
Data-Intensive Distributed Computing

Part 6: Data Mining (2/4)

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

CS 431/631 451/651 (Winter 2019)

Ali Abedi

October 31, 2019

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451

1

Stochastic Gradient Descent

Source: Wikipedia (Water Slide)
2

Gradient Descent

Stochastic Gradient Descent (SGD)

Batch vs. Online

“batch” learning: update model after considering all training instances

“online” learning: update model after considering
each (randomly-selected) training instance

In practice… just as good!
Opportunity to interleaving prediction and learning!

3

We’ve solved the iteration problem!
What about the single reducer problem?

Practical Notes

Order of the instances important!
Most common implementation: randomly shuffle training instances

Mini-batching as a middle ground

Single vs. multi-pass approaches

4

Source: Wikipedia (Orchestra)

Ensembles

5

Ensemble Learning

Common implementation:
Train classifiers on different input partitions of the data

Embarrassingly parallel!

Learn multiple models, combine results from
different models to make prediction

Combining predictions:
Majority voting

Model averaging

6

Ensemble Learning

Why does it work?
If errors uncorrelated, multiple classifiers being wrong is less likely

Reduces the variance component of error

Learn multiple models, combine results from
different models to make prediction

7

training data training data training data training data

mapper mapper mapper mapper

learner learner learner learner

MapReduce Implementation

8

training data training data training data training data

mapper mapper mapper mapper

reducer reducer

learner learner

MapReduce Implementation

9

MapReduce Implementation

How do we output the model?
Option 1: write model out as “side data”

Option 2: emit model as intermediate output

10

mapPartitions
f: (Iterator[T])
⇒ Iterator[U]

RDD[T]

RDD[U]

learner

What about Spark?

11

Classifier
Training

Making
Predictions

Just like any other parallel Pig dataflow

label, feature vector

model UDF

feature vector

prediction

model UDF

feature vector

prediction

model

previous Pig dataflow

map

reduce

previous Pig dataflow

model model

Pig storage
function

12

training = load ‘training.txt’ using SVMLightStorage()
as (target: int, features: map[]);

store training into ‘model/’
using FeaturesLRClassifierBuilder();

Want an ensemble?

training = foreach training generate
label, features, RANDOM() as random;

training = order training by random parallel 5;

Logistic regression + SGD (L2 regularization)

Classifier Training

13

define Classify ClassifyWithLR(‘model/’);
data = load ‘test.txt’ using SVMLightStorage()

as (target: double, features: map[]);
data = foreach data generate target,

Classify(features) as prediction;

Want an ensemble?

define Classify ClassifyWithEnsemble(‘model/’,
‘classifier.LR’, ‘vote’);

Making Predictions

14

Source: Lin and Kolcz. (2012) Large-Scale Machine Learning at Twitter. SIGMOD.

Sentiment Analysis Case Study

Binary polarity classification: {positive, negative} sentiment
Use the “emoticon trick” to gather data

Data
Test: 500k positive/500k negative tweets from 9/1/2011

Training: {1m, 10m, 100m} instances from before (50/50 split)

Features:
Sliding window byte-4grams

Models + Optimization:
Logistic regression with SGD (L2 regularization)

Ensembles of various sizes (simple weighted voting)

15

“for free”

Ensembles with 10m examples
better than 100m single classifier!

Diminishing returns…

single classifier 10m instances 100m instances
16

training

Model

Machine Learning Algorithm

testing/deployment

?

Supervised Machine Learning

17

Evaluation
How do we know how well we’re doing?

Induce:
Such that loss is minimized

We need end-to-end metrics!
Obvious metric: accuracy

18

Metrics

True Positive
(TP)

True Negative
(TN)

False Positive
(FP)

= Type 1 Error

False Negative
(FN)

= Type II Error

Actual

P
re

d
ic

te
d
Positive Negative

P
o

si
ti

ve
N

eg
at

iv
e

Precision
= TP/(TP + FP)

Miss rate
= FN/(FN + TN)

Recall or TPR
= TP/(TP + FN)

Fall-Out or FPR
= FP/(FP + TN)

19

ROC and PR Curves

Source: Davis and Goadrich. (2006) The Relationship Between Precision-Recall and ROC curves

AUC

20

Training

Test

Cross-Validation

Training/Testing Splits

21

Cross-Validation

Training/Testing Splits

22

Cross-Validation

Training/Testing Splits

23

Cross-Validation

Training/Testing Splits

24

Cross-Validation

Training/Testing Splits

25

Cross-Validation

Training/Testing Splits

26

Typical Industry Setup

Training Test

A/B test

time

27

A/B Testing

Control

Gather metrics, compare alternatives

X %

Treatment

100 - X %

28

A/B Testing: Complexities

Properly bucketing users

Novelty

Learning effects

Long vs. short term effects

Multiple, interacting tests

Nosy tech journalists

…

29

training

Model

Machine Learning Algorithm

testing/deployment

?

Supervised Machine Learning

30

Applied ML in Academia

Download interesting dataset (comes with the problem)

Run baseline model
Train/Test

Build better model
Train/Test

Does new model beat baseline?
Yes: publish a paper!

No: try again!

31

32

33

Fantasy

Extract features

Develop cool ML technique

#Profit

Reality

What’s the task?

Where’s the data?

What’s in this dataset?

What’s all the f#$!* crap?

Clean the data

Extract features

“Do” machine learning

Fail, iterate…

34

It’s impossible to overstress this: 80% of
the work in any data project is in cleaning

the data. – DJ Patil “Data Jujitsu”

Source: Wikipedia (Jujitsu)
35

36

On finding things…

37

CamelCase

smallCamelCase

snake_case

camel_Snake

dunder__snake

userid

user_id

On naming things…

38

^(\\w+\\s+\\d+\\s+\\d+:\\d+:\\d+)\\s+
([^@]+?)@(\\S+)\\s+(\\S+):\\s+(\\S+)\\s+(\\S+)
\\s+((?:\\S+?,\\s+)*(?:\\S+?))\\s+(\\S+)\\s+(\\S+)
\\s+\\[([^\\]]+)\\]\\s+\"(\\w+)\\s+([^\"\\\\]*
(?:\\\\.[^\"\\\\]*)*)\\s+(\\S+)\"\\s+(\\S+)\\s+
(\\S+)\\s+\"([^\"\\\\]*(?:\\\\.[^\"\\\\]*)*)
\"\\s+\"([^\"\\\\]*(?:\\\\.[^\"\\\\]*)*)\"\\s*
(\\d*-[\\d-]*)?\\s*(\\d+)?\\s*(\\d*\\.[\\d\\.]*)?
(\\s+[-\\w]+)?.*$

An actual Java regular expression used to parse log
message at Twitter circa 2010

Friction is cumulative!

On feature extraction…

39

Frontend Engineer
Develops new feature, adds
logging code to capture clicks

Data Scientist
Analyze user behavior, extract
insights to improve feature

Okay, let’s get going… where’s the click data?

Well, that’s kinda non-intuitive, but okay…

Oh, BTW, where’s the timestamp of the click?

It’s over here…

Well, it wouldn’t fit, so we had to shoehorn…

Hang on, I don’t remember…

Uh, bad news. Looks like we forgot to log it…

[grumble, grumble, grumble]

…

Data Plumbing… Gone Wrong!
[scene: consumer internet company in the Bay Area…]

40

Extract features

Develop cool ML technique

#Profit

What’s the task?

Where’s the data?

What’s in this dataset?

What’s all the f#$!* crap?

Clean the data

Extract features

“Do” machine learning

Fail, iterate…

Fantasy Reality

41

Source: Wikipedia (Hills)

Congratulations, you’re halfway there…

42

Does it actually work?

Congratulations, you’re halfway there…

Is it fast enough?

Good, you’re two thirds there…

A/B testing

43

Source: Wikipedia (Oil refinery)

Productionize

44

What are your jobs’ dependencies?

How/when are your jobs scheduled?

Infrastructure is critical here!

Are there enough resources?

How do you know if it’s working?

Who do you call if it stops working?

(plumbing)

Productionize

45

Source: Wikipedia (Plumbing)

Most of data science isn’t glamorous!
Takeaway lesson:

46

