
Data-Intensive Distributed Computing

Part 6: Data Mining (3/4)

CS 431/631 451/651 (Fall 2019)

Ali Abedi

November 5, 2019

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451

1

Thanks to Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University)

2J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

[Hays and Efros, SIGGRAPH 2007]

3J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors from a collection of 20,000 images
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 4

[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors from a collection of 2 million images
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 5

[Hays and Efros, SIGGRAPH 2007]

 Many problems can be expressed as
finding “similar” sets:
▪ Find near-neighbors in high-dimensional space

 Examples:
▪ Pages with similar words
▪ For duplicate detection, classification by topic

▪ Customers who purchased similar products
▪ Products with similar customer sets

▪ Images with similar features
▪ Users who visited similar websites

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 6

 Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …
▪ For example: Image is a long vector of pixel colors

1 2 1
0 2 1
0 1 0

→ [1 2 1 0 2 1 0 1 0]

 And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)
▪ Which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

 Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that are

within some distance threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔
 Note: Naïve solution would take 𝑶 𝑵𝟐



where 𝑵 is the number of data points

 MAGIC: This can be done in 𝑶 𝑵 !! How?
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 7

 Goal: Find near-neighbors in high-dim. space
▪ We formally define “near neighbors” as

points that are a “small distance” apart
 For each application, we first need to define

what “distance” means
 Today: Jaccard distance/similarity
▪ The Jaccard similarity of two sets is the size of their

intersection divided by the size of their union:
sim(C1, C2) = |C1C2|/|C1C2|

▪ Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|

9J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

3 in intersection

8 in union

Jaccard similarity= 3/8

Jaccard distance = 5/8

 Goal: Given a large number (𝑵 in the millions or
billions) of documents, find “near duplicate” pairs

 Applications:
▪ Mirror websites, or approximate mirrors
▪ Don’t want to show both in search results

▪ Similar news articles at many news sites
▪ Cluster articles by “same story”

 Problems:
▪ Many small pieces of one document can appear

out of order in another

▪ Too many documents to compare all pairs

▪ Documents are so large or so many that they cannot
fit in main memory

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 10

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on
pairs of signatures likely to be from
similar documents

▪ Candidate pairs!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 11

12

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

Sensitive

Hashing

Candidate

pairs:

those pairs

of signatures

that we need

to test for

similarity

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Step 1: Shingling: Convert documents to sets

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

 Step 1: Shingling: Convert documents to sets

 Simple approaches:

▪ Document = set of words appearing in document

▪ Document = set of “important” words

▪ Don’t work well for this application. Why?

 Need to account for ordering of words!
 A different way: Shingles!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 14

 A k-shingle (or k-gram) for a document is a
sequence of k tokens that appears in the doc

▪ Tokens can be characters, words or something
else, depending on the application

▪ Assume tokens = characters for examples

 Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 15

 Document D1 is a set of its k-shingles C1=S(D1)
 Equivalently, each document is a

0/1 vector in the space of k-shingles

▪ Each unique shingle is a dimension

▪ Vectors are very sparse

 A natural similarity measure is the
Jaccard similarity:

sim(D1, D2) = |C1C2|/|C1C2|

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 16

 Documents that have lots of shingles in
common have similar text, even if the text
appears in different order

 Caveat: You must pick k large enough, or most
documents will have most shingles

▪ k = 5 is OK for short documents

▪ k = 10 is better for long documents

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 17

 Suppose we need to find near-duplicate
documents among 𝑵 = 𝟏 million documents

 Naïvely, we would have to compute pairwise
Jaccard similarities for every pair of docs

▪ 𝑵(𝑵 − 𝟏)/𝟐 ≈ 5*1011 comparisons

▪ At 105 secs/day and 106 comparisons/sec,
it would take 5 days

 For 𝑵 = 𝟏𝟎 million, it takes more than a year…

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 18

Step 2: Minhashing: Convert large sets to
short signatures, while preserving similarity

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

 Many similarity problems can be
formalized as finding subsets that
have significant intersection

 Encode sets using 0/1 (bit, boolean) vectors

▪ One dimension per element in the universal set

 Interpret set intersection as bitwise AND, and
set union as bitwise OR

 Example: C1 = 10111; C2 = 10011

▪ Size of intersection = 3; size of union = 4,

▪ Jaccard similarity (not distance) = 3/4

▪ Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 20

 Rows = elements (shingles)
 Columns = sets (documents)
▪ 1 in row e and column s if and only

if e is a member of s

▪ Column similarity is the Jaccard
similarity of the corresponding
sets (rows with value 1)

▪ Typical matrix is sparse!
 Each document is a column:
▪ Example: sim(C1 ,C2) = ?

▪ Size of intersection = 3; size of union = 6,
Jaccard similarity (not distance) = 3/6

▪ d(C1,C2) = 1 – (Jaccard similarity) = 3/6
21J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

0101

0111

1001

1000

1010

1011

0111

Documents

S
h
in

g
le

s

 So far:

▪ Documents → Sets of shingles

▪ Represent sets as boolean vectors in a matrix

 Next goal: Find similar columns while
computing small signatures

▪ Similarity of columns == similarity of signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 22

 Next Goal: Find similar columns, Small signatures
 Naïve approach:

▪ 1) Signatures of columns: small summaries of columns

▪ 2) Examine pairs of signatures to find similar columns

▪ Essential: Similarities of signatures and columns are related

▪ 3) Optional: Check that columns with similar signatures
are really similar

 Warnings:

▪ Comparing all pairs may take too much time: Job for LSH

▪ These methods can produce false negatives, and even false
positives (if the optional check is not made)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 23

 Key idea: “hash” each column C to a small
signature h(C), such that:

▪ (1) h(C) is small enough that the signature fits in RAM

▪ (2) sim(C1, C2) is the same as the “similarity” of
signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:

▪ If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

▪ If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Hash docs into buckets. Expect that “most” pairs
of near duplicate docs hash into the same bucket!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 24

 Goal: Find a hash function h(·) such that:

▪ if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

▪ if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 There is a suitable hash function for
the Jaccard similarity: It is called Min-Hashing

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 25

26

 Imagine the rows of the boolean matrix
permuted under random permutation 

 Define a “hash” function h(C) = the index of
the first (in the permuted order ) row in
which column C has value 1:

h (C) = min (C)

 Use several (e.g., 100) independent hash
functions (that is, permutations) to create a
signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

27

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

2nd element of the permutation

is the first to map to a 1

4th element of the permutation

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents) Permutation 

Note: Another (equivalent) way is to

store row indexes: 1 5 1 5
2 3 1 3
6 4 6 4

 Choose a random permutation 
 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2)
 Why?

▪ Let X be a doc (set of shingles), y X is a shingle

▪ Then: Pr[(y) = min((X))] = 1/|X|

▪ It is equally likely that any y X is mapped to the min element

▪ Let y be s.t. (y) = min((C1C2))

▪ Then either: (y) = min((C1)) if y  C1 , or

(y) = min((C2)) if y  C2

▪ So the prob. that both are true is the prob. y  C1  C2

▪ Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|= sim(C1, C2)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 28

01

10

00

11

00

00

One of the two

cols had to have

1 at position y

30

 We know: Pr[h(C1) = h(C2)] = sim(C1, C2)
 Now generalize to multiple hash functions

 The similarity of two signatures is the
fraction of the hash functions in which they
agree

 Note: Because of the Min-Hash property, the
similarity of columns is the same as the
expected similarity of their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

31J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarities:
1-3 2-4 1-2 3-4

Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation 

 Pick K=100 random permutations of the rows
 Think of sig(C) as a column vector
 sig(C)[i] = according to the i-th permutation, the

index of the first row that has a 1 in column C

sig(C)[i] = min (i(C))

 Note: The sketch (signature) of document C is
small ~𝟏𝟎𝟎 bytes!

 We achieved our goal! We “compressed”
long bit vectors into short signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 32

 Permuting rows even once is prohibitive
 Row hashing!

▪ Pick K = 100 hash functions ki

▪ Ordering under ki gives a random row permutation!

 One-pass implementation

▪ For each column C and hash-func. ki keep a “slot” for
the min-hash value

▪ Initialize all sig(C)[i] = 

▪ Scan rows looking for 1s

▪ Suppose row j has 1 in column C

▪ Then for each ki :

▪ If ki(j) < sig(C)[i], then sig(C)[i]  ki(j)
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 33

How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)

Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from
similar documents

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

 Goal: Find documents with Jaccard similarity at
least s (for some similarity threshold, e.g., s=0.8)

 LSH – General idea: Use a function f(x,y) that
tells whether x and y is a candidate pair: a pair
of elements whose similarity must be evaluated

 For Min-Hash matrices:

▪ Hash columns of signature matrix M to many buckets

▪ Each pair of documents that hashes into the
same bucket is a candidate pair

35J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

1212

1412

2121

 Pick a similarity threshold s (0 < s < 1)

 Columns x and y of M are a candidate pair if
their signatures agree on at least fraction s of
their rows:
M (i, x) = M (i, y) for at least frac. s values of i

▪ We expect documents x and y to have the same
(Jaccard) similarity as their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 36

1212

1412

2121

 Big idea: Hash columns of
signature matrix M several times

 Arrange that (only) similar columns are
likely to hash to the same bucket, with
high probability

 Candidate pairs are those that hash to
the same bucket

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 37

1212

1412

2121

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 38

Signature matrix M

r rows
per band

b bands

One
signature

1212

1412

2121

 Divide matrix M into b bands of r rows

 For each band, hash its portion of each
column to a hash table with k buckets

▪ Make k as large as possible

 Candidate column pairs are those that hash
to the same bucket for ≥ 1 band

 Tune b and r to catch most similar pairs,
but few non-similar pairs

39J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Matrix M

r rows b bands

Buckets
Columns 2 and 6

are probably identical

(candidate pair)

Columns 6 and 7 are

surely different.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 40

 There are enough buckets that columns are
unlikely to hash to the same bucket unless
they are identical in a particular band

 Hereafter, we assume that “same bucket”
means “identical in that band”

 Assumption needed only to simplify analysis,
not for correctness of algorithm

41J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Assume the following case:
 Suppose 100,000 columns of M (100k docs)
 Signatures of 100 integers (rows)
 Therefore, signatures take 40Mb
 Choose b = 20 bands of r = 5 integers/band

 Goal: Find pairs of documents that
are at least s = 0.8 similar

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 42

1212

1412

2121

 Find pairs of  s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.8
▪ Since sim(C1, C2)  s, we want C1, C2 to be a candidate

pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

 Probability C1, C2 identical in one particular
band: (0.8)5 = 0.328

 Probability C1, C2 are not similar in all of the 20
bands: (1-0.328)20 = 0.00035
▪ i.e., about 1/3000th of the 80%-similar column pairs

are false negatives (we miss them)

▪ We would find 99.965% pairs of truly similar documents

43J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

1212

1412

2121

 Find pairs of  s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.3
▪ Since sim(C1, C2) < s we want C1, C2 to hash to NO

common buckets (all bands should be different)
 Probability C1, C2 identical in one particular

band: (0.3)5 = 0.00243
 Probability C1, C2 identical in at least 1 of 20

bands: 1 - (1 - 0.00243)20 = 0.0474
▪ In other words, approximately 4.74% pairs of docs

with similarity 0.3% end up becoming candidate pairs
▪ They are false positives since we will have to examine them

(they are candidate pairs) but then it will turn out their
similarity is below threshold s

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 44

1212

1412

2121

 Pick:

▪ The number of Min-Hashes (rows of M)

▪ The number of bands b, and

▪ The number of rows r per band

to balance false positives/negatives

 Example: If we had only 15 bands of 5
rows, the number of false positives would
go down, but the number of false negatives
would go up

45J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

1212

1412

2121

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

S
im

ila
ri
ty

 t
h
re

sh
o
ld

 s

No chance
if t < s

Probability = 1
if t > s

46J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 47

Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

 Columns C1 and C2 have similarity t
 Pick any band (r rows)

▪ Prob. that all rows in band equal = tr

▪ Prob. that some row in band unequal = 1 - tr

 Prob. that no band identical = (1 - tr)b

 Prob. that at least 1 band identical =
1 - (1 - tr)b

48J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

t r

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r

49J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket

 Similarity threshold s
 Prob. that at least 1 band is identical:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 50

s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

 Picking r and b to get the best S-curve

▪ 50 hash-functions (r=5, b=10)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Blue area: False Negative rate
Green area: False Positive rate

Similarity

P
ro

b
. s

h
ar

in
g

 a
 b

u
ck

et

 Tune M, b, r to get almost all pairs with
similar signatures, but eliminate most pairs
that do not have similar signatures

 Check in main memory that candidate pairs
really do have similar signatures

 Optional: In another pass through data,
check that the remaining candidate pairs
really represent similar documents

52J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

 Shingling: Convert documents to sets

▪ We used hashing to assign each shingle an ID

 Min-Hashing: Convert large sets to short
signatures, while preserving similarity

▪ We used similarity preserving hashing to generate
signatures with property Pr[h(C1) = h(C2)] = sim(C1, C2)

▪ We used hashing to get around generating random
permutations

 Locality-Sensitive Hashing: Focus on pairs of
signatures likely to be from similar documents

▪ We used hashing to find candidate pairs of similarity  s

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 53

