Data-Intensive Distributed Computing
CS 431/631 451/651 (Fall 2019)

Part 6: Data Mining (3/4)
November 5, 2019

Ali Abedi

Thanks to Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University)

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451
Scene Completion Problem
Scene Completion Problem
Scene Completion Problem

10 nearest neighbors from a collection of 20,000 images
Scene Completion Problem

10 nearest neighbors from a collection of 2 million images
Many problems can be expressed as finding “similar” sets:

- Find near-neighbors in high-dimensional space

Examples:

- Pages with similar words
 - For duplicate detection, classification by topic
- **Customers who purchased similar products**
 - Products with similar customer sets
- **Images with similar features**
 - Users who visited similar websites
Given: High dimensional data points x_1, x_2, \ldots

- For example: Image is a long vector of pixel colors

\[
\begin{bmatrix}
1 & 2 & 1 \\
0 & 2 & 1 \\
0 & 1 & 0
\end{bmatrix} \rightarrow [1 \ 2 \ 1 \ 0 \ 2 \ 1 \ 0 \ 1 \ 0]
\]

- And some distance function $d(x_1, x_2)$
 - Which quantifies the “distance” between x_1 and x_2

Goal: Find all pairs of data points (x_i, x_j) that are within some distance threshold $d(x_i, x_j) \leq s$

Note: Naïve solution would take $O(N^2)$ 😞
where N is the number of data points

MAGIC: This can be done in $O(N)$!! How?
Finding Similar Items
Goal: Find near-neighbors in high-dim. space
- We formally define “near neighbors” as points that are a “small distance” apart
- For each application, we first need to define what “distance” means

Today: Jaccard distance/similarity
- The Jaccard similarity of two sets is the size of their intersection divided by the size of their union:
 \[\text{sim}(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|} \]
- Jaccard distance: \[d(C_1, C_2) = 1 - \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|} \]

3 in intersection
8 in union
Jaccard similarity = 3/8
Jaccard distance = 5/8
Task: Finding Similar Documents

- **Goal:** Given a large number (N in the millions or billions) of documents, find “near duplicate” pairs

- **Applications:**
 - Mirror websites, or approximate mirrors
 - Don’t want to show both in search results
 - Similar news articles at many news sites
 - Cluster articles by “same story”

- **Problems:**
 - Many small pieces of one document can appear out of order in another
 - Too many documents to compare all pairs
 - Documents are so large or so many that they cannot fit in main memory
3 Essential Steps for Similar Docs

1. **Shingling**: Convert documents to sets

2. **Min-Hashing**: Convert large sets to short signatures, while preserving similarity

3. **Locality-Sensitive Hashing**: Focus on pairs of signatures likely to be from similar documents
 - **Candidate pairs!**

The Big Picture

Document → Shingling

Min Hashing

The set of strings of length k that appear in the document

Signatures: short integer vectors that represent the sets, and reflect their similarity

Locality-Sensitive Hashing

Candidate pairs: those pairs of signatures that we need to test for similarity

Step 1: **Shingling**: Convert documents to sets
Documents as High-Dim Data

- **Step 1: Shingling:** Convert documents to sets

- **Simple approaches:**
 - Document = set of words appearing in document
 - Document = set of “important” words
 - Don’t work well for this application. Why?

- **Need to account for ordering of words!**
- **A different way:** Shingles!
A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the document.

- Tokens can be characters, words or something else, depending on the application.
- Assume tokens = characters for examples.

Example: $k=2$; document $D_1 = abcab$

Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
Document \(D_1 \) is a set of its \(k \)-shingles \(C_1 = S(D_1) \).

Equivalently, each document is a 0/1 vector in the space of \(k \)-shingles:
- Each unique shingle is a dimension.
- Vectors are very sparse.

A natural similarity measure is the Jaccard similarity:

\[
sim(D_1, D_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}
\]
Documents that have lots of shingles in common have similar text, even if the text appears in different order

Caveat: You must pick k large enough, or most documents will have most shingles

- $k = 5$ is OK for short documents
- $k = 10$ is better for long documents
Suppose we need to find near-duplicate documents among $N = 1$ million documents.

Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs:

- $N(N - 1)/2 \approx 5 \times 10^{11}$ comparisons
- At 10^5 secs/day and 10^6 comparisons/sec, it would take 5 days

For $N = 10$ million, it takes more than a year...
Step 2: **Minhashing**: Convert large sets to short signatures, while preserving similarity

- **Document** → **Shingling**: The set of strings of length k that appear in the document
- **Min-Hashing**: *Signatures*: short integer vectors that represent the sets, and reflect their similarity
Many similarity problems can be formalized as finding subsets that have significant intersection.

Encode sets using 0/1 (bit, boolean) vectors
- One dimension per element in the universal set
- Interpret set intersection as bitwise **AND**, and set union as bitwise **OR**

Example: \(C_1 = 10111 \); \(C_2 = 10011 \)
- Size of intersection = 3; size of union = 4,
- Jaccard similarity (not distance) = \(3/4 \)
- Distance: \(d(C_1, C_2) = 1 - \text{(Jaccard similarity)} = 1/4 \)
From Sets to Boolean Matrices

- **Rows** = elements (shingles)
- **Columns** = sets (documents)
 - 1 in row \(e \) and column \(s \) if and only if \(e \) is a member of \(s \)
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - **Typical matrix is sparse!**
- **Each document is a column:**
 - **Example:** \(\text{sim}(C_1, C_2) = ? \)
 - Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6
 - \(d(C_1, C_2) = 1 - (\text{Jaccard similarity}) = 3/6 \)
So far:

- Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix

Next goal: Find similar columns while computing small signatures

- Similarity of columns $==$ similarity of signatures
Next Goal: Find similar columns, Small signatures

Naïve approach:

1) Signatures of columns: small summaries of columns
2) Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures and columns are related
3) Optional: Check that columns with similar signatures are really similar

Warnings:

- Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)
Hashing Columns (Signatures)

- **Key idea:** “hash” each column C to a small signature $h(C)$, such that:
 - (1) $h(C)$ is small enough that the signature fits in RAM
 - (2) $\text{sim}(C_1, C_2)$ is the same as the “similarity” of signatures $h(C_1)$ and $h(C_2)$

- **Goal:** Find a hash function $h(\cdot)$ such that:
 - If $\text{sim}(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - If $\text{sim}(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

- Hash docs into buckets. Expect that “most” pairs of near duplicate docs hash into the same bucket!
Goal: Find a hash function $h(\cdot)$ such that:

- if $\text{sim}(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
- if $\text{sim}(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing
Imagine the rows of the boolean matrix permuted under random permutation π

Define a “hash” function $h_\pi(C) = \text{the index of the first (in the permuted order π) row in which column } \text{column } C \text{ has value 1}:

$$h_\pi(C) = \min_\pi \pi(C)$$

Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column
Min-Hashing Example

Permutation π Input matrix (Shingles x Documents)

2nd element of the permutation is the first to map to a 1

Signature matrix M

Note: Another (equivalent) way is to store row indexes:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>5</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

4th element of the permutation is the first to map to a 1
The Min-Hash Property

- Choose a random permutation π
- **Claim:** $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$

Why?
- Let X be a doc (set of shingles), $y \in X$ is a shingle
- **Then:** $\Pr[\pi(y) = \min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the \min element
- Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
- **Then either:**
 - $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$,
 - $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$
- So the prob. that both are true is the prob. $y \in C_1 \cap C_2$
- $\Pr[\min(\pi(C_1)) = \min(\pi(C_2))] = |C_1 \cap C_2|/|C_1 \cup C_2| = \text{sim}(C_1, C_2)$

We know: $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

Now generalize to multiple hash functions

The *similarity of two signatures* is the fraction of the hash functions in which they agree

Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures
Min-Hashing Example

Permutation \(\pi \)

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Input matrix (Shingles x Documents)

\[
\begin{array}{cccc}
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
\end{array}
\]

Signature matrix \(M \)

\[
\begin{array}{cccc}
2 & 1 & 2 & 1 \\
2 & 1 & 4 & 1 \\
1 & 2 & 1 & 2 \\
\end{array}
\]

Similarities:

<table>
<thead>
<tr>
<th></th>
<th>1-3</th>
<th>2-4</th>
<th>1-2</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col/Col</td>
<td>0.75</td>
<td>0.75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sig/Sig</td>
<td>0.67</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Min-Hash Signatures

- Pick \(K=100 \) random permutations of the rows
- Think of \(\text{sig}(C) \) as a column vector
- \(\text{sig}(C)[i] = \) according to the \(i \)-th permutation, the index of the first row that has a 1 in column \(C \)
 \[
 \text{sig}(C)[i] = \min (\pi_i(C))
 \]
- **Note:** The sketch (signature) of document \(C \) is small \(\sim 100 \) bytes!

- We achieved our goal! We “compressed” long bit vectors into short signatures
Permuting rows even once is prohibitive

Row hashing!
- Pick $K = 100$ hash functions k_i
- Ordering under k_i gives a random row permutation!

One-pass implementation
- For each column C and hash-func. k_i keep a “slot” for the min-hash value
- Initialize all $\text{sig}(C)[i] = \infty$
- Scan rows looking for 1s
 - Suppose row j has 1 in column C
 - Then for each k_i:
 - If $k_i(j) < \text{sig}(C)[i]$, then $\text{sig}(C)[i] \leftarrow k_i(j)$

How to pick a random hash function $h(x)$?
Universal hashing:
$h_{a,b}(x)=((a \cdot x + b) \mod p) \mod N$ where:
$a,b \ldots$ random integers
$p \ldots$ prime number ($p > N$)
Step 3: **Locality-Sensitive Hashing:**
Focus on pairs of signatures likely to be from similar documents

Locality-Sensitive Hashing

- **Document**
 - Shingling: The set of strings of length k that appear in the document
 - Min-Hashing:
 - **Signatures:** short integer vectors that represent the sets, and reflect their similarity
 - Locality-Sensitive Hashing

Candidate pairs: those pairs of signatures that we need to test for similarity
Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., $s=0.8$)

LSH – General idea: Use a function $f(x,y)$ that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated

For Min-Hash matrices:
- Hash columns of signature matrix M to many buckets
- Each pair of documents that hashes into the same bucket is a candidate pair
- Pick a similarity threshold $s (0 < s < 1)$

- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:

 $$M(i, x) = M(i, y)$$

 for at least s values of i

- We expect documents x and y to have the same (Jaccard) similarity as their signatures
Big idea: Hash columns of signature matrix \(M \) several times

- Arrange that (only) similar columns are likely to **hash to the same bucket**, with high probability

- **Candidate pairs** are those that hash to the same bucket
Partition M into b Bands

Signature matrix M

r rows per band

One signature

b bands

2 1 4 1
1 2 1 2
2 1 2 1
Partition M into Bands

- Divide matrix M into b bands of r rows
- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
- **Candidate** column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs
Columns 2 and 6 are probably identical (candidate pair)

Columns 6 and 7 are surely different.
Simplifying Assumption

- There are **enough buckets** that columns are unlikely to hash to the same bucket unless they are **identical** in a particular band.

- Hereafter, we assume that "**same bucket**" means "**identical in that band**".

- Assumption needed only to simplify analysis, not for correctness of algorithm.
Assume the following case:
- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose $b = 20$ bands of $r = 5$ integers/band

Goal: Find pairs of documents that are at least $s = 0.8$ similar
C₁, C₂ are 80% Similar

- **Find pairs of \(\geq s = 0.8 \) similarity, set \(b = 20, \ r = 5 \)**
- **Assume:** \(\text{sim}(C₁, C₂) = 0.8 \)
 - Since \(\text{sim}(C₁, C₂) \geq s \), we want \(C₁, C₂ \) to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- **Probability \(C₁, C₂ \) identical in one particular band:** \((0.8)^5 = 0.328 \)
- Probability \(C₁, C₂ \) are **not** similar in all of the 20 bands: \((1-0.328)^{20} = 0.00035 \)
 - i.e., about 1/3000th of the 80%-similar column pairs are **false negatives** (we miss them)
- **We would find 99.965% pairs of truly similar documents**
Find pairs of $\geq s = 0.8$ similarity, set $b = 20$, $r = 5$

Assume: $\text{sim}(C_1, C_2) = 0.3$

- Since $\text{sim}(C_1, C_2) < s$ we want C_1, C_2 to hash to NO common buckets (all bands should be different)

- Probability C_1, C_2 identical in one particular band: $(0.3)^5 = 0.00243$

- Probability C_1, C_2 identical in at least 1 of 20 bands: $1 - (1 - 0.00243)^{20} = 0.0474$

- In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s
LSH Involves a Tradeoff

- **Pick:**
 - The number of Min-Hashes (rows of M)
 - The number of bands b, and
 - The number of rows r per band
to balance false positives/negatives

- **Example:** If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up
Similarity $t = \text{sim}(C_1, C_2)$ of two sets

Probability of sharing a bucket

No chance if $t < s$

Probability threshold s

Probability = 1 if $t > s$
Remember:
Probability of equal hash-values = similarity

Similarity $t = \text{sim}(C_1, C_2)$ of two sets
Columns C_1 and C_2 have similarity t

Pick any band (r rows)

- Prob. that all rows in band equal = t^r
- Prob. that some row in band unequal = $1 - t^r$

Prob. that no band identical = $(1 - t^r)^b$

Prob. that at least 1 band identical = $1 - (1 - t^r)^b$
What b Bands of r Rows Gives You

- **Probability of sharing a bucket**
- **Similarity** $t = \text{sim}(C_1, C_2)$ of two sets
- **At least one band identical**
- **No bands identical**
- **1 - $(1 - t^r)^b$**
- **Some row of a band unequal**
- **All rows of a band are equal**

\[s \sim (1/b)^{1/r} \]
Example: $b = 20; r = 5$

- **Similarity threshold s**
- **Prob. that at least 1 band is identical:**

<table>
<thead>
<tr>
<th>s</th>
<th>$1-(1-s^r)^b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.006</td>
</tr>
<tr>
<td>.3</td>
<td>.047</td>
</tr>
<tr>
<td>.4</td>
<td>.186</td>
</tr>
<tr>
<td>.5</td>
<td>.470</td>
</tr>
<tr>
<td>.6</td>
<td>.802</td>
</tr>
<tr>
<td>.7</td>
<td>.975</td>
</tr>
<tr>
<td>.8</td>
<td>.9996</td>
</tr>
</tbody>
</table>
Picking r and b: The S-curve

- Picking r and b to get the best S-curve
 - 50 hash-functions ($r=5$, $b=10$)

![Graph showing S-curve with blue and green areas labeled for False Negative and False Positive rates](image)

Blue area: False Negative rate
Green area: False Positive rate
Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.

Check in main memory that candidate pairs really do have similar signatures.

Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents.
Summary: 3 Steps

- **Shingling:** Convert documents to sets
 - We used hashing to assign each shingle an ID
- **Min-Hashing:** Convert large sets to short signatures, while preserving similarity
 - We used *similarity preserving hashing* to generate signatures with property \(\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2) \)
 - We used hashing to get around generating random permutations
- **Locality-Sensitive Hashing:** Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find *candidate pairs* of similarity \(\geq s \)