
Data-Intensive Distributed Computing

Part 6: Data Mining (3/4)

CS 431/631 451/651 (Fall 2019)

Ali Abedi

November 5, 2019

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451

1

Thanks to Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University)

2J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

[Hays and Efros, SIGGRAPH 2007]

3J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors from a collection of 20,000 images
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 4

[Hays and Efros, SIGGRAPH 2007]

10 nearest neighbors from a collection of 2 million images
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 5

[Hays and Efros, SIGGRAPH 2007]

 Many problems can be expressed as
finding “similar” sets:
▪ Find near-neighbors in high-dimensional space

 Examples:
▪ Pages with similar words
▪ For duplicate detection, classification by topic

▪ Customers who purchased similar products
▪ Products with similar customer sets

▪ Images with similar features
▪ Users who visited similar websites

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 6

 Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …
▪ For example: Image is a long vector of pixel colors

1 2 1
0 2 1
0 1 0

→ [1 2 1 0 2 1 0 1 0]

 And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)
▪ Which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

 Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that are

within some distance threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔
 Note: Naïve solution would take 𝑶 𝑵𝟐

where 𝑵 is the number of data points

 MAGIC: This can be done in 𝑶 𝑵 !! How?
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 7

 Goal: Find near-neighbors in high-dim. space
▪ We formally define “near neighbors” as

points that are a “small distance” apart
 For each application, we first need to define

what “distance” means
 Today: Jaccard distance/similarity
▪ The Jaccard similarity of two sets is the size of their

intersection divided by the size of their union:
sim(C1, C2) = |C1C2|/|C1C2|

▪ Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|

9J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

3 in intersection

8 in union

Jaccard similarity= 3/8

Jaccard distance = 5/8

 Goal: Given a large number (𝑵 in the millions or
billions) of documents, find “near duplicate” pairs

 Applications:
▪ Mirror websites, or approximate mirrors
▪ Don’t want to show both in search results

▪ Similar news articles at many news sites
▪ Cluster articles by “same story”

 Problems:
▪ Many small pieces of one document can appear

out of order in another

▪ Too many documents to compare all pairs

▪ Documents are so large or so many that they cannot
fit in main memory

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 10

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on
pairs of signatures likely to be from
similar documents

▪ Candidate pairs!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 11

12

Docu-

ment

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

Locality-

Sensitive

Hashing

Candidate

pairs:

those pairs

of signatures

that we need

to test for

similarity

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Step 1: Shingling: Convert documents to sets

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

 Step 1: Shingling: Convert documents to sets

 Simple approaches:

▪ Document = set of words appearing in document

▪ Document = set of “important” words

▪ Don’t work well for this application. Why?

 Need to account for ordering of words!
 A different way: Shingles!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 14

 A k-shingle (or k-gram) for a document is a
sequence of k tokens that appears in the doc

▪ Tokens can be characters, words or something
else, depending on the application

▪ Assume tokens = characters for examples

 Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 15

 Document D1 is a set of its k-shingles C1=S(D1)
 Equivalently, each document is a

0/1 vector in the space of k-shingles

▪ Each unique shingle is a dimension

▪ Vectors are very sparse

 A natural similarity measure is the
Jaccard similarity:

sim(D1, D2) = |C1C2|/|C1C2|

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 16

 Documents that have lots of shingles in
common have similar text, even if the text
appears in different order

 Caveat: You must pick k large enough, or most
documents will have most shingles

▪ k = 5 is OK for short documents

▪ k = 10 is better for long documents

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 17

 Suppose we need to find near-duplicate
documents among 𝑵 = 𝟏 million documents

 Naïvely, we would have to compute pairwise
Jaccard similarities for every pair of docs

▪ 𝑵(𝑵 − 𝟏)/𝟐 ≈ 5*1011 comparisons

▪ At 105 secs/day and 106 comparisons/sec,
it would take 5 days

 For 𝑵 = 𝟏𝟎 million, it takes more than a year…

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 18

Step 2: Minhashing: Convert large sets to
short signatures, while preserving similarity

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

 Many similarity problems can be
formalized as finding subsets that
have significant intersection

 Encode sets using 0/1 (bit, boolean) vectors

▪ One dimension per element in the universal set

 Interpret set intersection as bitwise AND, and
set union as bitwise OR

 Example: C1 = 10111; C2 = 10011

▪ Size of intersection = 3; size of union = 4,

▪ Jaccard similarity (not distance) = 3/4

▪ Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 20

 Rows = elements (shingles)
 Columns = sets (documents)
▪ 1 in row e and column s if and only

if e is a member of s

▪ Column similarity is the Jaccard
similarity of the corresponding
sets (rows with value 1)

▪ Typical matrix is sparse!
 Each document is a column:
▪ Example: sim(C1 ,C2) = ?

▪ Size of intersection = 3; size of union = 6,
Jaccard similarity (not distance) = 3/6

▪ d(C1,C2) = 1 – (Jaccard similarity) = 3/6
21J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

0101

0111

1001

1000

1010

1011

0111

Documents

S
h
in

g
le

s

 So far:

▪ Documents → Sets of shingles

▪ Represent sets as boolean vectors in a matrix

 Next goal: Find similar columns while
computing small signatures

▪ Similarity of columns == similarity of signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 22

 Next Goal: Find similar columns, Small signatures
 Naïve approach:

▪ 1) Signatures of columns: small summaries of columns

▪ 2) Examine pairs of signatures to find similar columns

▪ Essential: Similarities of signatures and columns are related

▪ 3) Optional: Check that columns with similar signatures
are really similar

 Warnings:

▪ Comparing all pairs may take too much time: Job for LSH

▪ These methods can produce false negatives, and even false
positives (if the optional check is not made)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 23

 Key idea: “hash” each column C to a small
signature h(C), such that:

▪ (1) h(C) is small enough that the signature fits in RAM

▪ (2) sim(C1, C2) is the same as the “similarity” of
signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:

▪ If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

▪ If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Hash docs into buckets. Expect that “most” pairs
of near duplicate docs hash into the same bucket!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 24

 Goal: Find a hash function h(·) such that:

▪ if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

▪ if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 There is a suitable hash function for
the Jaccard similarity: It is called Min-Hashing

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 25

26

 Imagine the rows of the boolean matrix
permuted under random permutation

 Define a “hash” function h(C) = the index of
the first (in the permuted order) row in
which column C has value 1:

h (C) = min (C)

 Use several (e.g., 100) independent hash
functions (that is, permutations) to create a
signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

27

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

2nd element of the permutation

is the first to map to a 1

4th element of the permutation

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents) Permutation

Note: Another (equivalent) way is to

store row indexes: 1 5 1 5
2 3 1 3
6 4 6 4

 Choose a random permutation
 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2)
 Why?

▪ Let X be a doc (set of shingles), y X is a shingle

▪ Then: Pr[(y) = min((X))] = 1/|X|

▪ It is equally likely that any y X is mapped to the min element

▪ Let y be s.t. (y) = min((C1C2))

▪ Then either: (y) = min((C1)) if y C1 , or

(y) = min((C2)) if y C2

▪ So the prob. that both are true is the prob. y C1 C2

▪ Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|= sim(C1, C2)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 28

01

10

00

11

00

00

One of the two

cols had to have

1 at position y

30

 We know: Pr[h(C1) = h(C2)] = sim(C1, C2)
 Now generalize to multiple hash functions

 The similarity of two signatures is the
fraction of the hash functions in which they
agree

 Note: Because of the Min-Hash property, the
similarity of columns is the same as the
expected similarity of their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

31J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarities:
1-3 2-4 1-2 3-4

Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation

 Pick K=100 random permutations of the rows
 Think of sig(C) as a column vector
 sig(C)[i] = according to the i-th permutation, the

index of the first row that has a 1 in column C

sig(C)[i] = min (i(C))

 Note: The sketch (signature) of document C is
small ~𝟏𝟎𝟎 bytes!

 We achieved our goal! We “compressed”
long bit vectors into short signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 32

 Permuting rows even once is prohibitive
 Row hashing!

▪ Pick K = 100 hash functions ki

▪ Ordering under ki gives a random row permutation!

 One-pass implementation

▪ For each column C and hash-func. ki keep a “slot” for
the min-hash value

▪ Initialize all sig(C)[i] =

▪ Scan rows looking for 1s

▪ Suppose row j has 1 in column C

▪ Then for each ki :

▪ If ki(j) < sig(C)[i], then sig(C)[i] ki(j)
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 33

How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)

Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from
similar documents

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
Sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

 Goal: Find documents with Jaccard similarity at
least s (for some similarity threshold, e.g., s=0.8)

 LSH – General idea: Use a function f(x,y) that
tells whether x and y is a candidate pair: a pair
of elements whose similarity must be evaluated

 For Min-Hash matrices:

▪ Hash columns of signature matrix M to many buckets

▪ Each pair of documents that hashes into the
same bucket is a candidate pair

35J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

1212

1412

2121

 Pick a similarity threshold s (0 < s < 1)

 Columns x and y of M are a candidate pair if
their signatures agree on at least fraction s of
their rows:
M (i, x) = M (i, y) for at least frac. s values of i

▪ We expect documents x and y to have the same
(Jaccard) similarity as their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 36

1212

1412

2121

 Big idea: Hash columns of
signature matrix M several times

 Arrange that (only) similar columns are
likely to hash to the same bucket, with
high probability

 Candidate pairs are those that hash to
the same bucket

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 37

1212

1412

2121

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 38

Signature matrix M

r rows
per band

b bands

One
signature

1212

1412

2121

 Divide matrix M into b bands of r rows

 For each band, hash its portion of each
column to a hash table with k buckets

▪ Make k as large as possible

 Candidate column pairs are those that hash
to the same bucket for ≥ 1 band

 Tune b and r to catch most similar pairs,
but few non-similar pairs

39J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Matrix M

r rows b bands

Buckets
Columns 2 and 6

are probably identical

(candidate pair)

Columns 6 and 7 are

surely different.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 40

 There are enough buckets that columns are
unlikely to hash to the same bucket unless
they are identical in a particular band

 Hereafter, we assume that “same bucket”
means “identical in that band”

 Assumption needed only to simplify analysis,
not for correctness of algorithm

41J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Assume the following case:
 Suppose 100,000 columns of M (100k docs)
 Signatures of 100 integers (rows)
 Therefore, signatures take 40Mb
 Choose b = 20 bands of r = 5 integers/band

 Goal: Find pairs of documents that
are at least s = 0.8 similar

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 42

1212

1412

2121

 Find pairs of s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.8
▪ Since sim(C1, C2) s, we want C1, C2 to be a candidate

pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

 Probability C1, C2 identical in one particular
band: (0.8)5 = 0.328

 Probability C1, C2 are not similar in all of the 20
bands: (1-0.328)20 = 0.00035
▪ i.e., about 1/3000th of the 80%-similar column pairs

are false negatives (we miss them)

▪ We would find 99.965% pairs of truly similar documents

43J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

1212

1412

2121

 Find pairs of s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.3
▪ Since sim(C1, C2) < s we want C1, C2 to hash to NO

common buckets (all bands should be different)
 Probability C1, C2 identical in one particular

band: (0.3)5 = 0.00243
 Probability C1, C2 identical in at least 1 of 20

bands: 1 - (1 - 0.00243)20 = 0.0474
▪ In other words, approximately 4.74% pairs of docs

with similarity 0.3% end up becoming candidate pairs
▪ They are false positives since we will have to examine them

(they are candidate pairs) but then it will turn out their
similarity is below threshold s

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 44

1212

1412

2121

 Pick:

▪ The number of Min-Hashes (rows of M)

▪ The number of bands b, and

▪ The number of rows r per band

to balance false positives/negatives

 Example: If we had only 15 bands of 5
rows, the number of false positives would
go down, but the number of false negatives
would go up

45J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

1212

1412

2121

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

S
im

ila
ri
ty

 t
h
re

sh
o
ld

 s

No chance
if t < s

Probability = 1
if t > s

46J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 47

Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket

 Columns C1 and C2 have similarity t
 Pick any band (r rows)

▪ Prob. that all rows in band equal = tr

▪ Prob. that some row in band unequal = 1 - tr

 Prob. that no band identical = (1 - tr)b

 Prob. that at least 1 band identical =
1 - (1 - tr)b

48J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

t r

All rows
of a band
are equal

1 -

Some row
of a band
unequal

()b

No bands
identical

1 -

At least
one band
identical

s ~ (1/b)1/r

49J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket

 Similarity threshold s
 Prob. that at least 1 band is identical:

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 50

s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996

 Picking r and b to get the best S-curve

▪ 50 hash-functions (r=5, b=10)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Blue area: False Negative rate
Green area: False Positive rate

Similarity

P
ro

b
. s

h
ar

in
g

 a
 b

u
ck

et

 Tune M, b, r to get almost all pairs with
similar signatures, but eliminate most pairs
that do not have similar signatures

 Check in main memory that candidate pairs
really do have similar signatures

 Optional: In another pass through data,
check that the remaining candidate pairs
really represent similar documents

52J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

 Shingling: Convert documents to sets

▪ We used hashing to assign each shingle an ID

 Min-Hashing: Convert large sets to short
signatures, while preserving similarity

▪ We used similarity preserving hashing to generate
signatures with property Pr[h(C1) = h(C2)] = sim(C1, C2)

▪ We used hashing to get around generating random
permutations

 Locality-Sensitive Hashing: Focus on pairs of
signatures likely to be from similar documents

▪ We used hashing to find candidate pairs of similarity s

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 53

