
Data-Intensive Distributed Computing

Part 5: Analyzing Relational Data (3/3)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Fall 2019)

Ali Abedi

October 24, 2019

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451

1

MapReduce: A Major Step Backwards?

MapReduce is a step backward in database access
Schemas are good

Separation of the schema from the application is good
High-level access languages are good

MapReduce is poor implementation
Brute force and only brute force (no indexes, for example)

MapReduce is not novel

MapReduce is missing features
Bulk loader, indexing, updates, transactions…

MapReduce is incompatible with DBMS tools

Source: Blog post by DeWitt and Stonebraker
2

SELECT * FROM Data WHERE field LIKE ‘%XYZ%’;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Hadoop vs. Databases: Grep

3

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Hadoop vs. Databases: Select

4

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

200

400

600

800

1000

1200

1400

1600

1800

s
e

c
o

n
d

s

Vertica Hadoop

Figure 7: Aggregation Task Results (2.5 million Groups)

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

200

400

600

800

1000

1200

1400

s
e

c
o

n
d

s

Vertica Hadoop

Figure 8: Aggregation Task Results (2,000 Groups)

the query coordinator, which outputs results to the user. The results

in Figure 7 illustrate that the two DBMSs perform about the same

for a large number of groups, as their runtime is dominated by the

cost to transmit the large number of local groups and merge them

at the coordinator. For the experiments using fewer nodes, Vertica

performs somewhat better, since it has to read less data (since it

can directly access the sourceIP and adRevenue columns), but it

becomes slightly slower as more nodes are used.

Based on the results in Figure 8, it is more advantageous to use

a column-store system when processing fewer groups for this task.

This is because the two columns accessed (sourceIP and adRev-

enue) consist of only 20 bytes out of the more than 200 bytes per

UserVisits tuple, and therefore there are relatively few groups that

need to be merged so communication costs are much lower than in

the non-variant plan. Vertica is thus able to outperform the other

two systems from not reading unused parts of the UserVisits tuples.

Note that the execution times for all systems are roughly consis-

tent for any number of nodes (modulo Vertica’s slight slow down as

the number of nodes increases). Since this benchmark task requires

the system to scan through the entire data set, the run time is always

bounded by the constant sequential scan performance and network

repartitioning costs for each node.

4.3.4 Join Task

The join task consists of two sub-tasks that perform a complex

calculation on two data sets. In the first part of the task, each sys-

tem must find the sourceIP that generated the most revenue within

a particular date range. Once these intermediate records are gener-

ated, the system must then calculate the average pageRank of all the

pages visited during this interval. We use the week of January 15-

22, 2000 in our experiments, which matches approximately 134,000

records in the UserVisits table.

The salient aspect of this task is that it must consume two data

different sets and join them together in order to find pairs of Rank-

ing and UserVisits records with matching values for pageURL and

destURL. This task stresses each system using fairly complex op-

erations over a large amount of data. The performance results are

also a good indication on how well the DBMS’s query optimizer

produces efficient join plans.

SQLCommands: In contrast to the complexity of the MR program

described below, the DBMSs need only two fairly simple queries to

complete the task. The first statement creates a temporary table and

uses it to store the output of the SELECT statement that performs

the join of UserVisits and Rankings and computes the aggregates.

Once this table is populated, it is then trivial to use a second query

to output the record with the largest totalRevenue field.

SELECT INTO Temp sourceIP,

AVG(pageRank) as avgPageRank,

SUM(adRevenue) as totalRevenue

FROM Rankings AS R, UserVisits AS UV

WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN Date(‘2000-01-15’)

AND Date(‘2000-01-22’)

GROUP BY UV.sourceIP;

SELECT sourceIP, totalRevenue, avgPageRank

FROM Temp

ORDER BY totalRevenue DESC LIMIT 1;

MapReduce Program: Because the MR model does not have an

inherent ability to join two or more disparate data sets, the MR pro-

gram that implements the join task must be broken out into three

separate phases. Each of these phases is implemented together as a

single MR program in Hadoop, but do not begin executing until the

previous phase is complete.

Phase 1 – The first phase filters UserVisits records that are outside

the desired data range and then joins the qualifying records with

records from the Rankings file. The MR program is initially given

all of the UserVisits and Rankings data files as input.

Map Function: For each key/value input pair, we determine its

record type by counting the number of fields produced when split-

ting the value on the delimiter. If it is a UserVisits record, we

apply the filter based on the date range predicate. These qualify-

ing records are emitted with composite keys of the form (destURL,

K 1), where K 1 indicates that it is a UserVisits record. All Rankings

records are emitted with composite keys of the form (pageURL,

K 2), where K 2 indicates that it is a Rankings record. These output

records are repartitioned using a user-supplied partitioning function

that only hashes on the URL portion of the composite key.

Reduce Function: The input to the Reduce function is a single

sorted run of records in URL order. For each URL, we divide its

values into two sets based on the tag component of the composite

key. The function then forms the cross product of the two sets to

complete the join and outputs a new key/value pair with the sour-

ceIP as the key and the tuple (pageURL, pageRank, adRevenue) as

the value.

Phase 2 – The next phase computes the total adRevenue and aver-

age pageRank based on the sourceIP of records generated in Phase

1. This phase uses a Reduce function in order to gather all of the

173

SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

Hadoop vs. Databases: Aggregation

5

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

200

400

600

800

1000

1200

1400

1600

1800

s
e

c
o

n
d
s

¬
 2

1
.5

¬
 2

8
.2

¬
 3

1
.3

¬
 3

6
.1

¬
 8

5
.0

¬
 1

5
.7

¬
 2

8
.0

¬
 2

9
.2

¬
 2

9
.4

¬
 3

1
.9

Vertica DBMS−X Hadoop

Figure 9: Join Task Results

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

1000

2000

3000

4000

5000

6000

7000

8000

s
e

c
o

n
d

s

Vertica Hadoop

Figure 10: UDF Aggregation Task Results

records for a particular sourceIP on a single node. We use the iden-

tity Map function in the Hadoop API to supply records directly to

the split process [1, 8].

Reduce Function: For each sourceIP, the function adds up the

adRevenue and computes the average pageRank, retaining the one

with the maximum total ad revenue. Each Reduce instance outputs

a single record with sourceIP as the key and the value as a tuple of

the form (avgPageRank, totalRevenue).

Phase 3 – In the final phase, we again only need to define a sin-

gle Reduce function that uses the output from the previous phase to

produce the record with the largest total adRevenue. We only exe-

cute one instance of the Reduce function on a single node to scan

all the records from Phase 2 and find the target record.

Reduce Function: The function processes each key/value pair

and keeps track of the record with the largest totalRevenue field.

Because the Hadoop API does not easily expose the total number

records that a Reduce instance will process, there is no way for

the Reduce function to know that it is processing the last record.

Therefore, we override the closing callback method in our Reduce

implementation so that the MR program outputs the largest record

right before it exits.

Results & Discussion: The performance results for this task is dis-

played in Figure 9. We had to slightly change the SQL used in 100

node experiments for Vertica due to an optimizer bug in the system,

which is why there is an increase in the execution time for Vertica

going from 50 to 100 nodes. But even with this increase, it is clear

that this task results in the biggest performance difference between

Hadoop and the parallel database systems. The reason for this dis-

parity is two-fold.

First, despite the increased complexity of the query, the perfor-

mance of Hadoop is yet again limited by the speed with which the

large UserVisits table (20GB/node) can be read off disk. The MR

program has to perform a complete table scan, while the parallel

database systems were able to take advantage of clustered indexes

on UserVisits.visitDate to significantly reduce the amount of data

that needed to be read. When breaking down the costs of the dif-

ferent parts of the Hadoop query, we found that regardless of the

number of nodes in the cluster, phase 2 and phase 3 took on aver-

age 24.3 seconds and 12.7 seconds, respectively. In contrast, phase

1, which contains the Map task that reads in the UserVisits and

Rankings tables, takes an average of 1434.7 seconds to complete.

Interestingly, it takes approximately 600 seconds of raw I/O to read

the UserVisits and Rankings tables off of disk and then another 300

seconds to split, parse, and deserialize the various attributes. Thus,

the CPU overhead needed to parse these tables on the fly is the lim-

iting factor for Hadoop.

Second, the parallel DBMSs are able to take advantage of the fact

that both the UserVisits and the Rankings tables are partitioned by

the join key. This means that both systems are able to do the join

locally on each node, without any network overhead of repartition-

ing before the join. Thus, they simply have to do a local hash join

between the Rankings table and a selective part of the UserVisits

table on each node, with a trivial ORDER BY clause across nodes.

4.3.5 UDF Aggregation Task

The final task is to compute the inlink count for each document

in the dataset, a task that is often used as a component of PageR-

ank calculations. Specifically, for this task, the systems must read

each document file and search for all the URLs that appear in the

contents. The systems must then, for each unique URL, count the

number of unique pages that reference that particular URL across

the entire set of files. It is this type of task that the MR is believed

to be commonly used for.

We make two adjustments for this task in order to make pro-

cessing easier in Hadoop. First, we allow the aggregate to include

self-references, as it is non-trivial for a Map function to discover

the name of the input file it is processing. Second, on each node

we concatenate the HTML documents into larger files when storing

them in HDFS. We found this improved Hadoop’s performance by

a factor of two and helped avoid memory issues with the central

HDFS master when a large number of files are stored in the system.

SQL Commands: To perform this task in a parallel DBMS re-

quires a user-defined function F that parses the contents of each

record in the Documents table and emits URLs into the database.

This function can be written in a general-purpose language and is

effectively identical to the Map program discussed below. With this

function F, we populate a temporary table with a list of URLs and

then can execute a simple query to calculate the inlink count:

SELECT INTO Temp F(contents) FROM Documents;

SELECT url, SUM(value) FROM Temp GROUP BY url;

Despite the simplicity of this proposed UDF, we found that in

practice it was difficult to implement in the DBMSs.

For DBMS-X, we translated the MR program used in Hadoop

into an equivalent C program that uses the POSIX regular expres-

sion library to search for links in the document. For each URL

found in the document contents, the UDF returns a new tuple (URL,

174

Source: Pavlo et al. (2009) A Comparison of Approaches to Large-Scale Data Analysis. SIGMOD.

SELECT INTO Temp sourceIP, AVG(pageRank) as avgPageRank, SUM(adRevenue) as totalRevenue
FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL AND UV.visitDate BETWEEN Date('2000-01-15’) AND Date('2000-01-22’) GROUP BY UV.sourceIP;

SELECT sourceIP, totalRevenue, avgPageRank FROM Temp ORDER BY totalRevenue DESC LIMIT 1;

Hadoop vs. Databases: Join

6

Integer.parseInt

String.substring

String.split

Hadoop slow because string manipulation is slow?

Why was Hadoop slow?

7

Key Ideas

Binary representations are good

Binary representations need schemas

Schemas allow logical/physical separation

Logical/physical separation allows you to do cool things

8

Thrift

Originally developed by Facebook, now an Apache project

Provides a DDL with numerous language bindings
Compact binary encoding of typed structs

Fields can be marked as optional or required
Compiler automatically generates code for manipulating messages

Provides RPC mechanisms for service definitions

Don’t like Thrift? Alternatives include protobufs and Avro
9

struct Tweet {
1: required i32 userId;
2: required string userName;
3: required string text;
4: optional Location loc;
}

struct Location {
1: required double latitude;
2: required double longitude;
}

Thrift

10

Why not…

XML or JSON?

REST?

11

Logical

Physical
How bytes are actually
represented in storage…

R1

R2

R3

12

R1

R2

R3

R4

Row store

Column store

Row vs. Column Stores

13

Row vs. Column Stores

Row stores
Easier to modify a record: in-place updates

Might read unnecessary data when processing

Column stores
Only read necessary data when processing
Tuple writes require multiple operations

Tuple updates are complex

14

Frontend

Backend

users

BI tools

analysts

ETL
(Extract, Transform, and Load)

OLAP Data
Warehouse

OLTP
database

Frontend

Backend

users

Frontend

Backend

external APIs

OLTP
database

OLTP
database

15

Advantages of Column Stores

Inherent advantages:
Better compression

Read efficiency

Works well with:
Vectorized Execution

Compiled Queries

These are well-known in traditional databases…

16

Row store

Column store

Why?

R1

R2

R3

R4

Row vs. Column Stores: Compression

17

Row store

Column store

Additional opportunities for smarter compression…

R1

R2

R3

R4

Row vs. Column Stores: Compression

18

Column store

Run-length encoding example:

is a foreign key, relatively small cardinality

In reality:

…

Encode:

3 2 1 …

(even better, boolean)

Columns Stores: RLE

19

Column store

Say you’re coding a bunch of integers…

Columns Stores: Integer Coding

20

0

1 0

1 1 0

7 bits

14 bits

21 bits

Beware of branch mispredicts!

VByte

Works okay, easy to implement…

Simple idea: use only as many bytes as needed
Need to reserve one bit per byte as the “continuation bit”

Use remaining bits for encoding value

21

28 1-bit numbers

14 2-bit numbers

9 3-bit numbers

7 4-bit numbers

(9 total ways)

“selectors”

Beware of branch mispredicts?

Simple-9
How many different ways can we divide up 28 bits?

Efficient decompression with hard-coded decoders
Simple Family – general idea applies to 64-bit words, etc.

22

Advantages of Column Stores

Inherent advantages:
Better compression

Read efficiency

Works well with:
Vectorized Execution

Compiled Queries

23

big1

join

join

big2 small

project

select

project

select

project

Build logical plan

Optimize logical plan

Select physical plan

Putting Everything Together

SELECT big1.fx, big2.fy, small.fz
FROM big1
JOIN big2 ON big1.id1 = big2.id1
JOIN small ON big1.id2 = small.id2
WHERE big1.fx = 2015 AND

big2.f1 < 40 AND
big2.f2 > 2;

24

val size = 100000000

var col = new Array[Int](size) // List of random ints
var selected = new Array[Boolean](size) // Matches a predicate?

for (i <- 0 until size) {
selected(i) = col(i) > 0

}

for (i <- 0 until size by 8) {
selected(i) = col(i) > 0
selected(i+1) = col(i+1) > 0
selected(i+2) = col(i+2) > 0
selected(i+3) = col(i+3) > 0
selected(i+4) = col(i+4) > 0
selected(i+5) = col(i+5) > 0
selected(i+6) = col(i+6) > 0
selected(i+7) = col(i+7) > 0

}

On my laptop: 409ms
(avg over 10 trials)

On my laptop: 174ms
(avg over 10 trials)

Which is faster?
Why?

25

val size = 100000000

var col = new Array[Int](size) // List of random ints
var selected = new Array[Boolean](size) // Matches a predicate?

for (i <- 0 until size) {
selected(i) = col(i) > 0

}

for (i <- 0 until size by 8) {
selected(i) = col(i) > 0
selected(i+1) = col(i+1) > 0
selected(i+2) = col(i+2) > 0
selected(i+3) = col(i+3) > 0
selected(i+4) = col(i+4) > 0
selected(i+5) = col(i+5) > 0
selected(i+6) = col(i+6) > 0
selected(i+7) = col(i+7) > 0

}

On my laptop: 409ms
(avg over 10 trials)

On my laptop: 174ms
(avg over 10 trials)

Why does it matter?
SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

26

Each operator implements a common interface

Execution driven by repeated calls
to top of operator tree

open() Initialize, reset internal state, etc.
next() Advance and deliver next tuple
close() Clean up, free resources, etc.

Actually, it’s worse than that!

27

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Read(Rankings)

pageRank > X

pageURL, pageRank

Very little actual computation is being done!

open() next() next()...
close()

open() next() next()...
close()

open() next() next()...
close()

28

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

Read(Rankings)

pageRank > X

pageURL, pageRank

Solution?

open() next() next()...
close()

open() next() next()...
close()

open() next() next()...
close()

29

val size = 100000000

var col = new Array[Int](size) // List of random ints
var selected = new Array[Boolean](size) // Matches a predicate?

for (i <- 0 until size) {
selected(i) = col(i) > 0

}

for (i <- 0 until size by 8) {
selected(i) = col(i) > 0
selected(i+1) = col(i+1) > 0
selected(i+2) = col(i+2) > 0
selected(i+3) = col(i+3) > 0
selected(i+4) = col(i+4) > 0
selected(i+5) = col(i+5) > 0
selected(i+6) = col(i+6) > 0
selected(i+7) = col(i+7) > 0

}

Vectorized Execution

✓✗

next() returns a vector of tuples
All operators rewritten to work on vectors of tuples

Can we do even better? 30

Compiled Queries

Source: Neumann (2011) Efficiently Compiling Efficient Query Plans for Modern Hardware. VLDB.
31

Compiled Queries

Source: Neumann (2011) Efficiently Compiling Efficient Query Plans for Modern Hardware. VLDB.

Example LLVM query template

32

Advantages of Column Stores

Inherent advantages:
Better compression

Read efficiency

Works well with:
Vectorized Execution

Compiled Queries

These are well-known in traditional databases…

33

Source: He et al. (2011) RCFile: A Fast and Space-Efficient Data Placement Structure in MapReduce-based Warehouse Systems. ICDE.

RCFile

Why not in Hadoop?
No reason why not!

34

set hive.vectorized.execution.enabled = true;

class VectorizedRowBatch {
boolean selectedInUse;
int[] selected;
int size;
ColumnVector[] columns;

}

class LongColumnVector extends ColumnVector {
long[] vector

}

Batch of rows, organized as columns:

Vectorized Execution?✓

35

class LongColumnAddLongScalarExpression {
int inputColumn;
int outputColumn;
long scalar;

void evaluate(VectorizedRowBatch batch) {
long [] inVector = ((LongColumnVector)
batch.columns[inputColumn]).vector;
long [] outVector = ((LongColumnVector)
batch.columns[outputColumn]).vector;
if (batch.selectedInUse) {

for (int j = 0; j < batch.size; j++) {
int i = batch.selected[j];
outVector[i] = inVector[i] + scalar;

}
} else {

for (int i = 0; i < batch.size; i++) {
outVector[i] = inVector[i] + scalar;

}
}

}
}

Vectorized operator example

Vectorized Execution?✓

36

LessThan(
Multiply(Attribute("x"),

Divide(Minus(Literal("1"), Attribute("y")), 100)),
434)

SELECT x, y
FROM z WHERE x * (1 – y)/100 < 434;

Predicate is “interpreted” as

Dynamic code generation
(feed AST into Scala compiler to generate bytecode):

row.get("x") * (1 – row.get("y"))/100 < 434

Compiled Queries?✓

37

Advantages of Column Stores

Inherent advantages:
Better compression

Read efficiency

Works well with:
Vectorized Execution

Compiled Queries

Hadoop can adopt all of these optimizations!

38

Key Ideas

Binary representations are good

Binary representations need schemas

Schemas allow logical/physical separation

Logical/physical separation allows you to do cool things

39

MapReduce: A Major Step Backwards?

MapReduce is a step backward in database access
Schemas are good

Separation of the schema from the application is good
High-level access languages are good

MapReduce is poor implementation
Brute force and only brute force (no indexes, for example)

MapReduce is not novel

MapReduce is missing features
Bulk loader, indexing, updates, transactions…

MapReduce is incompatible with DMBS tools

Source: Blog post by DeWitt and Stonebraker
40

