 Spider-traps are not a problem, but with traps 

PageRank scores are not what we want

▪ Solution: Never get stuck in a spider trap by 
teleporting out of it in a finite number of steps

 Dead-ends are a problem

▪ The matrix is not column stochastic, so our initial 
assumptions are not met

▪ Solution: Make matrix column stochastic by always 
teleporting when there is nowhere else to go
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 Google’s solution that does it all:
At each step, random surfer has two options:

▪ With probability ,  follow a link at random

▪ With probability 1-, jump to some random page

 PageRank equation [Brin-Page, 98]

𝑟𝑗 =

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁
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di … out-degree 
of node i

This formulation assumes that 𝑴 has no dead ends.  We can either 

preprocess matrix 𝑴 to remove all dead ends or explicitly follow random 

teleport links with probability 1.0 from dead-ends.
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PageRank MapReduce Implementation



Simplified PageRank

First, tackle the simple case:
No random jump factor

No dangling (dead-end) nodes



n1 (0.2)

n4 (0.2)

n3 (0.2)
n5 (0.2)

n2 (0.2)

0.1

0.1

0.2 0.2

0.1
0.1

0.066 0.066
0.066

n1 (0.066)

n4 (0.3)

n3 (0.166)
n5 (0.3)

n2 (0.166)Iteration 1

Sample PageRank Iteration (1)



n1 (0.066)

n4 (0.3)

n3 (0.166)
n5 (0.3)

n2 (0.166)

0.033

0.033

0.3 0.166

0.083
0.083

0.1 0.1
0.1

n1 (0.1)

n4 (0.2)

n3 (0.183)
n5 (0.383)

n2 (0.133)Iteration 2

Sample PageRank Iteration (2)



n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

n2 n4 n3 n5 n1 n2 n3n4 n5

n2 n4n3 n5n1 n2 n3 n4 n5

n5 [n1, n2, n3]n1 [n2, n4] n2 [n3, n5] n3 [n4] n4 [n5]

Map

Reduce

PageRank in MapReduce



PageRank Pseudo-Code

class Mapper {
def map(id: Long, n: Node) = {

emit(id, n)
p = n.PageRank / n.adjacenyList.length
for (m <- n.adjacenyList) {
emit(m, p)

}
}

class Reducer {
def reduce(id: Long, objects: Iterable[Object]) = {

var s = 0
var n = null
for (p <- objects) {
if (isNode(p))    n = p
else              s += p

}
n.PageRank = s
emit(id, n)

}
}



Map

Reduce

PageRank BFS

PR/N d+1

sum min

PageRank vs. BFS

A large class of graph algorithms involve:
Local computations at each node

Propagating results: “traversing” the graph



Complete PageRank

Two additional complexities
What is the proper treatment of dangling nodes?

How do we factor in the random jump factor?

Solution: second pass to redistribute “missing PageRank mass” 
and account for random jumps

One final optimization: fold into a single MR job

𝑟𝑗 =

𝑖→𝑗

𝛽
𝑟𝑖
𝑑𝑖
+ (1 − 𝛽)

1

𝑁



Convergence?
reduce

map

HDFS

HDFS

map

HDFS

Implementation Practicalities



PageRank Convergence

Alternative convergence criteria
Iterate until PageRank values don’t change

Iterate until PageRank rankings don’t change
Fixed number of iterations



Log Probs
PageRank values are really small…

Product of probabilities = Addition of log probs

Addition of probabilities?

Solution?



Beyond PageRank

Variations of PageRank
Weighted edges

Personalized PageRank (A4 ☺)

Variants on graph random walks
Hubs and authorities (HITS)

SALSA



Convergence?
reduce

map

HDFS

HDFS

map

HDFS

Implementation Practicalities



MapReduce Sucks

Java verbosity

Hadoop task startup time

Stragglers

Needless graph shuffling

Checkpointing at each iteration



reduce

HDFS

…

map

HDFS

reduce

map

HDFS

reduce

map

HDFS

Let’s Spark!



reduce

HDFS

…

map

reduce

map

reduce

map



reduce

HDFS

map

reduce

map

reduce

map

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

…



join

HDFS

map

join

map

join

map

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

Adjacency Lists PageRank Mass

…



join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey



join

join

join

…

HDFS HDFS

Adjacency Lists PageRank vector

PageRank vector

flatMap

reduceByKey

PageRank vector

flatMap

reduceByKey

Cache!



PageRank	Performance	
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Source: http://ampcamp.berkeley.edu/wp-content/uploads/2012/06/matei-zaharia-part-2-amp-camp-2012-standalone-programs.pdf

MapReduce vs. Spark


