Part 5: Analyzing Relational Data (3/3)
October 24, 2019

Ali Abedi

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details
MapReduce: A Major Step Backwards?

MapReduce is a step backward in database access

- Schemas are good
- Separation of the schema from the application is good
- High-level access languages are good

MapReduce is poor implementation

- Brute force and only brute force (no indexes, for example)

MapReduce is not novel

MapReduce is missing features

- Bulk loader, indexing, updates, transactions...

MapReduce is incompatible with DBMS tools

Source: Blog post by DeWitt and Stonebraker
SELECT * FROM Data WHERE field LIKE '%XYZ%';

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.
SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Figure 6: Selection Task Results

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.
Hadoop vs. Databases: Aggregation

Figure 7: Aggregation Task Results (2.5 million Groups)

Figure 8: Aggregation Task Results (2,000 Groups)

```
SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;
```

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.
Hadoop vs. Databases: Join

Figure 9: Join Task Results

SELECT INTO Temp sourceIP, AVG(pageRank) as avgPageRank, SUM(adRevenue) as totalRevenue
FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL AND UV.visitDate BETWEEN Date('2000-01-15') AND Date('2000-01-22') GROUP BY UV.sourceIP;

SELECT sourceIP, totalRevenue, avgPageRank FROM Temp ORDER BY totalRevenue DESC LIMIT 1;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.
Why was Hadoop slow?

- Integer.parseInt
- String.substring
- String.split

Hadoop slow because string manipulation is slow?
Key Ideas

Binary representations are good
Binary representations need schemas
Schemas allow logical/physical separation
Logical/physical separation allows you to do cool things
Thrift

Originally developed by Facebook, now an Apache project

Provides a DDL with numerous language bindings
 Compact binary encoding of typed structs
 Fields can be marked as optional or required
 Compiler automatically generates code for manipulating messages

Provides RPC mechanisms for service definitions

Don’t like Thrift? Alternatives include protobufs and Avro
struct Tweet {
 1: required i32 userId;
 2: required string userName;
 3: required string text;
 4: optional Location loc;
}

struct Location {
 1: required double latitude;
 2: required double longitude;
}

Thrift
Why not...

XML or JSON?

REST?
How bytes are actually represented in storage...
Row vs. Column Stores

Row store

Column store
Row vs. Column Stores

Row stores
- Easier to modify a record: in-place updates
- Might read unnecessary data when processing

Column stores
- Only read necessary data when processing
- Tuple writes require multiple operations
- Tuple updates are complex
external APIs
 Frontend
 Backend

users
 Frontend
 Backend

OLTP database

users
 Frontend
 Backend

OLTP database

OLTP database

ETL
(Extract, Transform, and Load)

OLAP Data Warehouse

BI tools

analysts
Advantages of Column Stores

Inherent advantages:
- Better compression
- Read efficiency

Works well with:
- Vectorized Execution
- Compiled Queries

These are well-known in traditional databases...
Row vs. Column Stores: Compression

Row store

Column store

This compresses better with off-the-shelf tools, e.g., gzip. Why?
Row vs. Column Stores: Compression

Row store

Column store

Additional opportunities for smarter compression...
Columns Stores: RLE

Column store

Run-length encoding example:

is a foreign key, relatively small cardinality
(even better, boolean)

In reality:

Encode:

3 2 1 ...
Columns Stores: Integer Coding

Column store

Say you’re coding a bunch of integers...
VByte

Simple idea: use only as many bytes as needed

Need to reserve one bit per byte as the “continuation bit”
Use remaining bits for encoding value

7 bits

14 bits

21 bits

Works okay, easy to implement...

Beware of branch mispredicts!
Simple-9

How many different ways can we divide up 28 bits?

28 1-bit numbers
14 2-bit numbers
9 3-bit numbers
7 4-bit numbers

(9 total ways)

Efficient decompression with hard-coded decoders
Simple Family – general idea applies to 64-bit words, etc.

Beware of branch mispredicts?
Advantages of Column Stores

Inherent advantages:

- Better compression
- Read efficiency

Works well with:

- Vectorized Execution
- Compiled Queries
Putting Everything Together

SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND
 big2.f1 < 40 AND
 big2.f2 > 2;

Build logical plan
Optimize logical plan
Select physical plan
val size = 100000000

var col = new Array[Int](size) // List of random ints
var selected = new Array[Boolean](size) // Matches a predicate?

for (i <- 0 until size) {
 selected(i) = col(i) > 0
}

for (i <- 0 until size by 8) {
 selected(i) = col(i) > 0
 selected(i+1) = col(i+1) > 0
 selected(i+2) = col(i+2) > 0
 selected(i+3) = col(i+3) > 0
 selected(i+4) = col(i+4) > 0
 selected(i+5) = col(i+5) > 0
 selected(i+6) = col(i+6) > 0
 selected(i+7) = col(i+7) > 0
}

Which is faster?
Why?

On my laptop: 409ms
(avg over 10 trials)

On my laptop: 174ms
(avg over 10 trials)
val size = 100000000

var col = new Array[Int](size) // List of random ints
var selected = new Array[Boolean](size) // Matches a predicate?

for (i <- 0 until size) {
 selected(i) = col(i) > 0
}

for (i <- 0 until size by 8) {
 selected(i) = col(i) > 0
 selected(i+1) = col(i+1) > 0
 selected(i+2) = col(i+2) > 0
 selected(i+3) = col(i+3) > 0
 selected(i+4) = col(i+4) > 0
 selected(i+5) = col(i+5) > 0
 selected(i+6) = col(i+6) > 0
 selected(i+7) = col(i+7) > 0
}

Why does it matter?

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

On my laptop: 409ms (avg over 10 trials) On my laptop: 174ms (avg over 10 trials)
Actually, it’s worse than that!

Each operator implements a common interface

- **open()** Initialize, reset internal state, etc.
- **next()** Advance and deliver next tuple
- **close()** Clean up, free resources, etc.

Execution driven by repeated calls to top of operator tree
SELECT pageURL, pageRank FROM Rankings WHERE pageRank > X;

Very little actual computation is being done!
SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Solution?
val size = 100000000

var col = new Array[Int](size) // List of random ints
var selected = new Array[Boolean](size) // Matches a predicate?

for (i <- 0 until size) {
 selected(i) = col(i) > 0
}

for (i <- 0 until size by 8) {
 selected(i) = col(i) > 0
 selected(i+1) = col(i+1) > 0
 selected(i+2) = col(i+2) > 0
 selected(i+3) = col(i+3) > 0
 selected(i+4) = col(i+4) > 0
 selected(i+5) = col(i+5) > 0
 selected(i+6) = col(i+6) > 0
 selected(i+7) = col(i+7) > 0
}

Vectorized Execution

next() returns a vector of tuples
All operators rewritten to work on vectors of tuples

Can we do even better?
Compiled Queries

select * from R1,R3, (select R2.z,count(*) from R2 where R2.y=3) group by R2.z) R2 where R1.x=7 and R1.a=R3.b and R2.z=R3.c

initialize memory of \(\land_{a=b}, \land_{c=z}, \text{ and } \Gamma_z \)

for each tuple \(t \) in \(R_1 \)
if \(t.x = 7 \)
materialize \(t \) in hash table of \(\land_{a=b} \)
for each tuple \(t \) in \(R_2 \)
if \(t.y = 3 \)
aggregate \(t \) in hash table of \(\Gamma_z \)
for each tuple \(t \) in \(\Gamma_z \)
materialize \(t \) in hash table of \(\land_{z=c} \)
for each tuple \(t_3 \) in \(R_3 \)
for each match \(t_2 \) in \(\land_{z=c}[t_3.c] \)
for each match \(t_1 \) in \(\land_{a=b}[t_3.b] \)
output \(t_1 \circ t_2 \circ t_3 \)

Source: Neumann (2011) Efficiently Compiling Efficient Query Plans for Modern Hardware. VLDB.
Compiled Queries

Example LLVM query template

```c
#define internal void @scanConsumer(%8* %executionState, %Fragment.R2* %data) {
    body:

      ... %columnPtr = getelementptr inbounds %Fragment.R2* %data, i32 0, i32 0
      %column  = load i32* %columnPtr, align 8
      %columnPtr2 = getelementptr inbounds %Fragment.R2* %data, i32 0, i32 1
      %column2 = load i32* %columnPtr2, align 8
      ... (loop over tuples, currently at %id, contains label %cont17)
      %yPtr = getelementptr i32* %column, i64 %id
      %y = load i32* %yPtr, align 4
      %cond = icmp eq %y 3
      br i1 %cond, label %then, label %cont17
    then:
      %zPtr = getelementptr i32* %column2, i64 %id
      %z = load i32* %zPtr, align 4
      %hash = urem i32 %z, %hashTableSize
      %hashSlot = getelementptr %"HashGroupify::Entry"* %hashTable, i32 %hash
      %hashIter = load %"HashGroupify::Entry"* %hashSlot, align 8
      %cond2 = icmp eq %"HashGroupify::Entry"* %hashIter, null
      br i1 %cond, label %loop20, label %else26
      ... (check if the group already exists, starts with label %loop20)
    else26:
      %cond3 = icmp le i32 %spaceRemaining, i32 8
      br i1 %cond, label %then28, label %else47
      ... (create a new group, starts with label %then28)
    else47:
      %ptr = call i8* @ZN12HashGroupify15storeInputTupleEmj
          (%"HashGroupify"* %1, i32 hash, i32 8)
      ... (more loop logic)

```
Advantages of Column Stores

Inherent advantages:
- Better compression
- Read efficiency

Works well with:
- Vectorized Execution
- Compiled Queries

These are well-known in traditional databases...

Why not in Hadoop?
Why not in Hadoop? Why not in Hadoop? No reason why not!

RCFile

Relation

\[
\begin{array}{cccc}
A & B & C & D \\
\cdots & \cdots & \cdots & \cdots \\
101 & 111 & 121 & 131 \\
102 & 112 & 122 & 132 \\
103 & 113 & 123 & 133 \\
104 & 114 & 124 & 134 \\
105 & 115 & 105 & 135 \\
\cdots & \cdots & \cdots & \cdots \\
\end{array}
\]

Row Group

HDFS Block

Row Group 1

16 Bytes Sync

Row Group 2

Metadata Header

Row Group n

\[
\begin{array}{c}
101, 102, 103, 104, 105 \\
111, 112, 113, 114, 115 \\
121, 122, 123, 124, 125 \\
131, 132, 133, 134, 135 \\
\end{array}
\]
set hive.vectorized.execution.enabled = true;

Batch of rows, organized as columns:

class VectorizedRowBatch {
 boolean selectedInUse;
 int[] selected;
 int size;
 ColumnVector[] columns;
}

class LongColumnVector extends ColumnVector {
 long[] vector
}
Vectorized Execution?

```java
class LongColumnAddLongScalarExpression {
    int inputColumn;
    int outputColumn;
    long scalar;

    void evaluate(VectorizedRowBatch batch) {
        long [] inVector = ((LongColumnVector) batch.columns[inputColumn]).vector;
        long [] outVector = ((LongColumnVector) batch.columns[outputColumn]).vector;
        if (batch.selectedInUse) {
            for (int j = 0; j < batch.size; j++) {
                int i = batch.selected[j];
                outVector[i] = inVector[i] + scalar;
            }
        } else {
            for (int i = 0; i < batch.size; i++) {
                outVector[i] = inVector[i] + scalar;
            }
        }
    }
}
```

Vectorized operator example
Compiled Queries?

SELECT x, y
FROM z WHERE x * (1 - y)/100 < 434;

Predicate is “interpreted” as

LessThan(
 Multiply(Attribute("x"),
 Divide(Minus(Literal("1"), Attribute("y")), 100),
 434)

Slow!

Dynamic code generation
(feed AST into Scala compiler to generate bytecode):

row.get("x") * (1 - row.get("y"))/100 < 434

Much faster!
Advantages of Column Stores

Inherent advantages:
- Better compression
- Read efficiency

Works well with:
- Vectorized Execution
- Compiled Queries

Hadoop can adopt all of these optimizations!
Key Ideas

Binary representations are good

Binary representations need schemas

Schemas allow logical/physical separation

Logical/physical separation allows you to do cool things
MapReduce: A Major Step Backwards?

MapReduce is a step backward in database access

- Schemas are good
- Separation of the schema from the application is good
- High-level access languages are good

MapReduce is poor implementation

- Brute force and only brute force (no indexes, for example)

MapReduce is not novel

MapReduce is missing features

- Bulk loader, indexing, updates, transactions...

MapReduce is incompatible with DMBS tools

Source: Blog post by DeWitt and Stonebraker