
Data-Intensive Distributed Computing

Part 6: Data Mining (3/4)

CS 431/631 451/651 (Fall 2019)

Ali Abedi

November 5, 2019

These slides are available at https://www.student.cs.uwaterloo.ca/~cs451

1

Thanks to Jure Leskovec, Anand Rajaraman, Jeff Ullman (Stanford University)



2J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

[Hays and Efros, SIGGRAPH 2007]



3J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

[Hays and Efros, SIGGRAPH 2007]



10 nearest neighbors from a collection of 20,000 images
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 Many problems can be expressed as 
finding “similar” sets:
▪ Find near-neighbors in high-dimensional space

 Examples:
▪ Pages with similar words
▪ For duplicate detection, classification by topic

▪ Customers who purchased similar products
▪ Products with similar customer sets

▪ Images with similar features
▪ Users who visited similar websites
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 Given: High dimensional data points 𝒙𝟏, 𝒙𝟐, …
▪ For example: Image is a long vector of pixel colors

1 2 1
0 2 1
0 1 0

→ [1 2 1 0 2 1 0 1 0]

 And some distance function 𝒅(𝒙𝟏, 𝒙𝟐)
▪ Which quantifies the “distance” between 𝒙𝟏 and 𝒙𝟐

 Goal: Find all pairs of data points (𝒙𝒊, 𝒙𝒋) that are 

within some distance threshold 𝒅 𝒙𝒊, 𝒙𝒋 ≤ 𝒔
 Note: Naïve solution would take 𝑶 𝑵𝟐



where 𝑵 is the number of data points

 MAGIC: This can be done in 𝑶 𝑵 !! How?
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 Goal: Find near-neighbors in high-dim. space
▪ We formally define “near neighbors” as 

points that are a “small distance” apart
 For each application, we first need to define 

what “distance” means
 Today: Jaccard distance/similarity
▪ The Jaccard similarity of two sets is the size of their 

intersection divided by the size of their union:
sim(C1, C2) = |C1C2|/|C1C2|

▪ Jaccard distance: d(C1, C2) = 1 - |C1C2|/|C1C2|
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3 in intersection

8 in union

Jaccard similarity= 3/8

Jaccard distance = 5/8



 Goal: Given a large number (𝑵 in the millions or 
billions) of documents, find “near duplicate” pairs

 Applications:
▪ Mirror websites, or approximate mirrors
▪ Don’t want to show both in search results

▪ Similar news articles at many news sites
▪ Cluster articles by “same story”

 Problems:
▪ Many small pieces of one document can appear 

out of order in another

▪ Too many documents to compare all pairs

▪ Documents are so large or so many that they cannot 
fit in main memory
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1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short 
signatures, while preserving similarity

3. Locality-Sensitive Hashing: Focus on 
pairs of signatures likely to be from 
similar documents

▪ Candidate pairs!
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Step 1: Shingling: Convert documents to sets
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 Step 1: Shingling: Convert documents to sets

 Simple approaches:

▪ Document = set of words appearing in document

▪ Document = set of “important” words

▪ Don’t work well for this application. Why?

 Need to account for ordering of words!
 A different way: Shingles!
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 A k-shingle (or k-gram) for a document is a 
sequence of k tokens that appears in the doc

▪ Tokens can be characters, words or something 
else, depending on the application

▪ Assume tokens = characters for examples

 Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}
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 Document D1 is a set of its k-shingles C1=S(D1)
 Equivalently, each document is a 

0/1 vector in the space of k-shingles

▪ Each unique shingle is a dimension

▪ Vectors are very sparse

 A natural similarity measure is the 
Jaccard similarity:

sim(D1, D2) = |C1C2|/|C1C2|
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 Documents that have lots of shingles in 
common have similar text, even if the text 
appears in different order

 Caveat: You must pick k large enough, or most 
documents will have most shingles

▪ k = 5 is OK for short documents

▪ k = 10 is better for long documents
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 Suppose we need to find near-duplicate 
documents among 𝑵 = 𝟏 million documents

 Naïvely, we would have to compute pairwise 
Jaccard similarities for every pair of docs

▪ 𝑵(𝑵 − 𝟏)/𝟐 ≈ 5*1011 comparisons

▪ At 105 secs/day and 106 comparisons/sec, 
it would take 5 days

 For 𝑵 = 𝟏𝟎 million, it takes more than a year…
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Step 2: Minhashing: Convert large sets to 
short signatures, while preserving similarity
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 Many similarity problems can be 
formalized as finding subsets that 
have significant intersection

 Encode sets using 0/1 (bit, boolean) vectors 

▪ One dimension per element in the universal set

 Interpret set intersection as bitwise AND, and 
set union as bitwise OR

 Example: C1 = 10111; C2 = 10011

▪ Size of intersection = 3; size of union = 4, 

▪ Jaccard similarity (not distance) = 3/4

▪ Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4
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 Rows = elements (shingles)
 Columns = sets (documents)
▪ 1 in row e and column s if and only 

if e is a member of s

▪ Column similarity is the Jaccard
similarity of the corresponding 
sets (rows with value 1)

▪ Typical matrix is sparse!
 Each document is a column:
▪ Example: sim(C1 ,C2) = ?

▪ Size of intersection = 3; size of union = 6, 
Jaccard similarity (not distance) = 3/6

▪ d(C1,C2) = 1 – (Jaccard similarity) = 3/6
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 So far:

▪ Documents → Sets of shingles

▪ Represent sets as boolean vectors in a matrix

 Next goal: Find similar columns while 
computing small signatures

▪ Similarity of columns == similarity of signatures
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 Next Goal: Find similar columns, Small signatures
 Naïve approach:

▪ 1) Signatures of columns: small summaries of columns

▪ 2) Examine pairs of signatures to find similar columns

▪ Essential: Similarities of signatures and columns are related

▪ 3) Optional: Check that columns with similar signatures 
are really similar

 Warnings:

▪ Comparing all pairs may take too much time: Job for LSH

▪ These methods can produce false negatives, and even false 
positives (if the optional check is not made)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 23



 Key idea: “hash” each column C to a small 
signature h(C), such that:

▪ (1) h(C) is small enough that the signature fits in RAM

▪ (2) sim(C1, C2) is the same as the “similarity” of 
signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:

▪ If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

▪ If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Hash docs into buckets. Expect that “most” pairs 
of near duplicate docs hash into the same bucket!
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 Goal: Find a hash function h(·) such that:

▪ if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

▪ if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 There is a suitable hash function for 
the Jaccard similarity: It is called Min-Hashing
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 Imagine the rows of the boolean matrix 
permuted under random permutation 

 Define a “hash” function h(C) = the index of 
the first (in the permuted order ) row in 
which column C has value 1:

h (C) = min (C)

 Use several (e.g., 100) independent hash 
functions (that is, permutations) to create a 
signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



27

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

2nd element of the permutation 

is the first to map to a 1

4th element of the permutation 

is the first to map to a 1
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Input matrix (Shingles x Documents) Permutation 

Note: Another (equivalent) way is to 

store row indexes: 1 5 1 5
2 3 1 3
6 4 6 4



 Choose a random permutation 
 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 
 Why?

▪ Let X be a doc (set of shingles), y X is a shingle

▪ Then: Pr[(y) = min((X))] = 1/|X|

▪ It is equally likely that any y X is mapped to the min element

▪ Let y be s.t. (y) = min((C1C2))

▪ Then either: (y) = min((C1))  if y  C1 , or

(y) = min((C2))  if y  C2

▪ So the prob. that both are true is the prob. y  C1  C2

▪ Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|= sim(C1, C2) 
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 We know: Pr[h(C1) = h(C2)] = sim(C1, C2)
 Now generalize to multiple hash functions

 The similarity of two signatures is the 
fraction of the hash functions in which they 
agree

 Note: Because of the Min-Hash property, the 
similarity of columns is the same as the 
expected similarity of their signatures
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Similarities:
1-3      2-4    1-2   3-4

Col/Col 0.75    0.75    0       0
Sig/Sig 0.67    1.00    0       0
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 Pick K=100 random permutations of the rows
 Think of sig(C) as a column vector
 sig(C)[i] = according to the i-th permutation, the 

index of the first row that has a 1 in column C

sig(C)[i] = min (i(C))

 Note: The sketch (signature) of document C is 
small  ~𝟏𝟎𝟎 bytes!

 We achieved our goal! We “compressed” 
long bit vectors into short signatures
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 Permuting rows even once is prohibitive
 Row hashing!

▪ Pick K = 100 hash functions ki

▪ Ordering under ki gives a random row permutation!

 One-pass implementation

▪ For each column C and hash-func. ki keep a “slot” for 
the min-hash value

▪ Initialize all sig(C)[i] = 

▪ Scan rows looking for 1s

▪ Suppose row j has 1 in column C

▪ Then for each ki :

▪ If ki(j) < sig(C)[i], then sig(C)[i]  ki(j)
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How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)



Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from 
similar documents
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 Goal: Find documents with Jaccard similarity at 
least s (for some similarity threshold, e.g., s=0.8)

 LSH – General idea: Use a function f(x,y) that 
tells whether x and y is a candidate pair: a pair 
of elements whose similarity must be evaluated

 For Min-Hash matrices: 

▪ Hash columns of signature matrix M to many buckets

▪ Each pair of documents that hashes into the 
same bucket is a candidate pair
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 Pick a similarity threshold s (0 < s < 1)

 Columns x and y of M are a candidate pair if 
their signatures agree on at least fraction s of 
their rows: 
M (i, x) = M (i, y) for at least frac. s values of i

▪ We expect documents x and y to have the same 
(Jaccard) similarity as their signatures
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 Big idea: Hash columns of 
signature matrix M several times

 Arrange that (only) similar columns are 
likely to hash to the same bucket, with 
high probability

 Candidate pairs are those that hash to 
the same bucket
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 Divide matrix M into b bands of r rows

 For each band, hash its portion of each 
column to a hash table with k buckets

▪ Make k as large as possible

 Candidate column pairs are those that hash 
to the same bucket for ≥ 1 band

 Tune b and r to catch most similar pairs, 
but few non-similar pairs
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Matrix M

r rows b bands

Buckets
Columns 2 and 6

are probably identical 

(candidate pair)

Columns 6 and 7 are

surely different.
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 There are enough buckets that columns are 
unlikely to hash to the same bucket unless 
they are identical in a particular band

 Hereafter, we assume that “same bucket” 
means “identical in that band”

 Assumption needed only to simplify analysis, 
not for correctness of algorithm
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Assume the following case:
 Suppose 100,000 columns of M (100k docs)
 Signatures of 100 integers (rows)
 Therefore, signatures take 40Mb
 Choose b = 20 bands of r = 5 integers/band

 Goal: Find pairs of documents that 
are at least s = 0.8 similar
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 Find pairs of  s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.8
▪ Since sim(C1, C2)  s, we want C1, C2 to be a candidate 

pair: We want them to hash to at least 1 common bucket
(at least one band is identical)

 Probability C1, C2 identical in one particular 
band: (0.8)5 = 0.328

 Probability C1, C2 are not similar in all of the 20 
bands: (1-0.328)20 = 0.00035 
▪ i.e., about 1/3000th of the 80%-similar column pairs 

are false negatives (we miss them)

▪ We would find 99.965% pairs of truly similar documents
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 Find pairs of  s=0.8 similarity, set b=20, r=5
 Assume: sim(C1, C2) = 0.3
▪ Since sim(C1, C2) < s we want C1, C2 to hash to NO 

common buckets (all bands should be different)
 Probability C1, C2 identical in one particular 

band: (0.3)5 = 0.00243
 Probability C1, C2 identical in at least 1 of 20 

bands: 1 - (1 - 0.00243)20 = 0.0474
▪ In other words, approximately 4.74% pairs of docs 

with similarity 0.3% end up becoming candidate pairs
▪ They are false positives since we will have to examine them 

(they are candidate pairs) but then it will turn out their 
similarity is below threshold s
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 Pick:

▪ The number of Min-Hashes (rows of M) 

▪ The number of bands b, and 

▪ The number of rows r per band

to balance false positives/negatives

 Example: If we had only 15 bands of 5 
rows, the number of false positives would 
go down, but the number of false negatives 
would go up
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Similarity t =sim(C1, C2) of two sets
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Remember:
Probability of
equal hash-values
= similarity

Similarity t =sim(C1, C2) of two sets

Probability
of sharing
a bucket



 Columns C1 and C2 have similarity t
 Pick any band (r rows)

▪ Prob. that all rows in band equal = tr

▪ Prob. that some row in band unequal = 1 - tr

 Prob. that no band identical  = (1 - tr)b

 Prob. that at least 1 band identical =                  
1 - (1 - tr)b
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Similarity t=sim(C1, C2) of two sets

Probability
of sharing
a bucket



 Similarity threshold s
 Prob. that at least 1 band is identical:
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s 1-(1-sr)b

.2 .006

.3 .047

.4 .186

.5 .470

.6 .802

.7 .975

.8 .9996



 Picking r and b to get the best S-curve

▪ 50 hash-functions (r=5, b=10)
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 Tune M, b, r to get almost all pairs with 
similar signatures, but eliminate most pairs 
that do not have similar signatures

 Check in main memory that candidate pairs
really do have similar signatures

 Optional: In another pass through data, 
check that the remaining candidate pairs 
really represent similar documents
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 Shingling: Convert documents to sets

▪ We used hashing to assign each shingle an ID

 Min-Hashing: Convert large sets to short 
signatures, while preserving similarity

▪ We used similarity preserving hashing to generate 
signatures with property Pr[h(C1) = h(C2)] = sim(C1, C2)

▪ We used hashing to get around generating random 
permutations

 Locality-Sensitive Hashing: Focus on pairs of 
signatures likely to be from similar documents

▪ We used hashing to find candidate pairs of similarity  s
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